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FROM RATIONAL BILLIARDS

TO DYNAMICS ON MODULI SPACES

ALEX WRIGHT

Abstract. This short expository note gives an elementary introduction to
the study of dynamics on certain moduli spaces and, in particular, the recent
breakthrough result of Eskin, Mirzakhani, and Mohammadi. We also discuss
the context and applications of this result, and its connections to other areas
of mathematics, such as algebraic geometry, Teichmüller theory, and ergodic
theory on homogeneous spaces.
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1. Rational billiards

Consider a point bouncing around in a polygon. Away from the edges, the point
moves at unit speed. At the edges, the point bounces according to the usual rule
that angle of incidence equals angle of reflection. If the point hits a vertex, it stops
moving. The path of the point is called a billiard trajectory.

The study of billiard trajectories is a basic problem in dynamical systems and
arises naturally in physics. For example, consider two points of different masses
moving on a interval, making elastic collisions with each other and with the end-
points. This system can be modeled by billiard trajectories in a right angled triangle
[MT02].
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A rational polygon is a polygon all of whose angles are rational multiples of π.
Many mathematicians are especially interested in billiards in rational polygons for
the following three reasons.

• First, without the rationality assumption, few tools are available, and not
much is known. For example, it is not even known if every triangle has a
periodic billiard trajectory. With the rationality assumption, quite a lot
can be proven.

• Second, even with the rationality assumption a wide range of interesting
behavior is possible, depending on the choice of polygon.

• Third, the rationality assumption leads to surprising and beautiful connec-
tions to algebraic geometry, Teichmüller theory, ergodic theory on homoge-
nous spaces, and other areas of mathematics.

The assumption of rationality first arose from the following simple thought ex-
periment. What if, instead of letting a billiard trajectory bounce off an edge of a
polygon, we allowed the trajectory to continue straight, into a reflected copy of the
polygon?

Figure 1.1. A billiard trajectory in a polygon P . Instead of al-
lowing the trajectory to bounce off the edge of P , we may allow it
to continue straight into a reflected copy of P . A key observation
is that the trajectory that continues into the reflected copy of P is
in fact the reflection of the trajectory in P that bounces off of the
edge.

This leads us to define the “unfolding” of a polygon P as follows: Let G be the
subgroup of O(2) (linear isometries of R2) generated by the derivatives of reflections
in the sides of P . The group G is finite if and only if the polygon P is rational
(in which case G is a dihedral group). For each g ∈ G, consider the polygon gP .
These polygons gP can be translated so that they are all disjoint in the plane. We
identify the edges in pairs in the following way. Suppose r is the derivative of the
reflection in one of the edges of hP . Then this edge of hP is identified with the
corresponding edge of rhP .

The unfolding construction is most easily understood through examples; see
Figures 1.2 and 1.3.
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Figure 1.2. Left: The unit square unfolds to four squares, with
opposite edges identified (a flat torus). (By “opposite edges” in
these pictures, we mean pairs of boundary edges that are perpen-
dicularly across from each other, so for example the top left and top
right vertical edges on the unfolding of the square are opposite.)
When two polygons are drawn with an adjacent edge, by conven-
tion this means these two adjacent edges are identified. Here each
square has been decorated with the letter F, to illustrate which
squares are reflections of other squares. Right: Unfolding the right
angled triangle with smallest angle π/8 gives the regular octagon
with opposite sides identified.

Figure 1.3. A billiard trajectory on a rational polygon unfolds to
a straight line on the unfolding of the polygon. In this illustration,
we have unfolded a billiard trajectory on square (bottom left) to
a straight line on a flat torus. The square and its unfolding are
superimposed, the billiard trajectory is drawn with a solid line,
and the unfolded straight line is drawn with a dotted line.

2. Translation surfaces

Unfoldings of rational polygons are special examples of translation surfaces.
There are several equivalent definitions of translation surface, the most elemen-
tary of which is a finite union of polygons in in the plane with edge identifications,
obeying certain rules, up to a certain equivalence relation. The rules are:

(1) The interiors of the polygons must be disjoint, and if two edges overlap
then they must be identified.



44 ALEX WRIGHT

(2) Each edge is identified with exactly one other edge, which must be a trans-
lation of the first. The identification is via this translation.

(3) When an edge of one polygon is identified with an edge of a different poly-
gon, the polygons must be on “different sides” of the edge. For example, if
a pair of vertical edges are identified, one must be on the left of one of the
polygons, and the other must be on the right of the other polygon.

Two such families of polygons are considered to be equivalent if they can be related
via a string of the following “cut and paste” moves:

(1) A polygon can be translated.
(2) A polygon can be cut in two along a straight line, to give two adjacent

polygons.
(3) Two adjacent polygons that share an edge can be glued to form a single

polygon.

Figure 2.1. In all five translation surfaces above, opposite edges
are identified. In the leftmost four, each adjacent pair of translation
surfaces differs by one of the above three moves, so all four of these
pictures give the same translation surface. The rightmost rotated
surface is (presumably) not equal to the other four, since rotation
is not one of the three allowed moves.

In general, it is difficult to decide if two collections of polygons as above are
equivalent (describe the same translation surface) because each collection of poly-
gons is equivalent to infinitely many others.

The requirements above ensure that the union of the polygons modulo edge
identifications gives a closed surface. This surface has flat metric, given by the flat

Figure 2.2. The edge identifications imply that the eight corners
of the octagon are in fact all identified and give a single point on
the translation surface. Around this point there is 6π total angle,
since at each of the eight corners of the polygon there is 3

4π interior
angle.
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metric on the plane, away from a finite number of singularities. The singularities
arise from the corners of the polygons. For example, in the regular 8-gon with
opposite sides identified, the eight vertices give rise to a single point with cone
angle. See Figure 2.2.

The singularities of the flat metric on a translation surface are always of a very
similar conical form, and the total angle around a singularity on a translation
surface is always an integral multiple of 2π. Note that, although the flat metric is
singular at these points, the underlying topological surface is not singular at any
point. (That is, at every single point, including the singularities of the flat metric,
the surface is locally homeomorphic to R2.)

Most translation surfaces do not arise from unfoldings of rational polygons. This
is because unfoldings of polygons are exceptionally symmetric, in that they are tiled
by isometric copies of the polygon.

Translation surfaces satisfy a Gauss–Bonnet type theorem. If a translation sur-
face has s singularities with cone angles

(1 + k1)2π, (1 + k2)2π, . . . , (1 + ks)2π,

then the genus g is given by the formula 2g−2 =
∑

ki. (So, in a formal comparison
to the usual Gauss–Bonnet formula, one might say that each extra 2π of angle on
a translation surface counts for one unit of negative curvature.)

Consider now the question of how a given translation surface can be deformed
to give other translation surfaces. The polygons, up to translation, can be recorded
by their edge vectors in C (plus some finite amount of combinatorial data, for
example the cyclic order of edges around the polygons). Not all edge vectors need
be recorded, since some are determined by the rest. Changing the edge vectors
(subject to the condition that identified edges should remain parallel and of the
same length) gives a deformation of the translation surface; see Figure 2.3.

Figure 2.3. Consider the translation surface described by the
above polygon, with opposite edges identified. This surface has
two singularities, each with total angle 4π. One singularity has
been labelled with a dot, and the other with an x. An Euler char-
acteristic calculation (V −E+F = 2−2g) show that it has genus 2.
The regular octagon with opposite sides identified also has genus
2, but it has only a single singularity, with total angle 6π.

To formalize this observation, we define moduli spaces of translation surfaces.
Given an unordered collection k1, . . . , ks of positive integers whose sum is 2g − 2,
the stratum H(k1, . . . , ks) is defined to be the set of all translation surfaces with
s singularities, of cone angles (1 + ki)2π, i = 1, . . . , s. The genus of these surfaces
must be g by the Gauss–Bonnet formula above. We have
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Lemma 2.1. Each stratum is a complex orbifold of dimension n = 2g + s − 1.
Each stratum has a finite cover that is a manifold and has an atlas of charts to Cn

with transition functions in GL(n,Z).

Figure 2.4. Any octagon whose opposite edges are parallel can
be described by the 4-tuple of its edges vectors (v1, v2, v3, v4) ∈ C4.
(Not all choices of vi give valid octagons.) The coordinates
(v1, v2, v3, v4) are local coordinates for space of deformations of
the regular octagon translation surface. These coordinates are not
canonical: other equally good coordinates can be obtained by cut-
ting up the octagon and keeping track of different edge vectors.

Figure 2.5. These two polygons (with opposite sides identified)
both describe the same translation surface. Keeping track of the
edge vectors in either polygon gives equally good local coordinates
for the space of nearby translation surfaces. The two local co-
ordinates thus obtained are related by the linear transformation
(v1, v2) �→ (v1, v1 + v2).

The coordinate charts are called period coordinates. They consist of complex
edge vectors of polygons. That strata are orbifolds instead of manifolds is a technical
point that should be ignored by non-experts.

Strata are not always connected, but their connected components have been clas-
sified by Kontsevich and Zorich [KZ03]. There are always at most three connected
components. The topology (and birational geometry) of strata is currently not well
understood. Kontsevich has conjectured that strata are K(π, 1) spaces.

3. The GL(2,R) action

There is a GL(2,R) action on each stratum, obtained by acting linearly on
polygons and keeping the same identification.

Note that if two edges or polygons differ by translation by a vector v, then their
images under the linear map g ∈ GL(2,R) must differ by translation by gv.
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Figure 3.1. An example of the GL(2,R) action. In both pictures,
opposite edges are identified.

Example 3.1. The stabilizer of the standard flat torus (a unit square with opposite
sides identified) is GL(2,Z). For example, Figure 2.1 (near the beginning of the
previous section) proves that ( 1 1

0 1 ) is in the stabilizer. This example illustrates the
complexity of the GL(2,R) action: applying a large matrix (say, of determinant 1)
will yield a collection of very long and thin polygons, but it is hard to know when
this collection of polygons is equivalent to a more reasonable one.

Translation surfaces have a well-defined area, given by the sum of the areas of the
polygons. The action of SL(2,R) of determinant 1 matrices in GL(2,R) preserves
the locus of unit area translation surfaces. This locus is not compact, because
the polygons can have edges of length going to 0, even while the total area stays
constant.

Define

gt =

(
et 0
0 e−t

)
∈ SL(2,R).

Suppose one wants to know if a translation surface S has a vertical line joining sin-
gularities (cone points) of length e10. This is equivalent to the question of whether
g10(S) has a vertical line segment of length 1 joining two singularities.

Figure 3.2. Applying gt to a translation surface with a vertical
line segment gives gives a new translation surface with a shorter
vertical line segment.

In fact, for any matrix g ∈ GL(2,R), the surfaces S and g(S) are closely related,
since one can go back and forth between them using g and g−1. Really S and g(S)
are just different perspectives on the same object, in which different features are
apparent. To understand S from all possible perspectives, we would like to under-
stand its GL(2,R) orbit. However, just from definitions, it is not really possible to
understand the GL(2,R) orbit of a surface. It is really hard to know, given two
surfaces S and S′, if there are large matrices g so that the polygons defining g(S)
can be cut up and reglued to be almost equal to the polygons defining S′!
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4. Renormalization

This section aims to give some of the early motivations and successes of the field.
It can be safely skipped and returned to later by anyone eager to get to the modern
breakthrough and its applications and connections to other area of mathematics.

Suppose once again that we have a vertical line segment of length L on a transla-
tion surface S. For example, if S is the unfolding of a rational polygon, the vertical
line might be the unfolding of a billiard trajectory. If one is interested in a line
that is not vertical, one can rotate the whole picture (giving a different translation
surface) so that it becomes vertical.

Applying gt results in a translation surface gt(S) with a vertical segment of
length e−tL. We are interested in doing this when L is very large, and t = log(L)
is chosen so the new vertical segment will have length 1. Indeed, the point is to do
this over and over as L gets longer, giving a family of surfaces gt(S).

This idea of taking longer and longer trajectories (here vertical lines on the
translation surface) and replacing them with bounded length trajectories on new
objects is called renormalization, and it is a powerful and frequently used tool in the
study of dynamical systems. The typical strategy is to transfer some understanding
of the sequence of renormalized objects into results on the behavior of the original
system. In this case, showing that the geometry of gt(S) does not degenerate allows
good understanding of vertical lines on S.

Theorem 4.1 (Masur’s criterion [Mas92]). Suppose {gt(S) : t ≥ 0} does not diverge
to infinity in the stratum. Then every infinite vertical line on S is equidistributed
on S.

“Equidistributed” is a technical term that indicates that the vertical line becomes
dense in S without favoring one part of S over another. Using this, Kerckhoff,
Masur, and Smillie [KMS86] were able to show

Theorem 4.2. In every translation surface, for almost every slope, every infinite
line of this slope is equidistributed.

There are some surfaces where much more is true. For example, on the unit
square with opposite sides identified, any line of rational slope is periodic, and
every line of irrational slope is equidistributed. Genus 1 translation surfaces are
quite special, because GL(2,R) acts transitively on the space of genus 1 translation
surfaces. In particular, the GL(2,R) orbit of any genus 1 translation surface is
closed, in a trivial way, since the orbit is the entire moduli space.

Figure 4.1. An example of a periodic line on the regular octagon
with opposite sides identified.
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Theorem 4.3 (Veech dichotomy). If S is a translation surface with closed GL(2,R)
orbit, then for all but countably many slopes every line with that slope is equidis-
tributed. Moreover, every line with slope contained in the countable set is periodic.

Veech also showed that the regular 2n-gon with opposite sides identified has
closed orbit. However, the property of having a closed orbit is extremely special.

Theorem 4.4 (Masur [Mas82], Veech [Vee82]). The GL(2,R) orbit of almost every
translation surface is dense in a connected component of a stratum.

For the experts, we remark that in fact Masur and Veech showed the stronger
statement that the gt action on the loci of unit area surfaces in a connected compo-
nent of a stratum is ergodic, with respect to a Lebesgue class probability measure
called the Masur–Veech measure.

This result of Masur and Veech is not satisfactory from the point of view of
billiards in rational polygons, since the set of translation surfaces that are unfoldings
of polygons has measure 0.

5. Eskin, Mirzakhani, and Mohammadi’s breakthrough

The gt orbit closure of a translation surface may be a fractal object. While this
behavior might at first seem pathological, it is in fact quite typical in dynamical
systems. Generally speaking, given a group action it is hugely unrealistic to ask
for any understanding of every single orbit, since these may typically be arbitrarily
complicated. Thus the following result is quite amazing.

Theorem 5.1 (Eskin, Mirzakhani, and Mohammadi [EM,EMM]). The GL(2,R)
orbit closure of a translation surface is always a manifold. Moreover, the manifolds
that occur are locally defined by linear equations in period coordinates. These linear
equations have real coefficients and zero constant term.

Note that although the local period coordinates are not canonical, if a manifold
is cut out by linear equations in one choice of period coordinates, it must also be
in any other overlapping choice of period coordinates, because the transition map
between these two coordinates is a matrix in GL(n,Z).

Previously, orbit closures had been classified in genus 2 by McMullen. (One open
problem remains in genus 2, which is the classification of SL(2,Z) orbits of square-
tiled surfaces in H(1, 1).) The techniques of Eskin, Mirzakhani, and Mohammadi,
unlike those of McMullen, are rather abstract, and have surprisingly little to do
with translations surfaces. Thus the work of Eskin, Mirzakhani, and Mohammadi
does not give any information about how many or what sort of submanifolds arise
as orbit closures, except for what is given in the theorem statement.

6. Applications of the Eskin, Mirzakhani, and Mohammadi theorem

There are many applications of Theorem 5.1 to translation surfaces, rational
billiards, and other related dynamics systems, for example interval exchange trans-
formations. Here we list just a few of the most easily understood applications.

Generalized diagonals in rational polygons. Let P be a rational polygon.
A generalized diagonal is a billiard trajectory that begins and ends at a corner of
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P . If P is a square, an example is a diagonal of P . Let NP (L) be the number of
generalized diagonals in P of length at most L. It is a folklore conjecture that

lim
L→∞

NP (L)

L2

exists for every P and is non-zero. Previously, Masur had shown that the limsup
and liminf are non-zero and finite [Mas90,Mas88]. Eskin, Mirzakhani, and Moham-
madi give the best result to date: with some additional Cesaro-type averaging, the
conjecture is true, and furthermore only countably many real numbers may occur
as such a limit.

The illumination problem. Given a polygon P and two points x and y, say
that y is illuminated by x if there is a billiard trajectory going from y to x. This
terminology is motivated by thinking of P as a polygonal room whose walls are
mirrors, and thinking of a candle placed at x. The light rays travel along billiard
trajectories. We emphasize that the polygon need not be convex.

Lelièvre, Monteil, and Weiss have shown that if P is a rational polygon, for every
x there are at most finitely many y not illuminated by x [LMW].

The Wind Tree Model. This model arose from physics and is sometimes called
the Ehrenfest model. Consider the plane with periodically shaped rectangular bar-
riers (“trees”). Consider a particle (of “wind”) which moves at unit speed and
collides elastically with the barriers.

Delecroix, Hubert, and Lelièvre have determined the divergence rate of the par-
ticle for all choices of size of the rectangular barriers [DHL14]. Without the Eskin,
Mirzakhani, and Mohammadi theorem (and the work of Chaika and Eskin [CE]),
the best that could proven was the existence of an unspecified full measure set of
choices of sizes for which such a result holds.

There are many other examples along these lines, where previously results were
known to hold for almost all examples without being known to hold in any particular
example, and now with the Eskin, Mirzakhani, and Mohammadi theorem it can be
upgraded to hold in all cases.

Figure 6.1. An example of a trajectory in the Wind Tree Model.
Figure courtesy of Vincent Delecroix.
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Applications of Eskin and Mirzakhani’s proof. The ideas that Eskin and
Mirzakhani developed have applications beyond moduli spaces of translation sur-
faces. They are currently being used by Rodriguez-Hertz and Brown to study ran-
dom diffeomorphisms on surfaces [BRH] and the Zimmer program (lattice actions
on manifolds), and they are also expected to have applications in ergodic theory on
homogeneous spaces.

7. Context from homogeneous spaces

The primary motivation for Theorem 5.1 is the following theorem.

Theorem 7.1 (Ratner’s Theorem). Let G be a Lie group, and let Γ ⊂ G be a lattice.
Let H ⊂ G be a subgroup generated by unipotent one parameter groups. Then every
H orbit closure in G/Γ is a manifold and, moreover, is a subhomogeneous space.

For example, the theorem applies if G = SL(3,R), Γ = SL(3,Z), and H =
{ht : t ∈ R}, where

ht =

⎛
⎝ 1 t 0

0 1 0
0 0 1

⎞
⎠ or ht =

⎛
⎝ 1 t t2/2

0 1 t
0 0 1

⎞
⎠ .

Ratner’s work confirmed a conjecture of Raghunathan. Special cases of this
conjecture had previously been verified by Dani and Margulis [DM90], for example
for the second choice of ht above.

The basic idea behind such proofs is the strategy of additional invariance. Given
a closed H-invariant set, one starts with two points x and y very close together,
and applies ht until the points drift apart. The direction of drift is controlled by
another one parameter subgroup, and one tries to show that the closed H-invariant
set is in fact also invariant under the one parameter group that gives the direction
of drift. One continues this argument inductively, each time producing another
one parameter group the set is invariant under, until one shows that the closed H
invariant set is in fact invariant under a larger group L, and is contained in (and
hence equal to) a single L orbit. This gives that the set in question is homogenous
and, in particular, a manifold.

Of course, this is in fact very difficult, and complete proofs of Ratner’s Theorem
are very long and technical. For one thing, as is the case in the work of Eskin and
Mirzakhani, it is in fact too difficult to work directly with closed invariant sets, as
we have just suggested. Rather, one first must classify invariant measures. Thus
the argument takes place in the realm of ergodic theory, which exactly studies group
actions on spaces with invariant measures. See [Mor05,Ein06] for an introduction.

The fundamental requirement of the proof is that orbits of nearby points drift
apart slowly and in a controlled way. This is intimately tied to the fact that
unipotent one parameter groups are polynomial, as can be seen in the ht above.
Contrast this to the one parameter group(

et 0
0 e−t

)
,

whose orbit closures may be fractal sets.
One might hope to study GL(2,R) orbit closures of translation surfaces using

the action of

ut =

(
1 t
0 1

)
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on strata, in analogy to the proof of Ratner’s Theorem. Unfortunately, the dynam-
ics of the ut action on strata is currently much too poorly understood for this.

8. The structure of the proof

The proof of Theorem 5.1 builds on many ideas in homogeneous space dynamics,
including the work of Benoist and Quint [BQ09], and the high and low entropy
methods of Einsiedler, Lindenstrauss, and Katok [EKL06] (see also the beautiful
introduction for a general audience by Venkatesh [Ven08]). Lindenstrauss won the
Fields Medal in 2010 partially for the development of the low entropy method, and
Benoist and Quint won the Clay prize for their work.

Entropy measures the unpredictability of a system that evolves over time.
Define P to be the upper triangular subgroup of SL(2,R). The proof of Theorem

5.1 proceeds in two main stages.
In the first, Eskin and Mirzakhani show that any ergodic P invariant measure

is in fact a Lebesgue class measure on a manifold cut out by linear equations, and
it must be SL(2,R) invariant. (An ergodic measure is an invariant measure which
is not the average of two other invariant measures in a non-trivial way. Thus the
ergodic measures are the building blocks for all other invariant measures.)

In the second stage, Eskin, Mirzakhani, and Mohammadi use this to prove The-
orem 5.1 by constructing a P -invariant measure on every P -orbit closure. By
contrast, it is not possible to directly construct an SL(2,R) invariant measure on
each SL(2,R) orbit closure, and this is why the use of P is crucial. The algebraic
structure of P makes it possible to average over larger and larger subsets of P and
thus produce P invariant measures, whereas the more complicated algebraic struc-
ture of SL(2,R) does not allow this. (The relevant property is that P is amenable,
while SL(2,R) is not.)

In the paper of Eskin and Mirzakhani, which caries out the first stage, the most
difficult part is in fact to show P -invariant measures are SL(2,R) invariant. To do
this, extensive entropy arguments are used, partially inspired by the Margulis and
Tomanov proof of Ratner’s Theorem [MT94] and to a lesser extent the high and low
entropy methods. This part is the technical heart of the argument and takes almost
100 pages of delicate arguments. One of the morals is that entropy arguments are
surprisingly effective in this context and can be made to work without the use of
an ergodic theorem.

Once Eskin and Mirzakhani show that P -invariant measures are SL(2,R) in-
variant, they build upon ideas of Benoist and Quint to conclude that every such
measure is a Lebesgue class measure on a manifold cut out by linear equations

All together, the proof is remarkably abstract. The only facts used about trans-
lation surfaces are formulas for Lyapunov exponents due to Forni [For02]. (The
Lyapunov exponents of a smooth dynamical system, in this case the action of gt
on a stratum, measure the rates of expansion and contraction in different direc-
tions.) Forni was awarded the Brin prize partially for these formulas, which are
of a remarkably analytic nature and arose from an insight of Kontsevich [Kon97].
Eskin and Mirzakhani also make use of a result of Filip [Filb] to handle a volume
normalization issue at the end of the proof.

Results which classify invariant measures are rare gems. The arguments are
abstract, and their purpose is to rule out non-existent objects, and thus they cannot
be guided by examples. To obtain a truly new measure classification result, one
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must find truly new ideas from among the sea of ideas which do not quite work,
and the devil is in the details. This is very much the case in the paper of Eskin
and Mirzakhani.

9. Relation to Teichmüller theory and algebraic geometry

Every translation surface has, in particular, the structure of a Riemann surface
X. The extra flat structure is determined by additionally specifying an Abelian
differential ω (a.k.a. holomorphic one form, or global section of the canonical bundle
of X). The holomorphic one form is dz on the polygons, where z is the usual
coordinate on the plane C � R2. It has zeros at the singularities of the flat metric.

Thus every translation surface can be given as a pair (X,ω). For example, the
translation surface given by a square with unit area and opposite edges identified
is (C/Z[i], dz).

There is a projection map (X,ω) �→ X from a stratum of translation surfaces of
genus g to the moduli space Mg of Riemann surfaces of genus g. Under this map, gt
orbits of translation surfaces project to geodesics for the Teichmüller metric. But it
is important to note that there is no GL(2,R) or gt action on Mg itself, only on (the
strata of) the bundle of Abelian differentials over Mg. This is somewhat analogous
to the fact that, given a Riemannian manifold, the geodesic flow is defined on the
tangent bundle, and there is no naturally related flow on the manifold itself.

The map (X,ω) �→ X has fibers of real dimension two (given by multiplying ω
by any complex number), and thus the projection of a four dimensional GL(2,R)
orbit to Mg is a two real dimensional object. It turns out that this object is an
isometrically immersed copy of the upper half-plane in C with its hyperbolic metric:
such objects are called complex geodesics or Teichmüller disks. Note that Royden
showed that the Teichmüller metric is equal to the Kobayashi metric on Mg.

McMullen showed that every GL(2,R) orbit closure in genus 2 is either a closed
orbit, or an eigenform locus, or a stratum [McM03]. In particular, every GL(2,R)
orbit closure of genus 2 translation surfaces is a quasi-projective variety. The cor-
responding statement for M2 is that every complex geodesic is either closed, or
dense in a Hilbert modular surface, or dense in M2.

The appearance of algebraic geometry in the study of orbit closures was unex-
pected and arose in very different ways from work of McMullen and Kontsevich.
A recent success in this direction is the following, which builds upon Theorem 5.1
and work of Möller [Möl06b,Möl06a].

Theorem 9.1 (Filip [Fila]). In every genus, every GL(2,R) orbit closure is an al-
gebraic variety that parameterizes pairs (X,ω) with special algebro-geometric prop-
erties, such as Jac(X) having real multiplication.

Furthermore, Filip’s work gives an algebro-geometric characterization of orbit
closures: They are loci of (X,ω) with special algebraic properties, when these loci
have maximal possible dimension. (When these loci do not have maximum possible
dimension, they do not give orbit closures are not of interest in dynamics.) It
is of yet unclear how to make use of this characterization, since calculating the
dimension of the relevant subvarieties of Mg seems to be an incredibly difficult
problem, very close to the Schottky problem. Nonetheless Filip’s work means that
an equivalent definition of orbit closure can be given to an algebraic geometer,
without mentioning flat geometry or even the GL(2,R) action!
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It is at present a major open problem to classifyGL(2,R) orbit closures. Progress
is ongoing using techniques based on flat geometry and dynamics; see for example
[Wri14,NW14,ANW]. One of the key tools is the author’s Cylinder Deformation
Theorem, which allows one to produce deformations of a translation surface that
remain in the GL(2,R) orbit closure, without actually computing any surfaces in
the GL(2,R) orbit [Wri15a].

10. What to read next

We recommend the two-page “What is . . . measure rigidity” article by Einsiedler
[Ein09], as well as the eight-page note “The mathematical work of Maryam Mirza-
khani” by McMullen [McM14] and the 13-page note “The magic wand theorem
of A. Eskin and M. Mirzakhani” by Zorich [Zor14, Zor]. There are a large num-
ber of surveys on translation surfaces, for example [MT02,Zor06] and the author’s
recent introduction aimed at a broad audience [Wri15b]. Alex Eskin has given a
mini-course on his paper with Mirzakhani, and notes are available on his website
[Esk].
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Poincaré conjecture, Clay Math. Proc., vol. 19, Amer. Math. Soc., Providence, RI, 2014,
pp. 31–46. MR3308757
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