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THE NONLINEAR SCHRÖDINGER EQUATION ON TORI:

INTEGRATING HARMONIC ANALYSIS,

GEOMETRY, AND PROBABILITY

ANDREA R. NAHMOD

Abstract. The field of nonlinear dispersive and wave equations has under-
gone significant progress in the last twenty years thanks to the influx of tools
and ideas from nonlinear Fourier and harmonic analysis, geometry, analytic
number theory and most recently probability, into the existing functional ana-
lytic methods. In these lectures we concentrate on the semilinear Schrödinger
equation defined on tori and discuss the most important developments in the
analysis of these equations. In particular, we discuss in some detail recent
work by J. Bourgain and C. Demeter proving the �2 decoupling conjecture
and as a consequence the full range of Strichartz estimates on either rational
or irrational tori, thus settling an important earlier conjecture by Bourgain.

1. Introduction

The nonlinear Schrödinger equation plays an ubiquitous role as a model for dis-
persive wave-phenomena in nature. Roughly speaking, dispersion means that when
no boundary is present, waves of different wavelengths travel at different phase
speeds: long wavelength components propagate faster than short ones. This is the
reason why over time dispersive waves spread out in space as they evolve in time,
while conserving some form of energy. This phenomenon is called broadening of
the wave packet. Dispersive wave-phenomena should be contrasted with transport
phenomena where all frequencies move at the same velocity or dissipative phenom-
ena (heat equation) in which frequencies gradually taper to zero, that is they do
not propagate.

The nonlinear Schrödinger equation serves as a mathematical model for the large
class of so-called dispersive partial differential equations [1, 67]. It naturally arises
in connection to a variety of different physical problems on flat space, tori, and other
manifolds. One of them is nonlinear optics in a so-called Kerr medium where one
considers electromagnetic waves in a material (e.g., glass fiber) whose time evolu-
tion are governed by Maxwell’s equations on R3. The nonlinear Maxwell equations
however have disparate scales, and understanding their dynamics is a difficult prob-
lem. As a first attempt one looks for further simplifications: asymptotic methods
then become useful. A natural ansatz is to write the electric field E as a Taylor
series whose leading term is a small amplitude wave packet of the form

(1.1) Apt, xqeipξ0¨x´ω0tq ` Apt, xqe´ipξ0¨x´ω0tq
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with wave vector ξ0 P R3, frequency ω0 P R, and A a small amplitude and slowly
varying function. After inserting back into the nonlinear Maxwell equations, formal
calculations, transformations, and multiple scale analysis yield a cubic nonlinear
Schrödinger equation where time corresponds to the coordinate of the direction of
propagation of the wave along the material for the (transformed) amplitude [1,55].
Essentially the same type of approximations can be made in other problems such
as, e.g., water waves. In this context one seeks solutions in which the interface of
the fluid region is to leading order a wave packet of the same form as (1.1), i.e.,
with small Opεq amplitude and slow spatial variation that are balanced. Lengthy
formal calculations then suggest that the envelopes of these wave packets evolve on
Opε´2q time scales according to a version of a cubic nonlinear Schrödinger equation
[25]. It often turns out that the nonlinear Schrödinger equation (approximately)
describes the evolution of envelopes of wave packets on the appropriate nonlinear
Schrödinger time scales; for a precise description, see [69, 70]. Other examples of
nonlinear Schrödinger equations arising from other physical situations can be found
in, for example, [61].

The nonlinear Schrödinger equations also arise as the equations governing Bose–
Einstein condensates. Bose–Einstein condensation phenomena were predicted by
S. N. Bose [3] and by A. Einstein [29] (1924–25); it is a fascinating phenomena
predicted by quantum statistical mechanics. Bose–Einstein condensation however
was experimentally achieved only in 1995 by Cornell and Wieman [24] and by W.
S. Ketterle [49] who produced the first gaseous condensate. For this they were
awarded the 2001 Nobel Prize in Physics.

A Bose–Einstein condensate is the state of matter of a gas of weakly interacting
bosonic atoms confined by an external potential and cooled to temperatures very
near absolute zero (0 Kelvin). In his 2001 Nobel lecture, W. S. Ketterle described
how profoundly the properties of a gas of bosonic atoms changes when you cool
down the gas. Then the wave nature of matter tells us that the wave packets which
describe an atom, this fuzzy object, becomes larger and larger and when the wave
packet expands to the size that the waves of neighboring atoms overlap, then all
atoms start to oscillate in concert and form what you may regard a giant matter
wave. And this is the Bose–Einstein condensate [51].

In other words, all bosons occupy the same quantum state and can thus be
described by a single wave function upt, xq. The pointwise density of this gas at time
t is represented by |upx, tq|2. The interactions between the bosons lead to nonlinear
contributions to the Schrödinger equation for this quantum system. Considering
only binary collisions between the bosons, one sees that u satisfies a cubic nonlinear
Schrödinger equation, which in this context is often called the Gross–Pitaevskii
equation after work by Gross [39] and by Pitaevskii [58]. Physically, it makes sense
to study the problem both in the periodic and the nonperiodic setting. Recently
there has been been intense activity and breakthrough results, particularly by L.
Erdős, B. Schlein, and H. T. Yau in the (mathematically) rigorous derivation of
the defocusing cubic nonlinear Schrödinger equation, both on R3 as well as T3 from
the dynamics of many-body quantum systems. We refer the interested reader to
[19–22,30–36,38, 53, 59] and references therein.

Bose–Einstein condensation is based on the wave nature of particles, which is
at the heart of quantum mechanics. In a simplified picture, bosonic atoms in a
gas may be regarded as quantum-mechanical wave packets with an extension of
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their thermal de Broglie wavelength (the position uncertainty associated with the
thermal momentum distribution). The lower the temperature, the longer is the
de Broglie wavelength. When atoms are cooled to the point where the thermal de
Broglie wavelength is comparable to the interatomic separation, then the atomic
wave packets “overlap” and the indistinguishability of particles becomes important.
Bosons undergo a phase transition and form a Bose–Einstein condensate, a dense
and coherent cloud of atoms all occupying the same quantum mechanical state [49].

Graphically, we can visualize this as follows [49, 50]:

Figure 1. Gas at high temperature, treated as a system of billiard
balls, with thermal velocity v and density d´3, where d is the
distance between bosonic particles.

Figure 2. Simplified quantum description of gas at low temper-
ature, in which the particles are regarded as wave packets with a
spatial extent of the order of the de Broglie wavelength, λdB.

Figure 3. Gas at the transition temperature for Bose–Einstein
condensation, when λdB becomes comparable to d. The wave pack-
ets overlaps and a Bose–Einstein condensate forms.

Figure 4. Pure Bose condensate (giant matter wave), which re-
mains as the temperature approaches absolute zero and the ther-
mal cloud disappears.

As mentioned above, the nonlinear Schrödinger equation arising from many-body
quantum bosonic atoms makes physical sense for bosons in a three-dimensional
cube with periodic boundary conditions (or from an experimental perspective a
rectangular box). The nonlinear Schrödinger equation, however, has very different
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behavior on Td from that on Rd since dispersion is weaker on (periodic) domains.
Furthermore, by now we have several examples of nonlinear Schrödinger and wave
equations defined Rd for which it is mathematically proven that dispersion sets in
and, after a time long enough, solutions settle into a purely linear behavior. This
phenomenon is often referred to as scattering (asymptotic stability). For linear
solutions, energy at any given frequency does not migrate to higher or lower fre-
quencies, that is there is no forward or backward cascade. Hence, as a consequence
of scattering, certain nonlinear solutions in Rd also will avoid these cascades. The
situation is believed to be quite different for dispersive equations on compact do-
mains. For example in the periodic case energy cascades and out-of-equilibrium
dynamics are expected [23,40,45]. It is then not surprising that for understanding
the time dynamics of solutions to the nonlinear Schrödinger on tori, one needs to
bring to bear tools and ideas from many different other areas of mathematics, such
as nonlinear Fourier and harmonic analysis, geometry, probability, analytic number
theory, dynamical systems, and others. In these notes we will touch upon a few
of these connections by explaining some key results and focus on the spectacular
resolution of the �2 decoupling conjecture by J. Bourgain and C. Demeter [14, 15]
(see also [12, 13]). Their results in turn (and in particular) solve a 1993 conjec-
ture by Bourgain and yield the predicted full range of dispersive estimates (known
as Strichartz estimates) for solutions to the Cauchy initial value problem for the
nonlinear Schrödinger equation (p-NLS) on general rectangular d-dimensional tori,

(1.2)

"

iut ` Δu “ λ|u|p´1u,
up0, xq “ φpxq, x P Λdpθq,

where φ is the initial profile, λ “ ˘1, p ą 1, u : R ˆ Λdpθq Ñ C and for β :“
pβ1, β2, . . . , βdq, βj ą 0, j “ 1, . . . , d we define the d-dimensional tori by

Λdpβq :“ pR{β1Zq ˆ pR{β2Zq ˆ ¨ ¨ ¨ ˆ pR{βdZq.

When βj “ 1, we have Λdpβq “ Td :“ pR{Zqd, the square d-dimensional torus

Td of 1-periodic functions. If at least one of the ratios
βj

βj1
R Q, j ‰ j1, we call

Λdpβq an irrational torus,1 otherwise we call Λdpβq a rational torus. The point
here is that if Λdpβq is rational, then by tiling the space with copies of Λdpβq,
we can construct some square torus which contains only full copies of Λdpβq. For
irrational tori, one can never construct such a square torus. Irrational tori come
up naturally experimentally as well as in KAM theory and Hamiltonian chaos ([10]
and references therein).

In the context of nonlinear dispersive equations, the general rectangular tori
Λdpβq were first studied by Bourgain [4] where he noted that the methods from
analytic number theory, previously employed in [5, 6] to obtain for the first time
some dispersive estimates for the Schrödinger equation on the square Td, could
not be used in the general rectangular case. It is fairly straightforward to see that
the dispersive estimates known for Td imply those for the rational torus as well.
This left open two questions: 1) obtaining the full range of expected dispersive
estimates on Td and 2) proving dispersive estimates for irrational tori. The second
was thought to be a much harder question from the harmonic analysis and ana-
lytic number theory point of view adopted in [4]. These questions were recently

1Without any loss of generality we can assume 1
2

ă βj ă 2, j “ 1, . . . , d.
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answered by Bourgain and Demeter [14, 15] who, rather than use analytic num-
ber theory, rely on decoupling inequalities (in discrete restriction phenomena) and
sophisticated arguments from multilinear harmonic analysis (adapted wave packet
decompositions, parabolic rescaling, bilinear square function estimates, multilinear
Kakeya, multiscale bootstrap), and also implicitly on ideas from incidence theory.
Their work is at the core of these notes, and it is the focus of Section 4. In Section
5 we discuss the interplay of deterministic and probabilistic approaches in the well-
posedness theory of nonlinear Schrödinger equations. In Section 2 we start with
some preliminaries.

Notation. We use A À B to denote an estimate of the form A ď CB for some C ą 0
which may depend on the underlying dimension as well as on fixed parameters
such as p or s. However, we record dependence on variable parameters such as ε
using the notation Àε. The asymptotic notation A Á B is defined analogously,
and A „ B will mean A À B and B À A. By Hs (resp., 9Hs) we denote the
usual inhomogeneous (resp., homogeneous) Sobolev spaces. Given a function u “

upt, xq depending on time t and the space variable x, we denote by }u}Lq
tL

r
x
:“

} }u}Lr
x

}Lq
t
the mixed space-time Lebesgue norm. For a fixed time interval I, the

spaces L8pI; Hsq (resp., CpI; Hsq) denote the space of functions which are in L8

in t (resp., continuous in t) with values in the Banach space Hs.

2. Preliminaries

Whether the underlying space is Rd, a torus, or some other manifold, a basic
question when studying the Cauchy initial value problem (1.2) is that of well-
posedness—that is, i) existence, ii) uniqueness, and iii) stability—of solutions for
initial data in a given Banach space, which in these notes we assume to be the
Sobolev space Hs. To solve this question, the idea is to use a fixed point theorem
on a space of functions whose norm is dictated by strong estimates for vpt, xq :“
Sptqφpxq, the solution of the associated linear problem,

(2.1)

"

ivt ` Δv “ 0,
vp0, xq “ φpxq.

One should of course recall that under reasonable regularity assumptions, (1.2)

is equivalent to (2.2) below, thanks to the Duhamel principle. Formally, well-
posedness is defined as follows.

Definition 2.1. We say that the Cauchy initial value problem (1.2) is locally well
posed in Hs if for any ball B in Hs there exists a time T ą 0 and a Banach space of
functions Xs Ă L8pr´T, T s;Hsq such that for each initial data φ P B, there exists
a unique solution u P Xs X Cpr´T, T s; Hsq of the integral equation

(2.2) upx, tq “ Sptqφpxq ` cλ

ż t

0

Spt ´ t1
q |upt1, xq|

p´1upt1, xq dt1.

Moreover, the map φ ÞÝÑ u is continuous from Hs into Cpr´T, T s; Hsq. If T ą 0
can be taken arbitrarily large, then we say that the initial value problem is globally
well posed.

Remark 2.2. Note that the definition above yields uniqueness onXsXCpr´T, T s;Hsq

but not necessarily on Cpr´T, T s;Hsq. Proving uniqueness on Cpr´T, T s; Hsq re-
quires additional work, and when it holds, the local well-posedness is said to be
unconditional.
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2.1. A tour onto Rd. In these notes we primarily focus on the periodic setting,
as in (1.2) where the problems associated to the nonlinear Schrödinger equation
(NLS) are harder and less understood than when the underlying domain2 is Rd.
Before doing so however let us recall a few important ideas about p-NLS on Rd,

(2.3)

"

iut ` Δu “ λ|u|p´1u,
up0, xq “ φpxq, x P Rd,

where φ P Hs, λ “ ˘1, p ą 1, u : RˆRd Ñ C. The nonlinear Schrödinger equation
(2.3) enjoys many symmetries (cf. [67]) among which we highlight the following.

Time-reversal symmetry:

(2.4) φpxq ÞÝÑ φpxq, upt, xq ÞÝÑ up´t, xq;

Scaling symmetry:

(2.5) φpxq ÞÝÑ μ´ 2
pp´1q φp

x

μ
q “: φμpxq, upt, xq ÞÝÑ μ´ 2

pp´1q up
t

μ2
,
x

μ
q,

for any dilation factor μ ą 0. From (2.5) we immediately notice that if the initial

datum is in 9HscpRdq, sc :“ d
2 ´

2
p´1 , then }φμ}

9Hsc “ }φ}
9Hsc and (2.3) is scale

invariant. The Sobolev regularity sc is then called the critical scaling regularity.
Note that the criticality of Hs depends on both the power p and the dimension d.
In fact since we have that

}φμ}
9Hs „ μsc´s

}φ}
9Hs ,

we can classify the difficulty of the p-NLS (2.3) above in terms of regularity of its
data. When s ą sc, note that as μ Ñ 8, the norm of }φμ}

9Hs gets smaller; the
space Hs is called subcritical in this case. On the other hand if s ă sc, we have that
as μ Ñ 8, the norm of }φμ}

9Hs gets larger; the space Hs is then called supercritical.

When s “ sc, the space 9Hsc is critical since as we noted above, as μ Ñ 8, the
norm of }φμ}

9Hs does not change. Accordingly, the local well-posedness theory for
equation (2.3) is fairly well understood in the subcritical regime—when the equation
can be treated as a perturbation of the linear one—while in the supercritical regime
only nondeterministic results are available. We return to the latter in Section 5.

Remark 2.3. In proving local well-posedness for (2.2) in the subcritical regime sąsc,
one shows via a fixed point argument that the time of existence T is roughly like
}φ}

´α
Hs for some α ą 0.

We also note p-NLS conserves both mass and the Hamiltonian, i.e.,

(2.6) Mpuptqq :“

ż

|upt, xq|
2 dx “

ż

|φpxq|
2 dx “: Mpφptqq,

and the Hamiltonian, i.e.,

Hpuptqq :“
1

2

ż

|∇upt, xq|
2 dx `

2λ

p ` 1

ż

|upt, xq|
p`1dx(2.7)

“
1

2

ż

|∇φpxq|
2 dx `

2λ

p ` 1

ż

|φpxq|
p`1dx “: Hpφq.

2There is by now a substantial body of work on NLS on Rd. The interested reader might want
to consult [18,67].
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Remark 2.4. If λ “ 1, (2.7) and (2.6) give a global in time bound for the H1 norm
of upt, xq; p-NLS is called defocusing in this case. On the other hand, if λ “ ´1, the
energy could be negative and blow up may occur; p-NLS is then called focusing.

In particular, we have that for those p and d for which the H1 space is subcritical
(e.g., cubic p “ 3 in d “ 2), Remark 2.3 and the conservation in time of the
Hamiltonian (2.7) allow one to obtain global well-posedness by iterating the local
theory.

To prove local well-posedness for p-NLS, one needs to find a suitable Banach
space Xs as in Definition 2.1 on which to prove that the map

Φ : u ÞÝÑ Sptqφ ` cλ

ż t

0

Spt ´ t1
q |upt1, xq|

p´1
upt1, xq dt1

is a contraction, whence the solution upt, xq is as in (2.2). Determining a good
choice of Xs is part of the problem. It is dictated by being able to have sufficiently
good estimates for the linear evolution Sptqφ on such space so that then, at least
in the subcritical regime and on short time intervals, one can show that Φpuq—
hence the solution u—satisfy similar estimates. The most basic and at the same
time important space-time estimates that Sptqφ, the solution to the linear problem
(2.22), satisfy are the so-called Strichartz estimates.

2.1.1. The Strichartz estimates on Rd. The Strichartz estimates are intimately re-
lated to the pLp, L2q restriction problem for the Fourier transform (to the parab-
oloid in the case of the Schrödinger equation). To understand the connection, it
is illustrative to review Strichartz’s original argument [56,62]. We begin by briefly
recalling the restriction question. For f a Schwartz function on Rd, first recall that
pf , the Fourier transform of f is defined as

pfpξq :“

ż

Rd

fpxqe´ i x¨ξ dx, ξ P Rd.

By the Hausdorff–Young inequality we know that if f is an LppRdq-integrable func-
tion, then for all 1 ď p ď 2,

} pf}Lp1
pRdq ď }f}LppRdq,

where p1 is the dual exponent defined by 1
p1 `

1
p

“ 1. In fact one can easily show by

scaling and the Kintchine inequality that if the inequality } pf}LqpRdq ď C}f}LppRdq

holds, then one must have that q “ p1 and p ď 2.

If however we are interested in considering pf as a function on B, the unit ball
in Rd for example (rather than on all of Rdq, then a larger range of estimates is
available. Indeed, we have that for all q ď p1 and 1 ď p ď 2,

} pf}LqpBq ď C }f}LppRdq,

since Lp
1
pBq Ď LqpBq in this case. The range q ď p1 and p ď 2 can be shown

similarly to be best possible.

The situation becomes more delicate when, instead of B, we consider pf restricted
onto a compact hypersurface in Rd. This case is also more interesting given such
restrictions arise quite naturally when considering distributional solutions to certain
linear PDE, as we will be soon see. Consider then 1 ď p ď 2, f P LppRdq, and S
a compact C2 smooth hypersurface on Rd with nonzero Gaussian curvature. Let
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dσ denote the canonical measure3 associated to S. The pLp, L2q-restriction for the
Fourier transform asks whether the map

R : f ÞÝÑ pf
ˇ

ˇ

S

extends to a bounded operator from LppRdq ÞÝÑ L2pS, dσq; i.e., whether

(2.8) } pf
ˇ

ˇ

S}L2pS;dσq ď Cd,p,S }f}LppRdq.

By duality, the restriction estimate (2.8) is equivalent to the extension estimate

(2.9) }pgdσq
_

}Lp1
pRdq ď C 1

d,p,S}g}L2pSdσq

for any smooth function g on S where

pgdσq
_

pxq :“

ż

S
gpξqeiξ¨xdσpξq

is the inverse Fourier transform of the measure gdσ.
If p “ 1, (2.8) is always true by the Riemann–Lebesgue lemma. But if p “ 2,

then pf
ˇ

ˇ

S is meaningless since pf P L2pRdq and the d-dimensional Lebesgue measure

of S is zero. Moreover, if S is a plane, then no p ą 1 is allowed, while if S “ Sd´1,
the unit sphere in Rd, then P. Tomas and E. M. Stein gave an affirmative answer

for 1 ď p ď
2pd`1q

d`3 (and it can be shown to fail for any p larger). In general, the
answer to this question depends on the curvature of S. Indeed, if S is a compact
hypersurface with nonvanishing Gaussian curvature, one can show using stationary
phase methods that for every z P Rd,

(2.10) |qσSpzq| À p1 ` |z|q
´

d´1
2 .

By a standard T˚T argument,4 proving estimate (2.8) is equivalent to proving
that }qσ ˚ f}Lp1

pRdq ď Cd,p }f}LppRdq, which follows from (2.10) in conjunction with

Littlewood–Paley and (complex) interpolation (or fractional integration in a direc-
tion transverse to S and convex interpolation).

Finally, we note that one can show that for each p1 ě
2pd`1q

d´1 fixed, (2.9) is
equivalent to the discretized estimate,

(2.11)
` 1

|BR|

ż

BR

|

ÿ

ξPΛ

aξ e
2πi¨ξ

|
p

1˘1{p
1

À δ
n

2p1 ´
n´1
4 }aξ}
2pΛq,

for each 0 ă δ ă 1, aξ P C, ball BR Ă Rn with R „ δ´1{2 and δ1{2-separated lattice
Λ Ă S.

We refer the reader to [56,60,65,66,72] and references therein for further details
about the restriction problem and the more general pLp, Lqq-restriction conjecture
problem.

Consider now the linear Schrödinger equation on Rd,

(2.12) ivt ` Δv “ 0,

and let us assume that the initial datum vp0, xq “ φ is a smooth function such that

supp pφ Ă t|ξ| ă 1u. By taking the Fourier transform in space of (2.12) and solving

3e.g., if S “ Sd´1, dσ is surface measure. Of interest for PDE is the case when dσ is a measure
supported on S.

4i.e., T : Lp Ñ L2 ðñ T˚T : Lp Ñ Lp1
, cf. [60].
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the corresponding ODE, we have that the solution to the linear problem is defined

by pvpt, ξq :“ e´i|ξ|
2t
pφpξq, whence we have that

(2.13) vpt, xq “

ż

Rd

eipx¨ξ`hpξqtq
pφpξq dξ “ ppφdσq

_
pt, xq,

where we have denoted by hpξq “ ´|ξ|2, and dσ is the measure in Rd`1 carried by
the paraboloid hypersurface

Σ :“ tpξ, τ q P Rd
ˆ R : τ “ hpξqu

defined by
ż

Rd`1

ψpξ, τ q dσpξ, τ q “

ż

Rd

ψpξ, hpξqq dξ

for any ψ continuous on Rd`1. In other words, vpt, xq “ R˚pφqpx, tq, where R˚

is the extension operator defined to be the adjoint of Rpfq “ pf
ˇ

ˇ

Σ
, the operator

that restricts the Fourier transform on Rd`1 to the the paraboloid Σ. Then by the
Tomas–Stein endpoint estimate and duality, we obtain that

}vpt, xq}
L

2pd`2q
d pRd`1q

“ }ppφdσq
_

}
L

2pd`2q
d pRd`1q

À }pφ}L2pRdq “ }φ}L2pRdq.

Remark 2.5. Note that since the Tomas–Stein endpoint estimate is scale invariant
by rescaling φpxq and (parabolically) vpt, xq, one may remove the assumption made

above that pφ is supported in the unit frequency ball.

The full range of Strichartz estimates can be derived via a shorter argument—
essentially due to Ginibre and Velo and to Yajima—thanks to the explicit form of
the linear semigroup (see [18, 67] and references therein). Indeed, from (2.13) we
have that

(2.14) vpt, xq “ Sptqφpxq :“ eitΔφpxq “ Kt ˚ φpxq “
c

td{2

ż

Rd

ei
|x´y|2

2t φpyq dy,

whence we immediately obtain that

(2.15) }Sptqφ}L8
x pRdq À

1

td{2
}φ}L1

xpRdq,

called the dispersive estimate. On the other hand, given that the linear semigroup
is unitary and commutes with other Fourier multiplies, we clearly have that for any
s,

(2.16) }Sptqφ}Hs
xpRdq “ }φ}Hs

xpRdq.

Interpolating (2.15) and (2.16) with s “ 0, we have for any 1 ď p ď 2 the fixed time
estimates

(2.17) }Sptqφ}
Lp1

x pRdq
À

1

t
d
p

´ d
2

}φ}Lp
xpRdq

where 1
p

`
1
p1 “ 1. These estimates are not enough since the initial data is usually

only assumed to be in an L2-based Sobolev space; however, by combining (2.17)
with duality, T˚T arguments, fractional integration in time, and interpolation, we
obtain the full range of Strichartz estimates (cf. [18, 56, 60, 62, 67] and references
therein) which we are now ready to state.
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For d ě 1, we define A the set of admissible exponents to be those pairs pq, rq

such that 2 ď q, r ď 8 and

(2.18)
2

q
“

d

2
´

d

r
, pq, r, dq ‰ p2,8, 2q.

Theorem 2.6 (Strichartz estimates on Rd). For pq, rq P A, we have the homoge-
neous estimate

}Sptqφ}Lq
tL

r
xpRˆRdq À }φ}L2

xpRdq,

and for any other admissible pair pq̃, r̃q we also have the inhomogeneous estimate
›

›

›

›

ż t

0

Spt ´ t1
qNpuqpt1

q dt1

›

›

›

›

Lq
tL

r
xpRˆRdq

À }Npuq}
Lq̃1

t Lr̃1
x pRˆRdq

,

where 1
q̃ `

1
q̃1 “ 1 “

1
r̃ `

1
r̃1 and Np¨q is any Lipschitz continuous function.

Remark 2.7. It can be proved via a standard Knapp example and scaling arguments
that the admissibility of pq, rq is a necessary condition. We also note that these
estimates hold on r´T, T s ˆ Rd in lieu of R ˆ Rd.

2.2. Back to the periodic setting. We start by rescaling the tori Λdpβq so that
we can use coordinates based on the regular square torus Td and work with Fourier
series based on the standard integer lattice Zd. In this way we incorporate the
geometry of Λdpβq into the Laplace operator, which after such rescaling is defined
by

(2.19) ΔΘ :“ Θ1
B2

Bx2
1

` Θ2
B2

Bx2
2

` ¨ ¨ ¨ ` Θd
B2

Bx2
d

, Θj “
1

β2
j

, j “ 1, . . . , d.

In other words, for k “ pk1, . . . , kdq P Zd,

(2.20) xΔfpkq :“ ´pΘ1 k
2
1 ` ¨ ¨ ¨ ` Θd k

2
dq pfpkq,

where as usual, we have denoted the Fourier transform and Fourier series as

pfpkq “

ż

Td

e´2πik¨xfpxq dx, pk P Zd
q and fpxq “

ÿ

kPZd

e2πik¨x
pfpkq, px P Td

q.

Our problem (1.2) can then be rewritten on Td as

(2.21)

"

iut ` ΔΘu “ λ|u|p´1u,
up0, xq “ φpxq, x P Td.

We note that the solution upt, xq to the linear Schrödinger equation,

(2.22)

"

iut ` ΔΘu “ 0,
up0, xq “ φpxq, x P Td,

is given by

upt, xq “ eitΔΘu0 “

ÿ

kPZd

e2πi
`

k¨x´t
řd

j“1Θj k2
j

˘

xu0pkq.(2.23)

Of course, equation (2.21) also conserves mass (2.6) and the Hamiltonian (2.7).

Remark 2.8. The periodic cubic NLS equation
"

iut ` Δu “ λ|u|2u,
upx, 0q “ u0pxq, x P T3,

is the one governing Bose–Einstein condensation alluded to in the introduction.
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3. Strichartz estimates on tori

In the periodic setting, the tools from harmonic analysis we used to establish
the Strichartz estimates are no longer available. Even in the case of the square
torus Td, obtaining some Strichartz estimates for Sptqu0pxq is highly nontrivial and
required new ideas. They were introduced by Bourgain for the rational torus as a
conjecture:

Conjecture 3.1 (Bourgain [6]). Assume that Td is a rational torus, and for N ě 1,

let φ P L2pTdq be a smooth function such that the supp φ̂ Ă r´N,N sd Ă Zd. Then
for any ε ą 0 the following estimates should hold:

}Sptqφ}Lq
tL

q
xpTd`1q À Cq}φ}L2

xpTdq if q ă
2pd ` 2q

d
,

}Sptqφ}Lq
tL

q
xpTd`1q ! N ε

}φ}L2
xpTdq if q “

2pd ` 2q

d
,

}Sptqφ}Lq
tL

q
xpTd`1q À CqN

d
2 ´

d`2
q }φ}L2

xpTdq if q ą
2pd ` 2q

d
.

In [6] Bourgain in fact partially proved these bounds in the following cases:

i) d “ 1, 2 and q ą
2pd`2q

d ;
ii) d “ 3 and q ą 4; and

iii) d ě 4 and q ą
2pd`4q

d .
His proof relies on Weyl’s sum estimates, the Hardy–Littlewood circle method,
and the Tomas–Stein restriction theorem. Partial improvements were obtained in
[26, 47].

More recently, Bourgain [11] improved his results from [6] by establishing the

above Conjecture 3.1 for d ě 4 and q ą
2pd`3q

d by relying on multilinear harmonic
analysis techniques for restriction and the Kakeya problems developed by Bennet,
Carbery, and Tao [2] and by Bourgain and Guth [16]. These techniques will once
again mark the way for the resolution of the full conjecture by Bourgain and Deme-
ter [14] as we will see in Section 4 below.

Remark 3.2. Bourgain also proved in [6] that dispersion is indeed weaker in the
periodic setting by proving that when d “ 1 the endpoint L6 estimate which holds
on R with constant independent of N is false in the periodic setting. More precisely,
he showed

}

ÿ

|k|ďN

ake
ipkx`k2tq

}L6pTˆTq ě cplogNq
1
6

¨

˝

ÿ

|k|ďN

|ak|
2

˛

‚

1{2

.

The failure of the endpoint estimate }eitΔφN}L4pT2ˆTq À }φN }L2pT2q when d “ 2
was established by Takaoka and Tzvetkov [64].

3.1. Strichartz estimates and the Fourier restriction. For any given N P N,
let Sd,N be the set

�

pk1, . . . , kdq P Zd : |kj | ď N, 1 ď j ď d
(

.

For q ą 1, let Aq,d,N represent the best constant satisfying

(3.1)
ÿ

kPSd,N

ˇ

ˇ

ˇ

pfpk, |k|
2
q

ˇ

ˇ

ˇ

2

ď Aq,d,N }f}
2
q1 ,
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where k “ pk1, . . . , kdq P Sd,N , |k| “
a

k21 ` ¨ ¨ ¨ ` k2d and f is any Lq1
-function

on Td`1 and q1 “ q{pq ´ 1q. As we mentioned above, Bourgain [6] obtained (in
particular) the following estimate for the square torus Td:

(3.2) Aq,d,N ď CNd´
2pd`2q

q `ε for q ą
2pd ` 4q

d
.

By duality, it is straightforward to see that the Strichartz estimates

(3.3)

›

›

›

›

›

›

ÿ

kPSd,N

ake
ipk¨x`|k|

2tq

›

›

›

›

›

›

LqpTd`1q

ď
a

Aq,d,N

¨

˝

ÿ

kPSd,N

|ak|
2

˛

‚

1{2

are in fact equivalent to the discrete Fourier restriction estimates

(3.4)

¨

˝

ÿ

kPSd,N

ˇ

ˇ

ˇ

pfpk, |k|
2
q

ˇ

ˇ

ˇ

2

˛

‚

1{2

ď
a

Aq,d,N }f}q1 .

To understand how the rational character of the torus enters in a basic fashion,
let us review Bourgain’s result for the square torus in the case where q “ 4 and
d “ 2. We would like to show that A4,2,N ă Nε, ε ą 0. Bourgain [6] reduced
the problem to estimating the number of representations of an integer as a sum of
squares. Let

fpx, tq “

ÿ

|k|ăN

ake
ipk¨x`|k|

2tq with px, tq P T2
ˆ T,

and for a given integer j and p P Z2 define

Cp,j :“ tk P Z2 : |k| ď N and |k|
2

` |p ´ k|
2

“ ju,

and let rp,j “ #Cp,j . If we square our function f , we have that

fpx, tq2 “

ÿ

p

eipp¨xq

«

ÿ

k

akap´ke
ip|k|

2
`|p´k|

2tq

ff

“

ÿ

p,j

¨

˝

ÿ

kPCp,j

akap´k

˛

‚eipp¨x`jtq,

so by taking the L2-norm we find that

(3.5) }f2
}
2
L2pT2ˆTq ď

$

’

&

’

%

max
|p|ď2N

|j|ď2N2

rk,j

,

/

.

/

-

´

ÿ

|ak|
2
¯2

.

We can rewrite |k|2 ` |p ´ k|2 “ j as

p2k1 ´ p1q
2

` p2k2 ´ p2q
2

“ 2j ´ |p|
2,

so we have that rk,j is bounded by the number of solutions of

X2
1 ` X2

2 “ R2,

where R2 “ 2j ´ |p|2 À N2. Hence the right-hand side of (3.5) is bounded by the
number of integer lattice points pX1, X2q that lie on the circle of radius R. Since

there are at most exppC logR
log logR q „ Rε such points, we get the desired estimate.

The case is much more difficult when generalizing to any given p and d. Hu and Li
in [47] presented a variant of the proof of Bourgain’s result (3.4), which makes use of
the Hardy–Littlewood circle method and estimates on level sets just as Bourgain’s
does. Their proof of Bourgain’s level set estimates is, however, somewhat simpler.
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We briefly sketch their proof next. When q is large, the desired estimate (3.4)
follows immediately from the following result (cf. [6, 47]).

Theorem 3.3. For any σ ą 0, any d ě 1, and any q ą
4pd`2q

d , there exists a
constant C, independent of N , such that

ÿ

kPZd

e´
σ|k|2

N2

ˇ

ˇ

ˇ
f̂pk, |k|

2
q

ˇ

ˇ

ˇ

2

ď CNd´
2pd`2q

q }f}
2
q1 ,

for all f P Lq1
pTd`1q.

The proof of this theorem in turn follows from the Hardy–Littlewood circle
method, a tool to count the number of representations of a given integer as an
arbitrary sum of powers. Let us recall some simple aspects about it.

For A Ď Z, let fpzq :“
ř

aPA za, an analytic function converging in the open
unit disc. Then we can write,

fpzq
s

“
ÿ

a1PA

¨ ¨ ¨
ÿ

asPA

za1 ¨ ¨ ¨ zas “

8
ÿ

N“0

rA,spNqzN ,

where rA,spNq is the number of representations of N as the sum of s elements of
A Ď Z. In other words, rA,spNq is the number of solutions of the equation

N “ a1 ` a2 ` ¨ ¨ ¨ ` as

with a1, a2, . . . , as P A.
We can now apply Cauchy’s theorem to the summation above to obtain that

rA,spNq “
1

2πi

ż

|z|“ρ

fpzqs

zN`1
dz

for any ρ P p0, 1q. This is the original form of the circle method. Note that the
integral above counts the number of ways the number N can be written as a sum
of arbitrary powers of s. The evaluation of such an integral is not a trivial task,
and it requires breaking up our circle into major arcs and minor arcs.

Sketch of the proof of Theorem 3.3. For r P N, let

Pr :“ ty P N : 1 ď y ď r, py, rq “ 1u.

For a P Pr, define the interval Ja{r as

Ja{r “

ˆ

a

r
´

1

Nr
,
a

r
`

1

Nr

˙

.

Ja{r is refered to as a minor arc if r ě N{10 and as a major arc if r ă N{10. By the

Dirichlet principle,5 we can then partition the interval p0, 1s into a union of major
and minor arcs as

p0, 1s “
ď

1ďrďN,aPPr

Ja{r “ M1 Y M2,

where M1 is the union of all major arcs and M2 is the union of all minor ones. If
χJ is the characteristic function on the set Ja{q, then set

Ka{rpx, tq :“ Kσpx, tqχJa{rptq,

5Recall that the Dirichlet principle states that, given any N P N and any x P p0, 1s, there exist

a, r P N such that
ˇ

ˇx ´
a
r

ˇ

ˇ ď
1

Nr
, 1 ď r ď N, a P Pr.
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where

(3.6) Kσpx, tq :“
ÿ

kPZd

e´
σ|k|2

N2 ei|k|
2teik¨x.

The point is that now one can show, for 1 ď r ď N , a P Pr, and q ą
2pd`1q

d ,

}Ka{r}Lq ď Cr,d,qN
d´

d`2
q ,

which then leads to the estimate for q ą
2pd`2q

d , that

}Kσ}Lq ď Cq,σN
d´

d`2
q .

Since
ÿ

nPZd

e´
σ|k|2

N2

ˇ

ˇ

ˇ
f̂pk, |k|

2
q

ˇ

ˇ

ˇ
“ xKσ ˚ f, fy,

if we apply Hölder’s inequality and the Hausdorff–Young inequality, we have that

xKσ ˚ f, fy ď }Kσ}q{2}f}
2
q1 ;

whence since q ą
4pd`2q

d we have the desired conclusion. �
The estimate for smaller cases of q, follow from level set estimates [6, 47] of the

form:

Theorem 3.4 ([47]). Let FN be a periodic function on Td`1 such that

FN px, tq “

ÿ

kPSd,N

ake
ik¨xei|k|

2t,

where taku is a sequence with
ř

k |ak|2 “ 1. For any λ ą 0, let

Eλ “ tpx, tq P Td`1 : |FN px, tq| ą λu.

Then for any Q ą 0 such that Q ě N , we have that

(3.7) λ2
|Eλ|

2
ď C1Q

d{2
|Eλ|

2
`

C2N
ε

Q
|Eλ|

holds for all λ and ε ą 0. The constants C1 and C2 are independent of N and Q.

Without loss of generality assume Q is a positive integer and consider N ď Q ď

N2. The idea is to suitably decompose the kernel Kσ in (3.6) into the sum of two
kernels K1,Q ` K2,Q such that

}K1,Q}L8 ď C1Q
d{2

and

}zK2,Q}L8 ď
C2N

ε

Q
,

whence the estimates (3.7) follow. To find such decomposition, the key is to choose
an appropriate function supported on r0, 1s so that if we denote by Φptq its periodic
extension, we define

K1,Qpx, tq “
1

zΦp0q

Kσpx, tqΦptq and K2,Q “ Kσ ´ K1,Q.

The Φ that works is the periodic extension of the function
ÿ

Qďră2Q

ÿ

aPPr

ϕ

ˆ

t ´ a{r

1{r2

˙

,
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where ϕ is a bump function supported on a small interval; say r2´8, 2´7s. Full
details can be found in [47].

The point is that one can then show as corollaries the following estimates in [6]:

(1) If λ ě CNd{4 for some suitable C ą 0, then the level set Eλ, defined in

Theorem 3.4 above, satisfies |Eλ| À Nελ´
2pd`2q

d .

(2) For each positive ε ą 0, we have that
a

Aq,d,N ď CεN
d
2 ´

d`2
q `ε provided

q ą
2pd`4q

d ; which in turn immediately yields (3.3) in this case.

3.2. The Strichartz estimates on general tori. As mentioned above, the study
of the NLS on general rectangular tori was first started in the work of Bourgain
[10] where it was shown that certain Strichartz estimates with a loss of derivative
hold. Some other partial results for the NLS on irrational tori were obtained in
[17, 28, 41, 63]. The combined range of estimates proved for irrational tori in these
works are weaker than those proved by Bourgain in [6] due to number-theoretical
difficulties. A completely different approach to the problem was recently taken in
the work of Bourgain and Demeter [14,15]; see also prior work by C. Demeter [27].
Such an approach has led to the full range of Strichartz estimates conjectured in
[6] (cf. [10]) up to ε-loss for irrational tori. This ε-loss was removed in subsequent
work by Killip and Vişan [52].

In [14] Bourgain and Demeter actually prove a stronger result than the Strichartz
estimates. Namely they establish the �2-decoupling conjecture (Theorem 4.1
below) whence, in addition to proving the Strichartz estimates on general (rational
or irrational) tori, they also derive, perhaps somewhat surprisingly, new results in
number theory and in incidence geometry theory. Our interest in these notes is
in understating how Bourgain and Demeter establish the Strichartz estimates for
general (rational or irrational) tori.
Relabeling the notation. From now through the end of Section 4 we follow
the notation in [14] and relabel dimension d as n ´ 1. Hence Td`1 will become
Tn. Furthermore, the Lq in Conjecture 3.1 and subsequent presentation above will
become Lp (that is we will use p in lieu of q). This p should not be confused with
the power nonlinearity of NLS.

Theorem 3.5 (Strichartz estimates for general tori). Let φ P L2pTn´1q with

supp pφ Ă r´N,N sn´1. Then for each ε ą 0, p ě
2pn`1q

n´1 , and each interval I Ă R

with |I| Á 1, we have

(3.8) ‖eitΔΘφ‖LppRn´1ˆIq Àε N
n´1
2 ´

n`1
p `ε

|I|
1{p‖φ‖2.

The implicit constant does not depend on I,N or Θ :“ pΘ1, . . . ,Θn´1q as in (2.19).

Remark 3.6. Theorem 3.5 in particular fully establishes Bourgain’s Conjecture 3.1.

Bourgain showed in [6, Proposition 3.113] how to remove6 the ε-loss for p ą
2pn`1q

n´1

in the case of square (rational) tori. Recall that the ε-loss is necessary when q “
2pn`1q

n´1 as discussed above in Remark 3.2. Recent work by Killip and Vişan [52]

shows how to remove the ε-loss for p ą
2pn`1q

n´1 in the case of irrational tori; in fact
their argument works for either rational or irrational tori.

6i.e., obtain scale invariant estimates
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Remark 3.7. As a consequence of Theorem 3.5 one can prove in particular that
the p-NLS equation (2.21) on general tori is locally well posed in HspTdq for any
s ą

d
2 ´

2
p´1 .

The proof of Theorem 3.5 follows rather quickly once the �2-decoupling theorem
(Theorem 4.1 below) is proven. The idea is to use the discrete version of the �2-
decoupling theorem, as was done by Bourgan in [11], and apply a change of variables
to (3.8) which puts us in the perfect position to apply the discrete estimate. In the
next section we then focus on proving Theorem 4.1 and indicate in Section 4.5 how
to obtain Theorem 3.5 from it.

4. �2 decouplings

We provide a brief overview of the proof of the �2-decoupling conjecture by
J. Bourgain and C. Demeter in [14]. We borrow heavily from L. Guth’s notes on
the topic [43]. As mentioned above, in order to remain faithful to the literature,
we relabel the spatial dimension d as n ´ 1 so that the space-time dimension will
now be n. Hence n “ 2 means 1 spatial dimension and so forth.

Throughout this section we take S to be a compact C2 hypersurface in Rn

with positive definite second fundamental form. The example corresponding to the
Schrödinger equation is the truncated elliptic paraboloid,

Pn´1 :“ tpξ1, . . . , ξn´1, ξ
2
1 ` ¨ ¨ ¨ ` ξ2n´1q P Rn : |ξi| ď 1{2u.

We assume n ě 2, and to fix ideas we will frequently give examples where n “ 2.

Figure 5. The setup for the truncated parabola P 1. Each rect-
angular region represents a θ “slab”, and T is the collection of all
such θ.

For a set θ and f P LppRnq, we define fθ as the Fourier restriction of f to θ; that

is fθ :“ p pf |θqq. The main result is the following �2-decoupling theorem:

Theorem 4.1 (Theorem 1.1 in [14]). Let S be a compact C2 hypersurface in Rn

with positive definite second fundamental form. Let NδS be the δ-neighborhood of
S, and let T be a covering of NδS by blocks θ of dimension δ1{2 ˆ ¨ ¨ ¨ ˆ δ1{2 ˆ δ. If
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suppp pfq Ď NδS, then for p ě
2pn`1q

n´1 and ε ą 0,

(4.1) ‖f‖p ď Cp,n,ε δ´
n´1
4 `

n`1
2p ´ε

˜

ÿ

θPT

‖fθ‖2p

¸1{2

.

Remark 4.2. Once Theorem 4.1 above is established, the subcritical estimate

‖f‖p Àε δ
´ε

˜

ÿ

θPT

‖fθ‖2p

¸1{2

where 2 ď p ď
2pn ` 1q

n ´ 1
,

follows by a localization argument and interpolation between the p “ 2 case and

the endpoint pc “
2pn`1q

n´1 one in (4.1).
The endpoint pc here is hinted at in prior discussions of this topic. G. Garrigós

and A. Seeger proved in [37] that, up to the ε term, the exponent ´
n´1
4 `

n`1
2p ´ε of

δ in Theorem 4.1 is optimal. Thus the clear breaking point for when this exponent
is a constraint is precisely pc.

Remark 4.3. In [11] Bourgain proved (4.1) for the subcritical p “
2n
n´1 . His proof

relies on the multilinear theory developed in [2] and an induction on scales analysis
as in [16]. We will see below that these same ingredients come into play in the proof
of Theorem 4.1

4.1. Main steps. In this section we hope to adequately motivate and develop the
tools used in Bourgain and Demeter’s work; however, for brevity we will only be
able to sketch the main ideas of their proof. We follow closely L. Guth’s notes on
the subject [43].

We will encounter below the norm ‖f‖
L

2pn`1q
n

, and we note that the algebraic

properties of pc allow the convenient bound

‖f‖
L

2pn`1q
2

ď ‖f‖1{2
L2 ‖f‖1{2

Lpc

via the Hölder inequality.

4.1.1. Decoupling norms. We begin by inspecting the right-hand side of the

�2-decoupling inequality (4.1) further. For any f such that supp pf Ď NδS and
Ω Ď Rn any domain, we fix a covering T of NδS and define

(4.2) ‖f‖Lp,δpΩq :“

˜

ÿ

θPT

‖fθ‖2LppΩq

¸1{2

“
∥
∥‖fθ‖LppΩq

∥
∥

2pT q

.

This turns out to be a norm with some similar properties to the Lp-norms; in
particular it satisfies the Hölder-type inequality

(4.3) ‖f‖Lq,δpΩq ď ‖f‖1´α
Lq1,δpΩq

‖f‖αLq2,δpΩq

for 1 ď q, q1, q2 ď 8, 0 ă α ă 1, and 1
q “ p1 ´ αq

1
q1

` α 1
q2
.

It is also useful to record the following super-additive property of the decoupling
norms (4.2), which can be proven using the Minkowski inequality for the �p{2-norm.

Lemma 4.4. If Ω is a disjoint union of Ωj and p ě 2, then for any δ and any f

with supp pf Ď NδS, we have
ÿ

j

‖f‖p
Lp,δpΩjq

ď ‖f‖p
Lp,δpΩq

.
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The benefit of this lemma is that it allows us to break Ω into disjoint pieces
and reduce matters to proving a decoupling inequality on each piece. Indeed, as a
corollary of Lemma 4.4 we have what Guth [43] calls parallel decoupling:

Lemma 4.5 (Parallel decoupling). Suppose that Ω is a disjoint union of Ωj,

supp pf Ď NδS, and p ě 2. Suppose that for each j we have the inequality

‖f‖LppΩjqď M‖f‖Lp,δpΩjq.

Then we also have the inequality

‖f‖LppΩqď M‖f‖Lp,δpΩq.

4.1.2. Decoupling constant. We define the decoupling constant DppRq as

DppRq :“ inftC ą 0 : ‖f‖LppBRq ď C‖f‖Lp,1{RpBRqu,

where the infimum is taken over all f with supp pf Ă N1{RS. We note that DppRq

also depends on S, but we will ignore this point for now. The claim is that, at the
endpoint pc,

Dpc
pRq À Rε.

4.1.3. Multiple scales. We consider the problem at multiple scales in Fourier space.
Instead of breaking N1{RS into pieces at the scale of θ one asks what happens if
one starts with a function supported in τ Ď N1{RS and then breaks τ into θ caps.
The result is the following proposition.

Proposition 4.6. If τ Ď N1{RS is an r´1{2 cap for some r ď R, supp pf Ď τ , and

θ Ď N1{RS are R´1{2 caps as before, then

‖f‖LppΩq À DppR{rq

˜

ÿ

θĎτ

‖fθ‖2LppBRq

¸1{2

.

The proof of this proposition is based on parabolic rescaling, in which we apply a
linear transformation so that the region τ has diameter 1 and then use the parallel
decoupling Lemma 4.5 above; see [43]. As a corollary of Proposition 4.6 we get the
following estimate:

Corollary 4.7. For any radii R1, R2 ě 1, we have

DppR1R2q À DppR1qDppR2q.

As a result, we see that there is a unique γ “ γpn, pq such that for all R, ε we
have

(4.4) Rγ´ε
À DppRq À Rγ`ε.

We want to show—in particular—that γ “ 0 at the endpoint pc. At this point the
linear methods fail us when trying to establish (4.1). The key idea is to look then at
multilinear versions of the decoupling problem. The crucial point being that for the
decoupling problem, Bourgain and Demeter are able to show that the multilinear
version and the linear version are essentially equivalent [14]. This is quite surprising,
as other problems such as the linear Kakeya or restriction conjectures are currently
out of reach and seem harder to prove than their multilinear formulations. We
can thus attack the decoupling problem using multilinear methods, which we will
leverage to our advantage (section 4.3). But before doing so, we present next an
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overview of the multilinear Kakeya theory of Bennett, Carbery, and Tao [2] (see also
[44]) whose techniques are at the core of the multilinear approach to the decoupling
problem.

4.2. Multilinear Kakeya. We follow Guth [42] in which he succinctly states, “the
multilinear Kakeya inequality is a geometric estimate about the overlap pattern of
cylindrical tubes in Rn pointing in different directions.” Bourgain and Demeter
crucially rely on it to prove to prove Theorem 4.1.

Theorem 4.8 (Multilinear Kakeya). Suppose that t�j,au is a finite collection of
lines in Rn, where j P t1, . . . , nu and a P t1, . . . , Nju such that each line �j,a makes
an angle of at most p10nq´1 with the xj-axis. Let Tj,a be the characteristic function
of the 1-neighborhood of �j,a, and let QS denote any cube of side length S. Then
for any ε ą 0 and any S ě 1, the following integral inequality holds:

(4.5)

ż

QS

n
ź

j“1

˜

Nj
ÿ

a“1

Tj,a

¸

1
n´1

Àε S
ε

n
ź

j“1

N
1

n´1

j .

Figure 6 is an example of a setup for multilinear Kakeya. The area being con-
sidered is simply that within the square QS . In addition, considering the values

in the inequality (4.5) we note that
řNj

a“1 Tj,a represents the color density of our
overlayed transparencies (see Figure 7). Since there is a product on the left-hand
side of (4.5), the only portion which is being counted at all are the areas where the

Figure 6. An example of the setup for multilinear Kakeya
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Figure 7. Zooming in on the square QS .

tubes intersect transversally, i.e., the intersection of the �2,1 tube with the �1,1 or
�1,2 tubes.

4.2.1. Nearly axis parallel. The method of proving the multilinear Kakeya inequal-
ity (Theorem 4.8) which was established by Bennett, Carbery, and Tao in [2] and
is also followed by Guth in [42], is to first reduce to nearly axis parallel tubes:

Theorem 4.9. For every ε ą 0 there is some δ ą 0 so that the following holds.
Suppose that �j,a are lines in Rn and that each line �j,a makes an angle of at most
δ with the xj-axis. Then for any S ě 1 and any cube QS of side length S, we have

ż

QS

n
ź

j“1

˜

Nj
ÿ

a“1

Tj,a

¸

1
n´1

Àε S
ε

n
ź

j“1

N
1

n´1

j .

The claim is that Theorem 4.9 implies Theorem 4.8. Suppose Theorem 4.9 is
true, then if δ ě p10nq´1 (for a given ε), then we are easily done. If δ ă p10nq´1

however, we would like to stretch along an axis whose lines are not within δ, bringing
the lines closer to the axis. The only problem with this idea is that doing so also
inevitably pulls other lines away from their axes. Clearly if one axis has lines which
make too much of an angle, and the other axes are well within δ, we may be able
to stretch the space so that all the lines are within delta.

One problem with this idea, however, is that the amount we stretch relies on
knowing information about the lines which we do not have. Obviously the other
issue is that this does not help us if more than one set of lines makes an angle of
more than δ. The technique to handle both problems will be to split up over all
possible contributions from various possible directions of lines and scale them each
independently.

Assume that for ε ą 0, the corresponding δ ą 0 from Theorem 4.9 is less than
p10nq´1. Then we split the spherical cap Sj of radius p10nq´1 into caps Sj,β of
radius δ{10, and then apply a linear change of coordinates to each cap centering it
on the standard unit vector ej .

In this case, the specific angle each �j,a makes is not important as we know it is
bounded by p10nq´1, and so as we center each Sj,β this linear change of coordinates
has a controlled effect on lengths and areas, and we can bound the overall integral
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Figure 8. How to reduce multilinear Kakeya to the nearly axis
parallel case: We split Sj into pieces, each of which has smaller
radius than δ, and then sum over all contributions where the di-
rection of �j,a is in Sj,β (one from each Sj). Our angles here are
not to scale.

by a sum of all combinations of contributions from these transformed systems, each
of which is controlled by Theorem 4.9.

4.2.2. Axis parallel (Loomis and Whitney). The idea of the rest of the argument
will be to further simplify matters by zooming in sufficiently close so that nearly
axis parallel tubes look almost like axis parallel tubes. In this case we can get the
bound we want using the Loomis–Whitney inequality, proven in [54], which states

Theorem 4.10 (Loomis and Whitney). Suppose that fj : Rn´1 Ñ R are mea-
surable functions, and let πj : Rn Ñ Rn´1 be the linear map that forgets the jth

coordinate:
πjpx1, . . . , xnq “ px1, . . . , xj´1, xj`1, . . . , xnq.

Then the following inequality holds:
ż

Rn

n
ź

j“1

fjpπjpxqq
1

n´1 ď

n
ź

j“1

‖fj‖
1

n´1

L1pRn´1q
.

The connection between this theorem and the axis-parallel case is that a line
parallel to the xj-axis can be written as πjpxq “ ya for some ya P Rn´1. Then,
as noted in [42] by Guth,

ř

a Tj,apxq “
ř

α χBpya,1qpπjpxqq, and applying Loomis–
Whitney with fj “

ř

a χBpya,1q, we have

ż

Rn

ź

j“1

˜

Nj
ÿ

a“1

Tj,a

¸

1
n´1

“

ż

Rn

ź

j“1

pfjpπjpxqqq
1

n´1 ď

n
ź

j“1

‖fj‖
1

n´1

L1pRn´1q
ď ωn´1Nj ,

where ωn´1 is the volume of the n ´ 1 dimensional unit ball. Therefore the axis
parallel case does follow quickly from Loomis–Whitney, so we proceed to describe
loosely the “zooming in” part of the argument.

Given a cube QS , we begin by splitting it up into small enough Q such that each

tube Tj,a which intersects a small Q can be covered by rTj,a,R, an axis-parallel tube

with slightly larger radius R.7 Note that, since the rTj,a,R actually cover the Tj,a

7Exact details for what constitutes sufficiently small and slightly larger are contained in [42].
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Figure 9. Zooming in

within Q, we have

ż

Q

n
ź

j“1

˜

ÿ

a

Tj,a

¸
1

n´1

ď

ż

Q

n
ź

j“1

˜

ÿ

a

rTj,a,R

¸
1

n´1

À Rn
n
ź

j“1

NjpQq
1

n´1 ,

where the last inequality follows from using Loomis–Whitney, and NjpQq indicates
the number of tubes Tj,a intersecting Q. In fact, choosing Q small enough, we can
make it so that if the tube Tj,a intersects Q, the tube Tj,a,δ´1 of radius δ´1 around
�j,a is identically 1 on Q. Therefore

Rn
n
ź

j“1

NjpQq
1

n´1 À
Rn

|Q|

ż

Q

n
ź

j“1

˜

ÿ

a

Tj,a,δ´1

¸
1

n´1

.

As Guth shows in [42], with the appropriate choice of |Q| and R, we can make
Rn{|Q| À δn. Since we can then sum over all Q, this proves the following lemma:

Lemma 4.11. Suppose that �j,a are lines with angle at most δ from the xj-axis.
Then if S ě δ´1 and if QS is any cube of sidelength S, then

ż

QS

n
ź

j“1

˜

ÿ

a

Tj,a

¸
1

n´1

À δn
ż

QS

n
ź

j“1

˜

ÿ

a

Tj,a,δ´1

¸
1

n´1

.

We have essentially traded off making the tubes larger for the δn factor. This
can be seen as an exploit of the fact that a naive bound for the integrand is to

assume that all tubes are identically 1 on QS , which yields
śn

j“1 N
1

n´1

j , and so we
lose nothing in the trade.
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Without loss of generality, assume QS is centered at the origin. Now if S ě δ´M ,
we begin induction on the scales δ´1, δ´2, . . . , δ´M :

ż

QS

n
ź

j“1

˜

ÿ

a

Tj,apxq

¸
1

n´1

dx ď Cnδ
n

ż

QS

n
ź

j“1

˜

ÿ

a

Tj,a,δ´1pxq

¸
1

n´1

dx(4.6)

“ Cn

ż

δQS

n
ź

j“1

˜

ÿ

a

Tj,a,δ´1pδ´1xq

¸
1

n´1

dx,(4.7)

where (4.7) follows by a change of variables. In the new coordinates, Tj,a,δ´1pδ´1xq

are just unit tubes again, and δQS is a cube with side lengths ě δ´pM´1q, so we
repeat the argument. After M repetitions we arrive at

ż

QS

n
ź

j“1

˜

ÿ

a

Tj,apxq

¸
1

n´1

dx ď CM
n

ż

δMQS

n
ź

j“1

˜

ÿ

a

Tj,a,δ´M pδ´Mxq

¸
1

n´1

dx,

and we can now use our naive bound to find

ż

QS

n
ź

j“1

˜

ÿ

a

Tj,apxq

¸
1

n´1

dx ď CM
n pδMSq

n
n
ź

j“1

N
1

n´1

j .

If we had been working on a cube QS such that S “ δ´M , at this point we would
only need that CM

n ď Sε to be done. To accomplish this, we solve S “ δ´M for
M “ ´ logS{ log δ, thus we have

CM
n “ S´

log Cn
log δ .

Therefore given ε ą 0, we choose δ ą 0 such that ´
logCn

log δ ă ε. Now we have proven

the following lemma.

Lemma 4.12. Given ε ą 0, there exists δ ą 0 such that if �j,a are lines in Rn

which make an angle of at most δ with the xj-axis, then, for every cube QS such
that S “ δ´M for some integer M ,

ż

QS

n
ź

j“1

˜

ÿ

a

Tj,a

¸
1

n´1

ď Sε
n
ź

j“1

N
1

n´1

j .

This is enough to prove Theorem 4.9, since given ε ą 0 we take δ as in the above
lemma. Then for any S we take M to be the largest integer such that S ě δ´M , and
then we cover S by at most C cubes of sidelength δ´M where a priori C depends
on both S and δ. By proving Lemma 4.12 for all integers M , however, we have
been able to remove the dependence on S, since we can simply cover the cube QS

with one of side length δ´pM`1q and then figure out how many cubes of side length
δ´M are needed to cover this cube. Consequently, the dependence of C is only on
δ, which itself depends only on ε. Summing over these cubes yields

ż

QS

n
ź

j“1

˜

ÿ

a

Tj,a

¸
1

n´1

Àε S
ε

n
ź

j“1

N
1

n´1

j .
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4.3. Multilinear versus linear decoupling. Inspired by the tractability of mul-
tilinear Kakeya and restriction over their linear counterparts, we now formulate a
multilinear version of the decoupling problem. We first define the notion of transver-
sality which has been useful in restriction theory. Roughly speaking, two smooth
compact hypersurfaces S1 and S2 are transverse if the unit normals of S1 are never
oriented in the same direction as the unit normals of S2. This condition puts us in
a good position to use almost orthogonality arguments. More generally we have:

Definition 4.13. A collection of Sj Ă Rn hypersurfaces are transverse if for any
point ω P Sj , the normal vector NSj

pωq obeys

AnglepNSj
pωq, jth coordinate axisq ď p10nq

´1.

Definition 4.14. We say that functions f1, . . . , fn on Rn obey the multilinear
decoupling setup (MDS)8 if

‚ for i “ 1, . . . , n, supp pfi Ď N1{RSi;

‚ Si Ď Rn are compact positively curved C2 hypersurfaces;
‚ the surfaces Sj are transverse.

We define rDn,ppRq to be the smallest constant so that whenever fi obey (MDS),
∥
∥
∥
∥
∥

n
ź

i“1

|fi|
1{n

∥
∥
∥
∥
∥
LppBRq

ď rDn,ppRq

n
ź

i“1

‖fi‖1{n

Lp,1{RpBRq
.

Bourgain and Demeter go on to prove the following relationship between linear
decoupling and multilinear decoupling:

Theorem 4.15. Suppose that in dimension n ´ 1, the decoupling constant
Dn´1,ppRq À Rε for any ε ą 0. Then for any ε ą 0,

Dn,ppRq À Rε
rDn,ppRq.

Note that we always have rDn,ppRq ď Dn,ppRq for any n, p,R. Then, using
induction on the dimension n, if the decoupling theorem holds in dimension n ´ 1
for the endpoint s, then we have essentially shown9 that

rDn,ppRq „ Dn,ppRq „ Rγ ,

from (4.4) as well.
Bourgain and Demeter also use the method of induction on scales, similar to

the argument in [16] and similar to the argument described above for multilin-
ear Kakeya.The key requirement to apply induction on scales is to have a way of
bounding a desired quantity of one scale by another. In multilinear Kakeya, this was
Lemma 4.11. Bourgain and Demeter leverage the following multilinear restriction
estimate which is a consequence of multilinear Kakeya:10

Lemma 4.16. If f1, . . . , fn obey the multilinear decoupling setup, then
∥
∥
∥
∥
∥

`

n
ź

i“1

|fi|
˘1{n

∥
∥
∥
∥
∥
L

2n
n´1 pBRq

Àε R
´1{2`ε

˜

n
ź

i“1

‖fi‖L2

¸1{n

.

8This term is introduced in Guth’s notes [43] on page 5, and the following definition is quoted
directly from them.

9up to ε powers of R
10Lemma 4.16 is Theorem 6.1 in Bourgain and Demeter [14], and appears originally in [2].
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Remark 4.17. By applying Bernstein’s inequality at a sufficiently small scale r and
then inductively working our way up using Lemma 4.16, we move through scales
r2

m

until we reach R. This yields a weaker decoupling estimate for 2 ď p ď
2n
n´1 ,

which appeared in [11].

4.4. Using curvature. The key component which allowed the improved estimates
in Bourgain and Demeter’s �2 decoupling paper [14] was the introduction of curva-
ture.

Lemma 4.18. Let f1, . . . , fn obey the multilinear decoupling setup with Si compact
positively curved transverse caps of Pn´1. Then for each 2n

n´1 ď p ď 8, we have

∥
∥
∥
∥
∥

`

n
ź

i“1

|fi|
˘1{n

∥
∥
∥
∥
∥
LppBRq

Àε R
n´1
4 ´

n2`n
2ppn´1q `ε

˜

n
ź

i“1

‖fi‖
L

ppn´1q
n

, 1
R

¸1{n

,

and also
∥
∥
∥
∥
∥
∥

«

n
ź

i“1

`

ÿ

θPT

|fi,θ|
2
˘1{2

ff1{n
∥
∥
∥
∥
∥
∥
LppBRq

Àε R
´n

pn´1qp `ε

˜

n
ź

i“1

‖fi‖
L

ppn´1q
n

, 1
R

¸1{n

.

Again, this estimate is perfectly suited to an induction on scales type argument.
In order to prove this lemma, Bourgain and Demeter begin from Lemma 4.16 and
show that we can reverse the previous Hölder inequality (4.3) if the function can be
broken into a small number of “balanced” pieces, where each piece obeys a reverse
Hölder inequality, i.e., if 1 ď q, q1, q2 ď 8 and 1

q “ p1 ´ αq
1
q1

` α 1
q2
, then

(4.8) ‖f‖1´α
Lq1,δpΩq

‖f‖αLq2,δpΩq
À ‖f‖Lq,δpΩq.

The proof of this fact relies on a wave packet decomposition of f and, essentially,
interpolation with the Lp,δ-norms, which in turn facilitates the proof of Lemma
4.18. As mentioned at the beginning of this section, we will not be able to present
these details in depth; however, the heart of the matter is that Lemma 4.18 allows
Bourgain and Demeter to use induction on scales as well as parabolic rescaling
(discussed in Section 4.1.3) to prove an estimate which yields the main result,
Theorem 4.1, for the n “ 2 and p ą pc case. Higher dimensions then follow by
induction.

To prove the endpoint p “ pc “
2pn`1q

n´1 , Bourgain and Demeter combine the

�2-decoupling result for p ą pc with

‖f‖Lpc pBRq À ‖f‖LppBRqN
n
pc

´ n
p (by Hölder’s inequality)

and

‖fθ‖LppRnq À N
n`1
2p ´

n`1
2pc ‖fθ‖LppRnq (by Bernstein’s inequality)

and then let p Ñ pc.

4.5. Strichartz estimates for irrational tori. The idea is to use the discrete
version of the �2-decoupling theorem (Theorem 4.19 below), as was done in [11], and
apply a change of variables to (3.8) which puts us in the perfect position to apply
such a discrete estimate. We have previously discussed the connection between
the Fourier restriction and Strichartz estimates in the case of the rational torus.
More generally, in the case of irrational or rational tori, Bourgain and Demeter
[14] prove the following discrete version of the restriction theorem which points to
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the existence of stronger cancellations at the larger scale R Á δ´1 relative to the
Tomas–Stein result (2.11), which is about oscillations at spatial scales R „ δ´1{2.

Theorem 4.19 (Theorem 2.2 in [14]). Let S be a compact C2 hypersurface in Rn

with positive definite second fundamental form. Let Λ Ă S be a δ1{2-separated set,
and let R Á δ´1. Then for each ε ą 0,

(4.9) p
1

|BR|

ż

BR

|
ÿ

ξPΛ

aξepξ ¨ xq|
p
q
1{p

Àε δ
n`1
2p ´

n´1
4 ´ε‖aξ‖2

if p ě
2pn`1q

n´1 .

In [11], Bourgain used weighted norms and a decomposition into caps to prove
that Theorem 4.1 for a given p implies (4.9). A brief sketch of this argument is also
given in [14].

The next step is to show that Theorem 3.5 follows from Theorem 4.19. To do

this, we must prove that for φ P L2pTn´1q with supp pφ Ă r´N,N sn´1, we have for

each ε ą 0, p ě
2pn`1q

n´1 and each interal I Ă R with |I| Á 1 that

(4.10) ‖eitΔΘφ‖LppRn´1ˆIq Àε N
n´1
2 ´

n`1
p `ε

|I|
1{p‖φ‖2,

where the implicit constant does not depend on I,N, or Θ, and where

(4.11) eitΔΘφ “

ÿ

kPZn´1

e2πi
`

k¨x`t
řn´1

j“1 Θj k2
j

˘

pφpkq.

Bourgain and Demeter show that by defining ηi “
θ
1{2
i ξi
4N , aη “ pφpkq, one can

apply the change of variables

yi “
4N

θ
1{2
i

xi for 1 ď 1 ď n ´ 1,

τ “ 16N2t,

and then use periodicity of the yi variables to aquire the bound
ż

Tn´1ˆI

|eitΔφ|
p

À
1

Nn`1pN |I|qn´1

ż

BN2|I|

|
ÿ

η

aηepη ¨ y ` τ‖η‖2q|
pdydτ,

where BN2|I| is some ball of radius on the order of N2|I|. Finally, Bourgain and
Demeter note that the points

pη1, . . . , ηn´1, ‖η‖2q

are „
1
N separated on Pn´1, so Theorem 4.19 can be applied with R „ N2|I|.

5. The nonlinear Schrödinger equations:

probabilistic methods

As we have seen in previous sections, the local well-posedness in the subcritical
regime11 is in place once the full range of Strichartz estimates (as stated in The-
orem 3.5) are available. However, in certain critical and in supercritical regimes,
there is no known deterministic local well-posedness theory in the periodic setting.
Nevertheless, what has been within reach in recent years is the study of the local

11This was defined on Rd from the scaling symmetry of the equation. On tori it is still indicative
of what to expect in terms of well-posedness, and so we transfer the same terminology into the
periodic setting.
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well-posedness of p-NLS (2.21) on the square/rational torus Td from a probabilistic
point of view; that is, the almost sure well-posedness of p-NLS in the sense of prob-
ability. Such an approach was first used by Bourgain [7] in the mid 1990s to prove
that the (Wick ordered) cubic nonlinear Schrödinger equation on T2 was almost
sure locally well posed in H´εpT2q. The latter was the first result in a supercritical
regime, since L2pT2q is critical for this equation (see also [8, 9]). Recent work by
A. Nahmod and G. Staffilani [57] established almost sure local well-posedness12 in
H1´αpT3q, α ą 0 small for the quintic nonlinear Schrödinger equation on T3. This
result is also in the supercritical regime since H1pT3q is critical for this equation.

It is worth noting that while for the quintic NLS on T3, (deterministic) large
data well-posedness at the critical H1pT3q regularity is known ([46] for local and
[48] for global), to date there is no known (deterministic) large data well-posedness
results available for the cubic NLS equation on T2 at critical L2pT2q regularity.

The results in [7] and [57] are for the square/rational torus Td and have not yet
been established for irrational tori, despite the fact that we now know the Strichartz
estimates on irrational tori by the work of Bourgain and Demeter. The reason for
this lies in the fact that beyond the Strichartz estimates per se, precise integer
lattice counting estimates used by Bourgain in [6] to prove Strichartz estimates on
rational tori come into play in the works [7] and [57] in a crucial way, as we will
illustrate below. Similar tools from analytic number theory are presently unknown
in the context of irrational tori. The good news though is that, as proved by
Bourgain and Demeter in [14], the decoupling theorem seems amenable to counting
solutions of Diophantine inequalities (e.g., Theorems 2.18 and 2.19 in [14]). It would
be interesting to explore further whether and how to use Bourgain and Demeter
techniques to shed light into, or in lieu of, the necessary integer lattice counting
estimates in the irrational setting.

We conclude by explaining some of the ideas behind the probabilistic approach
on square tori below.

5.1. Random data: a nondeterministic approach. We start by giving an
informal definition of almost sure well-posedness. Given μ a probability measure
on the space of initial data X (e.g., X “ Hs), we say that the Cauchy initial
value problem (IVP) is almost sure locally well posed if there exists Y Ă X, with
μpY q “ 1 and such that for any φ P Y there exist T ą 0 and a unique solution u to
the IVP with data φ which is in Cpr0, T s, Xq with data φ that is also stable in the
appropriate topology.

The general idea is to consider the Cauchy initial data problem for rough but
randomized initial data. To understand why randomization (of the initial data)
helps, let us recall the following classical result going back to Rademacher, Kol-
mogorov, Paley, and Zygmund proving that random series on the torus enjoy better
Lp-bounds than deterministic ones.13 For example, the consider the Rademacher
series:

fpτ q :“
8
ÿ

m“0

bm rmpτ q, τ P r0, 1q, bm P C,

where

rmpτ q :“ sign sinp2m`1π τ q.

12In [57] the existence of infinite energy global in time solutions is also established.
13Akin to the Kintchine inequalities used to prove the Littlewood–Paley inequalities.
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Note that if bm P �2, the sum fpτ q converges a.e. The following is a classical result
which can be found in Zygmund’s book.

Theorem 5.1. If bm P �2, then the sum fpτ q belongs to Lppr0, 1qq for all p ě 2.
More precisely,

p

ż 1

0

|f |
p dτ q

1{p
„ } bm }
2 .

The key point is that although randomized initial data live in the same (rough)
space as the original (deterministic) data, their linear flow enjoys almost surely
improved Lp-bounds. These bounds in turn yield improved nonlinear estimates
almost surely in the analysis of the solution to the difference equation (obtained
after subtracting from u the linear evolution of randomized data). More precisely,
the general scheme is as follows. Consider the Cauchy initial value problem,

(5.1)

"

iut ` Δu “ Npuq x P Td, t ą 0,
up0, xq “ φpxq,

and assume that φ P Xs. Then if we denote by ak :“ pφpkq, to solve (5.1) we proceed
as follows:

(1) Randomize φ: that is, consider φω :“
ř

kPZd ak gkpωq eix¨k, where tgkpωquk

are i.i.d. standard (complex/real) centered (Gaussian) random variables on
a probability space pΩ,F , P q.

(2) Let vω be the linear evolution with initial datum φω.
(3) Prove that vω satisfies “better estimates” than φ almost surely.
(4) Show that w :“ u ´ vω solves a difference equation, and obtain for w a

deterministic local well-posedness theory in Cpr0, T s;Xs1
q, s1 ą s. That is,

prove that almost surely in ω the nonlinear part w is smoother than the
linear part vω.

Remark 5.2. The difference equation that w solves is not an equation at the subcrit-
ical/smoother level but rather it is a hybrid equation with a nonlinearity containing
a mixture of supercritical but random terms plus deterministic (smoother) ones.

For φ P Hs, φωpxq defines almost surely in ω a function in Hs but not in Hs1

for any s1 ą s. A representative example arises by considering ak “
1

|k|α
. Then

xφωpkq “
gkpωq

|k|α
gives rise almost surely in ω to a function in Hα´ d

2 ´ε but not in

Hα´ d
2 . Randomization does not improve regularity in terms of derivatives. The

improvement is with respect to Lp-spaces almost surely. Another way to rephrase
this and the classical Theorem 5.1 above is as follows: Let tgmpωqu be a sequence of
complex i.i.d. zero mean Gaussian random variables on a probability space pΩ, A,Pq

and pcmq P �2. Define

F pωq :“
ÿ

m

cmgmpωq.

Then, there exists C ą 0 such that for every λ ą 0, we have

Pptω : |F pωq| ą λ uq ď exp

˜

´C λ2

}F }2L2pΩq

¸

.
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As a consequence there exists C ą 0 such that for every q ě 2 and every pcmqm P �2,

›

›

›

›

›

ÿ

m

cmgmpωq

›

›

›

›

›

LqpΩq

ď C
?
q

˜

ÿ

m

c2m

¸
1
2

.

More generally one uses the following result where k represents the number of
random terms in the multilinear estimate at hand.

Proposition 5.3 (Large Deviation-type). Let d ě 1 and cpm1, . . . ,mkq P C. Let
tgmu1ďmďd P NCp0, 1q be complex centered L2-normalized independent Gaussians.
For k ě 1 denote by Apk, dq :“ tpm1, . . . ,mkq P t1, . . . , duk, m1 ď ¨ ¨ ¨ ď mku and

Fkpωq “

ÿ

Apk,dq

cpm1, . . . ,mkqgm1
pωq ¨ ¨ ¨ gmk

pωq.

Then for p ě 2,

}Fk}LppΩq À
?
k ` 1pp ´ 1q

k
2 }Fk}L2pΩq.

As a consequence from Chebyshev’s inequality for every λ ą 0,

Pptω : |Fkpωq| ą λ uq ď exp

¨

˝

´C λ
2
k

}Fk}
2
k

L2pΩq

˛

‚.

Remark 5.4. This result follows from the hyper-contractivity property of the Orn-
stein–Uhlenbeck semigroup by writingGn“Hǹ iLn, where tH1, . . . , Hd, L1, . . . , Ldu

P NRp0, 1q are real centered independent Gaussian random variables with the same
variance (cf. [68, 71]).

The key observation then is that for a given δ ą 0, the large deviation result
above with, say,

λ “ δ´ k
2 }Fk}L2pΩq

will allow us to replace |Fkpωq|2 by }Fk}2L2pΩq
on a set Ωδ Ă Ω with PpΩc

δq ă e´ 1
δ .

Thus we use the independence and normalization of the random variables to reduce
matters to geometric considerations and integer lattice counting, as we will illustrate
below.

5.2. Almost sure local well-posedness results for the periodic NLS. Bour-
gain’s almost sure local well-posedness result for the (Wick ordered) cubic NLS on
the square/rational torus T2 reads as follows:

Theorem 5.5 (Bourgain [7]).
"

iut ` Δu “ |u|2u ´ p
ş

|u|2dxqu,
up0, xq “ φpxq, x P T2,

is almost sure locally well-posed below L2, that is for supercritical data φ P H´εpT2q.

Remark 5.6. The typical data considered is φpxq “
ř

nPZ2
1

xny
ein¨x P H´εpT2q

and φωpxq “
ř gnpωq

xny
ein¨x P H´εpT2q defining almost surely in ω a function in

H´εpT2q.
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In [57] we considered the energy-critical quintic nonlinear Schrödinger equation
on T3,

(5.2)

#

iut ` Δu “ λu|u|4 x P T3,

up0, xq “ φpxq P HγpT3q,

and established almost sure local well-posedness for random data in HγpT3q, γ ă 1;
that is, in the supercritical regime relative to scaling. The problem we considered
is the analogue of Bourgain’s Theorem 5.5 mentioned above. In our problem we
consider data φ P H1´α´εpT3q for any ε ą 0 of the form

φpxq “

ÿ

nPZ3

1

xny
5
2 ´α

ein¨x,

whose randomization is

(5.3) φω
pxq “

ÿ

nPZ3

gnpωq

xny
5
2 ´α

ein¨x,

where pgnpωqqn is a sequence of complex i.i.d centered Gaussian random variables
on a probability space pΩ, A,Pq. Let us denote by X spr0, δqq the solution space for
the nonlinear part of the solution. Our result reads as follows:

Theorem 5.7 (Nahmod and Staffilani [57]). Let 0 ă α ă
1
12 , let s “ spαq ą 1,

and let φω be as in (5.3). Then there exists 0 ă δ0 ! 1 and r “ rps, αq ą 0 such
that for any δ ă δ0, there exists Ωδ P A with

PpΩc
δq ă e´ 1

δr ,

and for each ω P Ωδ there exists a unique solution u of the quintic NLS (5.2) in the
space

Sptqφω
` X s

pr0, δqq

with initial condition φω.

5.2.1. The difference equation. Heart of the matter. The approach to proving The-
orems 5.5 and 5.7 is based on a study of the difference equation. More precisely,
assume u solves our IVP, then we define w :“ u´Sptqφω, where Sptqφω is the linear
evolution of the randomized initial profile φω. The aim is to study the IVP for w
which solves a difference equation with nonlinearity,

(5.4) Ñpwq :“ |w ` Sptqφω
|
4
pw ` Sptqφω

q,

and prove that w belongs to Hs for some s ą 1. The heart of the matter then lies
in proving the multilinear estimates to control Ñpwq so we can set up a contraction
argument and obtain well-posedness. The randomness coming from pgnpωqq will
allow us to say that in a certain space the nonlinearity increases its regularity so
that it can hold a bit more than one derivative.

For the quintic NLS equation (5.2) however, multilinear estimates for Ñpwq

can be obtained only after having removed certain resonant terms involved in the
nonlinear part of the equation. In Bourgain’s case [7] the nonlinearity is cubic
in two dimensions, and a Wick ordering of the Hamiltonian takes care of bad
resonant terms. In our case the nonlinearity is quintic in three dimensions, and
Wick ordering is not sufficient to remove the bad resonant terms. Instead, a suitable
gauge transformation is required [57].
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The Strichartz estimates on tori enter crucially in estimating the nonlinear inter-
actions in (5.4) involving solely w. However, when faced with mixed hybrid terms
or nonlinear interactions involving solely Sptqφω, the Strichartz estimates are not
enough, and we must also rely on probabilistic arguments and elementary analytic
number theory as in Bourgain’s Theorem 5.5. It is here that we must restrict our
attention to rational tori as explained in the introduction to Section 5 above.

We conclude by illustrating how randomization, Proposition 5.3, and the ideas
in Section 5 are used in a prototypical example that arises in the course of the proof
of the nonlinear estimates (5.4) for the difference equation. To simplify matters we
consider normalized random data of the form

(5.5) φω
pxq “

ÿ

nPZ3

gnpωq

xny
3
2

eix¨n.

As an intermediate step in the course of the proof of the nonlinear estimates
for the term (5.4), we must estimate in L2 cubic nonlinear interactions in (5.4)
involving only the free evolution of such random data. Let us denote by Rk, k “

1, 2, 3, the linear evolution of normalized random functions (5.5) which are localized
at frequency |nk| „ Nk, with Nk a dyadic number. A particular case involves
estimating }PCR̄1R̄2R3}L2 , where we assume that the frequencies nk, k “ 1, 2, 3,
are all different from each other, that N1 ě N2 ě N3, and that PC is a Fourier
projection onto a cube C of sidelength N2.

By Plancherel,

}PCR̄1R̄2R3}
2
L2 “

ÿ

m,nPZ3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

n“n1`n2´n3, ni‰nj

m“|n1|
2

`|n2|
2

´|n3|
2

χCpn1q
gn1

pωq

|n1|
3
2

gn2
pωq

|n2|
3
2

gn3
pωq

|n3|
3
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

“:
ÿ

m,nPZ3

|F3pωq|
2.

If we naively use Cauchy–Schwarz, we would obtain an estimate where we pick
up the cardinality of the set

Spn,mq :“ tpn1, n2, n3q : n “ n1 ` n2 ´ n3, ni ‰ nj , m “ |n1|
2

` |n2|
2

´ |n3|
2
u,

which unfortunately translates into a loss of derivatives.
Instead, we use Proposition 5.3 with

λ “ δ´ 3
2 }F3pωq}L2pΩq

so that on a set Ωδ with PpΩc
δq ă e´ 1

δ we can replace |F3pωq|2 by }F3pωq}2L2pΩq
.

Then using the independence and normalization of gnpωq, we estimate

}F3pωq}
2
L2pΩq À δ´ 3

2

ÿ

Spn,mq

χCpn1q

3
ź

i“1

1

|ni|
3
.

All in all, we then have that

}PCR̄1R̄2R3}
2
L2 À N1N2

ÿ

n

|F3pωq|
2

À δ´ 3
2N1N2N

´3
1 N´3

2 N´3
3 sup

m
#Spmq,

where

Sm :“ tpn, n1, n2, n3q {n “ n1 ` n2 ´ n3 ; m “ |n1|
2

` |n2|
2

´ |n3|
2, n1 P Cu,
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and we have used that the variation for the time frequency m is of the order N1N2.
Since #Sm À N3

3N
3
2N1, we finally obtain the bound

}PCR̄1R̄2R3}
2
L2 À δ´ 3

2N´1
1 N2,

which suffices for our purposes in Theorem 5.7.
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