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In 1801 Carl Friedrich Gauss published his Disquisitiones Arithmeticæ [3], per-
haps the most important single work ever written in the theory of numbers. In
this we find more than one proof of the Law of Quadratic Reciprocity, a statement
about the integers that had been observed before, first by Euler (who else?). But
Euler was not able to give an acceptable proof, and at this point we realize that
Legendre had a proof but it was not very clear [2]. Clarity was left to Gauss. Then
something odd happened. Once Gauss proved it, he proved it again. Mind you, this
proof was not entirely independent of the first. But then in 1808 Gauss in another
publication proved it again with a third proof and a fourth. Then he returned
to it yet again, for a fifth proof and a sixth proof. What was going on? Did he
deep down not understand why it worked and just kept trying to find out what the
proof really should have been like in order to convince readers? After all, a person
can prove something without understanding it very well. This happens to mere
mortals all the time, offering a proof by contradiction, for example, that succeeds
in proving a statement but gives little insight into why something is true. Was it
bad notation? Was the problem approached from the wrong direction? Were there
cases to which the proof did not apply? It’s hard to know for sure, but what we do
know is that Gauss kept trying and trying.

So what does it say? The best formulation and the one that explains the use of
the word “reciprocity” is: if p and q are distinct odd primes, then(
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Now, what does (nq ) mean? It is called a Legendre symbol, and when it equals

1 it means that x2 ≡ n(mod q), for at least one integer x; that is, n is congruent
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Figure 1. Clear copy of the cover. The title page of vol-
ume 2 of Gauss’s complete works (1863), the volume containing
his proof of the Law of Quadratic Reciprocity.

to a square of an integer, modulo q, but if it equals −1, then n is not congruent
to a square. It allows one to find the squares in modular arithmetic, for given
primes. For large primes this is, without this theorem, no easy task. Of course, it
is possible to state the theorem without the Legendre symbol and in some ways it
is more clear: If p and q are distinct odd primes, then the congruences

x2 ≡ p(mod q),

x2 ≡ q(mod p)
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are both solvable or both unsolvable unless both p and q are of the form 4k + 3, k
an integer, in which case one of the congruences is solvable and the other is not.
Without the Legendre symbol, the “reciprocity” is not so obvious. It should be
kept in mind when exploring the history of the theorem that Euler and Legendre
did not know the notation above since the congruence notation was first used by
Gauss. On the other hand, Gauss could not have written it in the earlier form since
he did not have available to him the Legendre symbol!

As mentioned earlier, Gauss first gave proofs of the law in his Disquisitiones
Arithmeticæ, but then in 1808 he provided two new proofs in the offprint Summatio
quarumdam serierum singularium, in a series made available by the Göttingen
Academy of Sciences but not published in a regular mathematical journal [4]. It was
published much later, however, in volume 2 of Gauss’s Werke [5] (see Figure 1). He
then published a fifth and a sixth proof. After his death two additional unpublished
proofs were found in his papers.

What was it that drove Gauss to find additional proofs, one after another? He
thought of them highly enough that he proceeded to publish them. The existing
proofs at that time were not terribly difficult or complex but at the same time not
transparent or obviously valid. Gauss, with all of his power as a mathematician—
often referred to as one of the three greatest mathematicians of all time (along with
Archimedes and Newton)—wrote at one point, “For a whole year this theorem tor-
mented me and absorbed my greatest efforts until, at last, I obtained a proof . . . .”
At that point the floodgates opened and many mathematicians joined in the effort
to produce more proofs of the quadratic reciprocity law. The copy of the Summatio
that the authors have was the one presented by Gauss to the French mathematician,
Joseph Liouville (1809–1882), and is signed by Liouville on the cover sheet. Liouville
proceeded some years later to publish his own proof of the theorem. And this has
continued down to the present day. By 2000 there were 196 published proofs of the
theorem [6].

An aside: The run of Gauss’s Werke that we have is the set owned by Gaston
Darboux (signed by Darboux on the first endpaper) who bought the volumes as
they were issued. But there are only six volumes in the set, dated from 1863 to
1903. More were to follow—they continued to be issued until 1933—but those last
volumes are not in our set. The missing volumes were explained by the dealer from
whom they were purchased thus: Darboux bought the volumes as they were issued
up until 1903, but then he died, at which point he stopped collecting.

But there was, of course, far more in the Disquisitiones. The middle sections were
devoted to quadratic forms. But the last (and seventh) section raised the question
of which regular polygons in the plane can be constructed by straightedge and
compass, a problem deriving from a series studied by the Greeks about geometric
constructions that can be carried out by using only a collapsible compass and an
unmarked “ruler”. Beyond the “doubling of the cube”, the trisection of the angle,
and the squaring of the circle—the three great problems that stymied the Greeks—
there is this additional question about the constructability of regular polygons;
that is, can we know the values of n for which the corresponding regular n-gon is
constructible by straightedge and compass? Here is Gauss’s startling conclusion:
an n-gon is constructible if n is of the form 2αp1p2p3 · · · pr, where α is a nonnegative

integer and the pi are Fermat primes, that is, Fermat numbers of the form 22
k−1

+1
that are actually primes. So in the formula for n there are lots of possibilities.
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From the first factor, the power of 2, there are lots and lots of constructible regular
polygons—a square, a regular octagon, and so on—no Fermat numbers involved.
But the factors that follow, the Fermat numbers that happen to be prime, are not so
common. The first Fermat prime, at least with the above notation, is the case where
n is equal to 1 so the prime is 21+1 is 3. So the equilateral triangle is constructible.
Then for n = 2, the prime is 5, so the regular pentagon is constructible. And
incidentally, since we can multiply these numbers by nonnegative powers of 2, we
thus know, if Gauss’s theorem is correct, that a regular hexagon is constructible
and a regular 12-gon, and so on . . . , and the same sort of thing can be done
with the regular pentagon to show that the regular 10-gon and regular 20-gon are
constructible. Now let us go back to the third Fermat prime, 17, so the regular
17-gon is constructible since 17 is 2 to the fourth power plus 1. And it is prime.
So we know about the 34-gon and the 68-gon. So far so good, but the next Fermat
prime is 257 and now the simplest regular polygon is in this case getting to be
rather large for the construction actually to be carried out. And the next Fermat
prime is 65,537. One always constructs this regular polygon in a class by drawing a
circle and calling it a regular 65,537-gon. No student in class can challenge it from
the way it looks [1].

But here’s the surprise. The families from those five Fermat primes, with their
products and their powers of 2 out front, may be all there are. No other Fermat
primes have ever been found, but even now it has not been possible to show that
there are no more. So whether there are infinitely many Fermat primes (or even
more than five) remains an open question. The next Fermat number after 65,537
is 4,294,967,297. It is tempting to assume that this must be prime, but Euler
found a factor of it, 641, in 1732. At this point finding factors of Fermat numbers
has grown into a cottage industry. Whether there are any further primes in the
sequence remains an open question. Some conjecture, however, that the answer lies
beyond current computing capabilities.
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