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Teichmüller theory is an amazing subject, richly connected to ge-
ometry, topology, dynamics, analysis and algebra.

These words of Thurston, from his preface to [33], certainly apply to the study
of Teichmüller curves.

1. Translation surfaces

Topologically, the surface of a coffee cup is the same as that of a bagel; it
is also the same as a square with opposite sides identified by translating one to
another. This representation of a torus even inherits a complex structure from
the Euclidean z-plane, making it a Riemann surface of genus 1. Furthermore, dz
induces a holomorphic 1-form (also called an Abelian differential).

There is an inverse process, even in the general genus case. Given a Riemann
surface X and a holomorphic 1-form ω with set of zeros Σ, integration defines local
coordinates on X \Σ. Transition functions originate from change of basepoint and
are thus translations. This then allows the Euclidean structure of the plane to be
induced onto X \ Σ. The Euclidean structure can be extended to all of X, but at
the cost of introducing singularities; these are cone singularities with angles that
are found to be integral multiples of 2π. The result is a translation surface, (X,ω).

For explicit examples in genus 2, take two regular pentagons, glue them along one
edge, and then identify opposite sides by translation. Both this and identifying a
regular decagon’s opposite sides by translation give genus 2 surfaces. However, the
first has a single cone singularity of angle 6π, whereas the second has two singular
points, each of angle 4π. These translation surfaces correspond to the (smooth
compact) surface of complex equation y2 = x5 − 1 with respective 1-forms dx/y
and xdx/y [1, 13, 75].

The affine diffeomorphisms of a translation surface (X,ω) are those self-home-
omorphisms ofX sending Σ to itself that are diffeomorphisms onX\Σ; equivalently,
these are locally affine maps whose linear parts are constant. The linear parts
form the Veech group SL(X,ω) ⊂ SL2(R), which Veech [75] showed to be a (non-
cocompact) Fuchsian group.
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2. Teichmüller curves

In the case of genus g = 1, the integration of ω defines a global map from X to
C modulo the lattice that is the image of first integral homology. This is in fact a
biholomorphic map. We can normalize the lattice so that it is generated by 1 and
τ ∈ H, where H is the upper half-plane. The normalization depends on a choice
of generators for the lattice. Since generating pairs differ by elements of SL2(Z),
one finds that M1 = SL2(Z)\H has its points in one-to-one correspondence with
the biholomorphic equivalence classes of complex tori. That is, M1 is a (coarse)
moduli space for Riemann surfaces of genus 1. (For technical reasons, one should
mark a point on each torus, and speak of M1,1 ; as well, a full introduction would
necessarily include a discussion of quadratic holomorphic forms.)

For general genus, the Riemann moduli space Mg is a singular complex space
which is similarly a coarse moduli space of compact Riemann surfaces of genus g.
In the 1940s, Teichmüller introduced the use of quasi-conformal maps to study a
simply connected (ramified) covering space of Mg, which now carries his name and
is denoted Tg. Biholomorphic maps are conformal; they send local small circles to
circles. Any Riemann surface of fixed genus g can be mapped to any other by means
of quasi-conformal maps; these send circles to ellipses. Teichmüller sketched how
any isotopy class of quasi-conformal maps has the appropriate measurement of local
eccentricity minimized by a map that is locally affine with respect to flat structures
on the respective surfaces, and used this to define a distance on Tg. Royden [70]
showed that Mg is the quotient of Tg by the group of Teichmüller isometries; in
particular the Teichmüller metric descends to Mg. A Teichmüller curve, defined
by Veech [75], is an algebraic curve in Mg that is geodesic with respect to the
Teichmüller metric. In genus 1 there is exactly one Teichmüller curve—M1 itself.

3. Teichmüller curves exist, but are rare

Post-composition with any element of SL2(R) of the coordinate functions of a
translation surface gives again a translation surface, with genus and singularity type
preserved. There results an SL2(R)-action on the bundle ΩMg of holomorphic 1-
forms over moduli space. Veech [75] showed that the SL2(R)-orbit of (X,ω) projects
to a Teichmüller curve exactly when SL(X,ω) is as large as possible; that is, when
it is a lattice. One then says that (X,ω) is a Veech surface. The Veech dichotomy
[75] states that if (X,ω) is a Veech surface then its flat dynamics are in a sense
optimal (the straight line flow in any direction is either periodic or it is uniquely
ergodic). Smillie (see [76]) showed that the SL2(R)-orbit of (X,ω) is closed if and
only if (X,ω) is a Veech surface. For a further list of equivalent properties to (X,ω)
being a Veech surface, see [72, 79].

Veech [75] gave examples showing that there is at least one (algebraically prim-
itive) Teichmüller curve in ΩMg for each g. Bouw and Möller [7] showed that each
non-cocompact triangle Fuchsian group is realized, up to finite index, as a Veech
group; their construction recovers Veech’s examples as well as those of his student
Ward [80].

The trace field of (X,ω) is the field extension of Q given by adjoining the trace
of every element in SL(X,ω). Call (X,ω) arithmetic if it is a Veech surface whose
trace field is Q itself. Gutkin and Judge [27] showed that every arithmetic surface
is a cover of a torus, with possible ramification above one point. These so-called
square-tiled surfaces (also known as origami) are dense in ΩMg, and provide key
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specific examples in the theory [25, 29]. Schmithüsen [71] gave an algorithm for
computing the Veech group in this setting. In general, computing SL(X,ω) given
(X,ω) is difficult; results and algorithms in this direction are in [77], [6], [8], [66].
The determination of the SL2(R)-orbits of square-tiled surfaces remains open in
general; for g = 2, see [36] and [50].

Ellenberg and McReynolds [14] adapted algebro-geometric arguments about cer-
tain Hurwitz spaces (moduli spaces of ramified covers) to show that every algebraic
curve defined over Q is birationally equivalent to a Teichmüller curve; the isomor-
phism classification of Teichmüller curves remains open. They also showed that
a large collection of lattice subgroups of SL(2,Z) are realized as Veech groups.
Rigidity arguments show that every Teichmüller curve is defined over Q, [56] and
[57, 63].

Non-arithmetic Veech surfaces are rare. Aside from the g = 1 setting, almost
every (X,ω) has trivial Veech group [61]. The passage from Euclidean billiard
table to translation surface [39] is one motivation for the study of Teichmüller
dynamics—see [42], and [12] for a recent overview; Kenyon and Smillie [40] and
Puchta [68] show that only three non-isosceles acute rational angled triangles give
Veech surfaces. The space ΩMg is partitioned into strata, identified by multiplicity
of zeros of 1-forms, hence by the partitions of 2g − 2 into positive integers. For
example, the double pentagon and decagon surface give points in ΩM2(2) and
ΩM2(1, 1), respectively. McMullen [53] proved that there is only one non-arithmetic
Teichmüller curve from ΩM2(1, 1); it arises from the decagon surface. Thereafter,
Möller [59] showed that for all g there are only finitely many appropriately primitive
Teichmüller curves from the so-called hyperelliptic component of ΩMg(g−1, g−1).
Bainbridge and Möller [5] show that this is also true for the stratum ΩMg(3, 1),
and they conjecture that finitude holds for all of ΩM3. Most experts now seem to
expect that the finitude of primitive Teichmüller curves holds for all strata other
than ΩM2(2).

If a Veech group has a hyperbolic element (equivalently, (X,ω) has an affine
pseudo-Anosov diffeomorphism [73]), then [40] showed that adjoining to Q the trace
of this single element already gives the full trace field of the surface. This can
be viewed as an obstruction to realizability as a Veech group [32]. Hubert and
Lanneau [34] (see also [10]) showed that the existence of (appropriately distinct)
parabolic elements implies that the trace field is totally real, thus that all of the
field embeddings into C actually lie in R. It remains unknown which number fields
are realized as trace fields. However, Calta and Smillie [10] introduced the notion
of periodic direction field, which they proved is equal to the trace field of (X,ω)
given the presence of a hyperbolic element in SL(X,ω), while also showing that
every totally real number field is realized as a periodic direction field. Infinitely
generated Veech groups exist [37, 49]. A long standing question is if there exists
any (X,ω) whose Veech group is cyclic hyperbolic; Hubert, Lanneau, and Möller
[35] ruled out a particularly promising candidate.

4. Genus 2 and Jacobians

A breakthrough in the study of Teichmüller curves in genus 2 occurred when,
independently, Calta [9] and McMullen [48] showed that there are infinitely many
non-arithmetic Teichmüller curves inM2. Calta used so-called period coordinates to
describe the corresponding Veech surfaces; see [81] for a revisiting of this approach
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in the setting of linear submanifolds. McMullen’s approach relied on showing that
the Jacobian variety of X has extra structure whenever (X,ω) of genus 2 has an
affine pseudo-Anosov diffeomorphism.

For X of genus g, the holomorphic 1-forms form a g-dimensional vector space
Ω(X). Given ω ∈ Ω(X), each of the real and imaginary parts of ω is a real
harmonic 1-form and thus uniquely defines a real first cohomology class and in
fact, ω �→ [Re(ω)] identifies Ω(X) with H1(X,R). Using the duality of homology
and cohomology, one then defines the Jacobian variety J (X) of X as the complex
torus given by Ω∗(X)/H1(X,Z). The intersection form on H1(X,Z) arising from
the intersection of curves on X induces a symplectic form on Ω∗(X) and thus on
(the tangent space at the zero point of) J (X). The existence of this form is
tantamount to an embedding into projective space; that is, J (X) is a principally
polarized Abelian variety.

Any affine diffeomorphism acts on H1(X,R) so as to preserve Stable(ω), the R-
span of the classes defined by the real and imaginary parts of ω. It also gives rise to
a linear endomorphism of H1(X,Z) whose real extension to Ω∗(X) is self-adjoint;
McMullen [48] showed that when g = 2, this extension is complex linear and an
endomorphism of J (X) results. The trace field of (X,ω) then has a subring that
acts as endomorphisms on the Jacobian; since the field is totally real, one says
that J (X) has real multiplication by this field. This key insight allowed McMullen
to deeply explore the genus 2 setting in a series of papers, including [48]–[54]. In
particular, he identified all Teichmüller curves in genus 2, showing that each lies on
some Hilbert modular surface, and he also gave a full determination of the ergodic
SL2(R)-invariant probability measures on ΩM2.

5. Teichmüller dynamics and the Hodge bundle

Let Ω1Mg ⊂ ΩMg correspond to translation surfaces of area one, SL2(R) also
acts here. The Teichmüller flow is given by the action of the diagonal matrices
gt = diag(et, e−t). On translation surfaces, this contracts the vertical direction
while expanding the horizontal. Independently, Masur [46] and Veech [74] showed
that there is a natural finite measure on each stratum of Ω1Mg, and that the
Teichmüller flow is ergodic on each component with respect to this measure. Eskin
and Okounkov [19] and Eskin, Okounkov, and Pandharipande [20] determined the
precise measure of each stratum by a Hurwitz space approach and the fact that
arithmetic translation surfaces are appropriately dense.

Especially due to applications to interval exchange transformations, a main goal
of Teichmüller dynamics is to fully understand the quality of mixing of Teichmüller
flow for all SL2(R)-invariant probability measures on ΩMg. Despite the fact that
Teichmüller space is in a sense completely inhomogeneous [70], analogies to the
dynamics of homogeneous spaces provide insight that has allowed for astounding
progress. A decade after McMullen’s [54] treatment of the genus 2 case, Eskin and
Mirzakhani [17] show that finite ergodic SL2(R)-invariant measures are of Lebesgue
class and supported on affine varieties; Eskin, Mirzakhani, and Mohammadi [18]
show that the closures of SL2(R)-orbits are affine manifolds; and Filip [21,22] shows
that these closures are algebraic varieties defined over number fields, thus general-
izing the aforementioned results for Teichmüller curves. For more on these results
and the flurry of work they have inspired see [82]. Finiteness results for primitive
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Teichmüller curves in certain strata based on these results include those of [47] and
[45].

Almost contemporaneously, Eskin, Kontsevich, and Zorich [15] culminated a 15-
year project showing the rationality of the sum of the Lyapunov exponents for
Teichmüller flow on the Hodge bundle over any connected component of a stratum.
The (real) Hodge (normed vector) bundle over Ω1Mg is the C∞-bundle whose fibers
are H1(X,R) with the Hodge norm: ||v||2 = i

2

∫
X

ω ∧ ω, where ω ∈ Ω(X) has real
part whose class is v. The Teichmüller flow can be lifted by parallel transport
to give a flow on the Hodge bundle v �→ GKZ

t (v), t ∈ R. Writing this flow in
terms of transition matrices shows it to be a cocycle, called the Kontsevich–Zorich
cocycle. By a theorem of Oseledets, the ergodicity of the Teichmüller flow with
respect to the standard measure implies that there is a measurable decomposition

H1(X,R) =
⊕k

i=1 Ei(ω) depending on the point (X,ω) such that for non-zero
v ∈ Ei(ω), we have ||GKZ

t (v)|| = exp(λit + o(t)). Relabelling and listing these
Lyapunov exponents with multiplicity, the symplectic structure gives that λ1 ≥
λ2 ≥ · · · ≥ λ2g, with λ2g−i+1 = −λi and the first g values being all non-negative.
(And thus, the rationality result is for the sum of these first g exponents!) The
subspace comprised of the Stable(ω) is indeed stable under the flow: it accounts
for 1 = λ1 = −λ2g. This project of Eskin, Kontsevich, and Zorich has been central
to the developments in the field; significant steps toward the result of [15] were
made by Forni [23] showing positivity of λg, and Avila and Viana [3] proving the
Zorich–Kontsevich conjecture that all of the Lyapunov exponents are non-zero and
distinct. The long list of related works includes those of Eskin, Masur, and Zorich
[16], Rafi [69], and Avila, Matheus, and Yoccoz [2].

6. Hodge bundle over a Teichmüller curve

Möller [57] characterized Teichmüller curves in terms of the variation of Hodge
structure. In naive terms, above each point b in the Teichmüller curve B ⊂ Mg

is a curve X, and we can form a bundle with fiber over b being H1(X,R). Möller
showed that there is a decomposition of H1(X,R), preserved under the monodromy
action of π1(B, b), of the form M⊕

⊕r
j=1 Lj with the Lj vector spaces of dimension

2 that are appropriately Galois conjugates of Stable(ω) over the associated trace
field K. One of the implications is that the Jacobians of the curves fibering over B
each has an r-dimensional Abelian subvariety that has real multiplication by K, a
direct generalization of McMullen’s genus 2 result.

This sophisticated use of modern algebraic geometry is key to many later devel-
opments. In particular, it allowed Möller [58] to prove a result underpinning many
finiteness results: If (X,ω) is a Veech surface, then the formal difference of two
zeros of ω defines a torsion element (that is, an element of finite order with respect
to the group structure) in J (X). The characterization is a central ingredient in
the aforementioned Bouw and Möller realization result [7]. It also leads to ways
to evaluate the sum of Lyapunov exponents for Teichmüller flow restricted to a
Teichmüller curve (or rather its canonical lift to Ω1Mg) in terms of invariants of
the Lj [7], and in terms of intersection data in the Deligne–Mumford compatifi-

cation Mg ([11], see also [15]). Using this latter approach, Chen and Möller [11]
show that for small genus, all primitive Teichmüller curves arising from the same
stratum ΩMg have the same Lyapunov exponents.
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7. Kobayashi curves

The Schwarz–Pick Lemma states that any holomorphic mapping from the unit
disk to itself is distance-decreasing with respect to the hyperbolic metric. Should
the composition of two such maps be distance-preserving, then of course each must
be. Hence, to show that a map is an isometry, it suffices to exhibit a second
holomorphic map for which the composition is an isometry. Analogous arguments
for holomorphic maps between complex manifolds are possible by using Kobayashi
metrics, since the distance-decreasing property holds here as well. (The Kobayashi
pseudo-metric on a complex manifold is the largest pseudo-metric such that every
holomorphic map from the unit disk is distance-decreasing. When this pseudo-
metric is non-degenerate, one has a metric. The unit disk’s Kobayashi metric
agrees with its hyperbolic metric.) A Kobayashi curve is an algebraic curve that is
geodesic with respect to the Kobayashi metric on some complex manifold. Royden
proved that on Tg the Kobayashi metric agrees with the Teichmüller metric. Thus,
any Teichmüller curve is a Kobayashi curve in Mg.

Fixing a symplectic basis of integral homology and a correspondingly normalized
basis of holomorphic 1-forms on a Riemann surface X, integration gives its period
matrix, a complex g × g matrix whose imaginary part is positive definite. The
space of all such matrices is the Siegel upper half-space, Hg, whose quotient by
the real symplectic group gives the coarse moduli space of principally polarized
Abelian varieties, Ag. When g = 1, this is the upper half-plane, and just as in that
case, there is an expression of the general Siegel upper half-space as a bounded
symmetric convex domain in an appropriate Cn, and it follows that it carries a
Kobayashi metric (as opposed to this being merely a pseudo-metric). Kra [43]
and later McMullen [48] show that the Teichmüller disk of any holomorphic 1-
form is sent by the Torelli map (associating period matrix to Riemann surface)
isometrically into Hg with its Kobayashi metric. It follows that a Teichmüller curve
in Mg, arising from some (X,ω), gives a Kobayashi curve in Ag.

Overly simplifying, a Shimura curve is an algebraic curve uniformized by a Fuch-
sian group arising appropriately from a quaternion algebra. Shimura curves in Ag

are totally geodesic with respect to the Bergman metric [65], and they are also
Kobayashi curves [78]. Möller and Viehweg [63] characterize all Kobayashi curves
in Ag, showing rigidity. Möller [60] shows that for g 	= 5 there are exactly two Te-
ichmüller curves (those given in [25, 29]), that are simultaneously Shimura curves.

8. Kobayashi curves on Hilbert modular surfaces

One way to generalize the construction of the modular surface M1 is to consider
the quotient of the n-fold product Hn by SL2(OK), where OK is the ring of algebraic
integers of a totally real number field K with n = [K : Q]. There are thus n distinct
embeddings ofK into R, each of which induces an injection of SL2(OK) into SL2(R).
When n = 1, the singularities of the quotient are removable, and one can also
compactify by adding a cusp point. For n = 2, Hirzebruch showed how to resolve
quotient singularities and the singularities introduced when compactifying. This
allowed a school about him to deeply study the arithmetic, geometry, and topology
of these Hilbert modular surfaces; see [26] and [30]. In particular, Hirzebruch and
Zagier [31] gave a construction of classical modular forms by taking the intersection
numbers of twisted diagonals, the projection to H2/SL2(OK) of z �→ (Mz,Mσz),
where M ∈ GL+

2 (K) and Mσ denotes the matrix obtained by letting the non-trivial
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Galois group element of K/Q act on the entries of M . Franke [24] and Hausmann
[28] completed a classification of these curves. The Kobayashi geodesics of H2 are
the graphs of holomorphic functions from H to itself (and the image of such under
interchange of coordinates), and it follows that the twisted diagonals are Kobayashi
curves on their Hilbert modular surfaces.

McMullen’s identification of Teichmüller curves in M2 shows that for each there
is a discriminant D such that each of the corresponding Jacobians has endomor-
phism ring containing a copy of OD, the order (that is, the finite index subring of
the full ring of algebraic integers of a real quadratic field) of discriminant D. A
coarse moduli space for principally polarized Abelian surfaces Aτ = C2/(OD ⊕O∨

D)
with real multiplication by OD is given by XD = (H × H)/SL(OD ⊕ O∨

D), where

O∨
D = {α/

√
D |α ∈ OD} is the inverse different of OD, and SL(OD ⊕ O∨

D) is the
appropriate automorphism group. Given a Teichmüller curve in M2, after appro-
priate normalization of the associated Veech groups, there is a modular embedding
φ : H → H intertwining the action of SL(X,ω) and its Galois conjugate so that the
quotient of H×φ(H) descends so as to give a copy of the Teichmüller curve on XD.
Since the universal cover H of a Teichmüller curve coming from an Abelian differen-
tial (X,ω) maps isometrically with respect to Kobayashi metrics by the Torelli map
to Siegel space, and this map does factor through (idH, φ), the distance-decreasing
property shows that the Teichmüller curve on XD is Kobayashi geodesic.

One can deform a translation surface (X,ω) with multiple zeros by changing the
distances between some of these; this change in relative periods when made rigorous
is a key ingredient to understanding the topology of strata and their boundaries [16].
In the genus 2 setting, McMullen [55] determines a foliation of XD whose initial
ingredient is given a (X,ω) to fix its absolute periods and allow relative periods to
vary. In particular this provided a way for Bainbridge [4] to define appropriate cycles
on XD so as to calculate the Euler characteristics of the Teichmüller curves in M2,
even though the uniformizing groups, the Veech groups, remain unknown in general.
(Further topological data is calculated in [67].) Among other results, Bainbridge
explicitly showed that the second Lyapunov exponent, λ2, for any Teichmüller curve
is constant within each of the two strata; see [15] for another proof of this.

Using explicit algebraic models of Hilbert modular surfaces, Kumar and Mukamel
[44] find explicit equations for a large number of Teichmüller curves, exposing in-
triguing geometry.

Möller and Zagier [64] develop a theory of φ-twisted modular forms on Hilbert
modular surfaces (where φ is a modular embedding), and in particular express the
Teichmüller curves on XD in equations involving derivatives of theta functions.
Möller [62] applied the approach of [64] to give equations for the curves on XD

coming from McMullen’s [52] Prym variety construction of Teichmüller curves in
Mg, with g = 3, 4. It is now the Prym varieties of the parametrized curves that
have real multiplication, but in general these Abelian surfaces are not principal
polarized. However, there is still an appropriate Hilbert modular surface upon
which these give Kobayashi curves. Möller poses the challenge to determine all
Kobayashi curves on each XD.

9. Twisted Teichmüller curves and the book under review

In direct analogy with the twisted diagonals, a twisted Teichmüller curve is
the projection to XD of z �→ (Mz,Mσφ(z) ), where z �→ (z, φ(z) ) projects to a
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Teichmüller curve and once again M ∈ GL+
2 (K). As Weiß easily shows, any such

twist of a Kobayashi geodesic in H2 is again Kobayashi, thus giving many new
examples of Kobayashi curves. One of his most interesting observations is that
the second Lyapunov exponent is invariant under twisting. This allows him to
apply results about λ2 of Bainbridge and of Chen and Möller to show that the
curves arising on XD from McMullen’s Prym construction are not twists of the
Teichmüller curves from M2.

Much of this book is devoted to the use of Fuchsian group theory and algebraic
number theory to achieve, for certain classes of D, results on the number, volume,
and Euler characteristic of distinct twists, thus generalizing results of Franke and
Hausmann. The author raises but leaves open the highly interesting question of
what the intersection numbers of twisted Teichmüller curves may be.

The book is an elaboration of Weiß’s Ph.D. dissertation (under the direction of
Möller) and can be compared to three other similar publications cited within it.
The Bonner Mathematische Schriften publications of Franke [24] and Hausmann
[28] each present fundamental results about curves on Hilbert modular surfaces,
while tersely presenting background and merely hinting at motivation; they are
written in fairly formal German and this, along with their limited distribution,
gives the work of Weiß, and the Karlsruhe IT dissertation by Kappes [38], a real
advantage as to accessibility. (That said, a price is paid in elegance and formal-
ity of language. Indeed, the book under review suffers from a high frequency of
clumsily worded English.) Both Kappes and Weiß give more motivation, also giv-
ing clear summaries of the necessary background, although Weiß’s treatment of
the background of Lyapunov exponents is perhaps too terse. In an appendix, Weiß
presents a clear proof that Hilbert modular surfaces are indeed coarse moduli spaces
for Abelian surfaces with real multiplication by the appropriate ring. This is the
sort of service to the profession that one gladly sees in a published thesis—this
well-known result did not have an easily found proof in accessible form.

Quibbles arise with almost any book. Oddly enough, Weiß never quite presents
a proof that McMullen’s Teichmüller curves are Kobayashi geodesic on the XD (cf.
p. 44). He overstates Möller’s result on the extent of real multiplication of J (X)
above a Teichmüller curve (p. 125). There is the occasional typographical error,
such as on p. 24 where the uniformization theorem is attributed a date some half a
century too early.

There remain many interesting questions in this area, and one can easily imagine
that, just as [24] and [28], these more recent dissertation monographs will be cited
for decades to come.
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Siegel-Raum (German), Bonner Mathematische Schriften [Bonn Mathematical Publica-
tions], 104, Universität Bonn, Mathematisches Institut, Bonn, 1977. Dissertation, Rheinische
Friedrich-Wilhelms-Universität, Bonn, 1977. MR516810 (81e:14023)

[25] G. Forni and C. Matheus, An example of a Teichmüller disk in genus 4 with degenerate
Kontsevich–Zorich spectrum, Preprint, 2008, 8 pp., arXiv:0810.0023.

[26] Gerard van der Geer, Hilbert modular surfaces, Ergebnisse der Mathematik und ihrer Gren-
zgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 16, Springer-Verlag, Berlin,

1988. MR930101 (89c:11073)

http://www.ams.org/mathscinet-getitem?mr=2910796
http://www.ams.org/mathscinet-getitem?mr=2667552
http://www.ams.org/mathscinet-getitem?mr=2667552
http://www.ams.org/mathscinet-getitem?mr=2680418
http://www.ams.org/mathscinet-getitem?mr=2680418
http://www.ams.org/mathscinet-getitem?mr=2893481
http://www.ams.org/mathscinet-getitem?mr=2083470
http://www.ams.org/mathscinet-getitem?mr=2083470
http://www.ams.org/mathscinet-getitem?mr=2383267
http://www.ams.org/mathscinet-getitem?mr=2383267
http://www.ams.org/mathscinet-getitem?mr=3033521
http://www.ams.org/mathscinet-getitem?mr=2738905
http://www.ams.org/mathscinet-getitem?mr=2738905
http://www.ams.org/mathscinet-getitem?mr=1429199
http://www.ams.org/mathscinet-getitem?mr=1429199
http://www.ams.org/mathscinet-getitem?mr=2881227
http://www.ams.org/mathscinet-getitem?mr=3270590
http://www.ams.org/mathscinet-getitem?mr=2010740
http://www.ams.org/mathscinet-getitem?mr=2010740
http://www.ams.org/mathscinet-getitem?mr=1839286
http://www.ams.org/mathscinet-getitem?mr=1839286
http://www.ams.org/mathscinet-getitem?mr=2383889
http://www.ams.org/mathscinet-getitem?mr=2383889
http://www.ams.org/mathscinet-getitem?mr=1888794
http://www.ams.org/mathscinet-getitem?mr=1888794
http://www.ams.org/mathscinet-getitem?mr=516810
http://www.ams.org/mathscinet-getitem?mr=516810
http://www.ams.org/mathscinet-getitem?mr=930101
http://www.ams.org/mathscinet-getitem?mr=930101


322 BOOK REVIEWS

[27] Eugene Gutkin and Chris Judge, Affine mappings of translation surfaces: geometry and
arithmetic, Duke Math. J. 103 (2000), no. 2, 191–213, DOI 10.1215/S0012-7094-00-10321-3.
MR1760625 (2001h:37071)

[28] Wilfried Hausmann, Kurven auf Hilbertschen Modulflächen (German), Bonner Mathema-
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[36] Pascal Hubert and Samuel Lelièvre, Prime arithmetic Teichmüller discs in H(2), Israel J.
Math. 151 (2006), 281–321, DOI 10.1007/BF02777365. MR2214127 (2008f:37073)

[37] Pascal Hubert and Thomas A. Schmidt, Infinitely generated Veech groups, Duke Math. J.
123 (2004), no. 1, 49–69, DOI 10.1215/S0012-7094-04-12312-8. MR2060022 (2005c:30042)

[38] A. Kappes, Monodromy representations and Lyapunov exponents of origamis, KIT Scientific

Publishing 2011.
[39] A. B. Katok and A. N. Zemljakov, Topological transitivity of billiards in polygons (Russian),

Mat. Zametki 18 (1975), no. 2, 291–300. MR0399423 (53 #3267)
[40] Richard Kenyon and John Smillie, Billiards on rational-angled triangles, Comment. Math.

Helv. 75 (2000), no. 1, 65–108, DOI 10.1007/s000140050113. MR1760496 (2001e:37046)
[41] Maxim Kontsevich and Anton Zorich, Connected components of the moduli spaces of Abelian

differentials with prescribed singularities, Invent. Math. 153 (2003), no. 3, 631–678, DOI
10.1007/s00222-003-0303-x. MR2000471 (2005b:32030)

[42] Steven Kerckhoff, Howard Masur, and John Smillie, Ergodicity of billiard flows and quadratic
differentials, Ann. of Math. (2) 124 (1986), no. 2, 293–311, DOI 10.2307/1971280. MR855297
(88f:58122)

[43] Irwin Kra, The Carathéodory metric on abelian Teichmüller disks, J. Analyse Math. 40
(1981), 129–143 (1982), DOI 10.1007/BF02790158. MR659787 (83m:32027)

[44] A. Kumar and R. Mukamel, Algebraic models and arithmetic geometry of Teichmüller curves
in genus two, preprint, arXiv 1406.7057 (2014).

[45] E. Lanneau, D.-M. Nguyen and A. Wright, Finiteness of Teichmüller curves in non-
arithmetic rank 1 orbit closures, preprint arXiv:1504.03742

[46] Howard Masur, Interval exchange transformations and measured foliations, Ann. of Math.
(2) 115 (1982), no. 1, 169–200, DOI 10.2307/1971341. MR644018 (83e:28012)

[47] Carlos Matheus and Alex Wright, Hodge-Teichmüller planes and finiteness results for Te-
ichmüller curves, Duke Math. J. 164 (2015), no. 6, 1041–1077, DOI 10.1215/00127094-
2885655. MR3336840

[48] Curtis T. McMullen, Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer.
Math. Soc. 16 (2003), no. 4, 857–885 (electronic), DOI 10.1090/S0894-0347-03-00432-6.
MR1992827 (2004f:32015)

[49] Curtis T. McMullen, Teichmüller geodesics of infinite complexity, Acta Math. 191 (2003),
no. 2, 191–223, DOI 10.1007/BF02392964. MR2051398 (2005e:32025)

http://www.ams.org/mathscinet-getitem?mr=1760625
http://www.ams.org/mathscinet-getitem?mr=1760625
http://www.ams.org/mathscinet-getitem?mr=598814
http://www.ams.org/mathscinet-getitem?mr=598814
http://www.ams.org/mathscinet-getitem?mr=2387362
http://www.ams.org/mathscinet-getitem?mr=2387362
http://www.ams.org/mathscinet-getitem?mr=0393045
http://www.ams.org/mathscinet-getitem?mr=0393045
http://www.ams.org/mathscinet-getitem?mr=0453649
http://www.ams.org/mathscinet-getitem?mr=0453649
http://www.ams.org/mathscinet-getitem?mr=3071661
http://www.ams.org/mathscinet-getitem?mr=2245223
http://www.ams.org/mathscinet-getitem?mr=2245223
http://www.ams.org/mathscinet-getitem?mr=2225696
http://www.ams.org/mathscinet-getitem?mr=2225696
http://www.ams.org/mathscinet-getitem?mr=2491696
http://www.ams.org/mathscinet-getitem?mr=2491696
http://www.ams.org/mathscinet-getitem?mr=2214127
http://www.ams.org/mathscinet-getitem?mr=2214127
http://www.ams.org/mathscinet-getitem?mr=2060022
http://www.ams.org/mathscinet-getitem?mr=2060022
http://www.ams.org/mathscinet-getitem?mr=0399423
http://www.ams.org/mathscinet-getitem?mr=0399423
http://www.ams.org/mathscinet-getitem?mr=1760496
http://www.ams.org/mathscinet-getitem?mr=1760496
http://www.ams.org/mathscinet-getitem?mr=2000471
http://www.ams.org/mathscinet-getitem?mr=2000471
http://www.ams.org/mathscinet-getitem?mr=855297
http://www.ams.org/mathscinet-getitem?mr=855297
http://www.ams.org/mathscinet-getitem?mr=659787
http://www.ams.org/mathscinet-getitem?mr=659787
http://www.ams.org/mathscinet-getitem?mr=644018
http://www.ams.org/mathscinet-getitem?mr=644018
http://www.ams.org/mathscinet-getitem?mr=3336840
http://www.ams.org/mathscinet-getitem?mr=1992827
http://www.ams.org/mathscinet-getitem?mr=1992827
http://www.ams.org/mathscinet-getitem?mr=2051398
http://www.ams.org/mathscinet-getitem?mr=2051398


BOOK REVIEWS 323

[50] Curtis T. McMullen, Teichmüller curves in genus two: discriminant and spin, Math. Ann.
333 (2005), no. 1, 87–130, DOI 10.1007/s00208-005-0666-y. MR2169830 (2006h:32011)

[51] Curtis T. McMullen, Teichmüller curves in genus two: the decagon and beyond, J. Reine
Angew. Math. 582 (2005), 173–199, DOI 10.1515/crll.2005.2005.582.173. MR2139715
(2006a:32017)

[52] Curtis T. McMullen, Prym varieties and Teichmüller curves, Duke Math. J. 133 (2006),
no. 3, 569–590, DOI 10.1215/S0012-7094-06-13335-5. MR2228463 (2007a:32018)

[53] Curtis T. McMullen, Teichmüller curves in genus two: torsion divisors and ratios of sines,
Invent. Math. 165 (2006), no. 3, 651–672, DOI 10.1007/s00222-006-0511-2. MR2242630
(2007f:14023)

[54] Curtis T. McMullen, Dynamics of SL2(R) over moduli space in genus two, Ann. of Math. (2)
165 (2007), no. 2, 397–456, DOI 10.4007/annals.2007.165.397. MR2299738 (2008k:32035)

[55] Curtis T. McMullen, Foliations of Hilbert modular surfaces, Amer. J. Math. 129 (2007),
no. 1, 183–215, DOI 10.1353/ajm.2007.0002. MR2288740 (2007k:14044)

[56] Curtis T. McMullen, Rigidity of Teichmüller curves, Math. Res. Lett. 16 (2009), no. 4, 647–
649, DOI 10.4310/MRL.2009.v16.n4.a7. MR2525030 (2010h:32009)
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