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1. ALGEBRAS

Algebras occur in almost all areas of mathematics and every mathematician
knows several examples; e.g., the algebra k[z] of polynomials over a field k, the
algebra C of complex numbers over the reals, or the algebra Mat, (R) of n-by-n
matrices over a ring R.

1.1. How to define an algebra? There is no general answer to this question. It
depends. Some algebras are defined on a given set by introducing the three opera-
tions that make up an algebra: addition, multiplication, and scaling by elements of
the ground ring. For example, C as an algebra over R is given by vector addition
and scaling, and complex multiplication; the matrix algebra Mat, (R) is given by
defining the matrix operations.

Other algebras are defined as a quotient of a given algebra by an ideal of relations.
Here one may think for example of the symmetric algebras and the exterior algebras
as quotients of the tensor algebras.

Yet another way of defining algebras is by constructing a subset inside a known
algebra which is closed under the operations. In this case, the algebra is often
defined by specifying a set of generators and taking its closure under addition,
multiplication, and scaling.

Cluster algebras are of the last kind. They are subalgebras of a field of rational
functions in several variables generated by a possibly infinite set of generators,
which itself has to be constructed recursively.

1.2. Why are algebras interesting? Again there is no general answer. It de-
pends. Sometimes one is interested in the elements of an algebra because of their
action on some other object. The elements of the matrix algebra Mat,, (k) are acting
on the n-dimensional k-vector space as linear transformations, or the elements of
the endomorphims algebra Endg M of a module M over a ring R act on the module
M.

Sometimes algebras are introduced to provide an algebraic framework for a prob-
lem that one wants to study. For example, group algebras are motivated by the
study of group representations; enveloping algebras of Lie algebras are motivated
by the study of representations of the non-associative Lie algebras.

Sometimes the algebra defines a geometric object, for example the algebra of
functions on an algebraic variety.

A cluster algebra can fit each of the above criteria, depending on your point of
view. They provide an algebraic framework for the study of canonical bases in Lie
theory, and some cluster algebras arise as algebras of functions on a variety such
as the coordinate ring of a Grassmannian.
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But the most fascinating feature of a cluster algebra, and this is not a typical
property for an algebra, is that is has a rich underlying combinatorial structure.
This combinatorial structure, although complicated, is very natural in the sense
that it appears, sometimes in a hidden way, in many different areas of mathematics
and physics. Cluster algebras have deep connections to the representation theory of
finite-dimensional algebras, hyperbolic geometry, algebraic geometry and Poisson
geometry [24], dynamical systems, string theory, and knot theory.

2. WHAT IS A CLUSTER ALGEBRA?

Cluster algebras are defined by Fomin and Zelevinsky [19] as subalgebras of a
field of rational functions in several variables x1,...,x,, by constructing a set of
generators. These generators are called cluster variables. Starting from the n initial
variables 1, ..., z,, the set of all cluster variables is constructed recursively by a
procedure called mutation. This mutation procedure is determined by the choice
of a quiver@ Q) with n vertices which has no oriented cycles of length one or two.

The first mutation p;, where i = 1,...,n, transforms the initial cluster (z1,...,
Z,) by replacing the variable x; by the variable

1
(2.1) T = o H T+ H% ;
1—) J—1

where the first product runs over all arrows in the quiver ) that start at the vertex
1 and the second product runs over all arrows ending at ¢. Thus each mutation
w; produces a new cluster of n cluster variables (z1,...,2;—1, 2}, Tiy1,...,2Zn) by
exchanging the old variable z; for a new variable x} that is given as a rational
function of the initial cluster (z1,...,z,). Its defining equation (ZI)) is called the
exchange relation.

Moreover, the mutation u; also changes the quiver @ locally around the vertex
i. Thus p; produces a new cluster and a new quiver. From this new data, one can
again perform n mutations and so on. Mutating once more at the same position
¢ will bring us back to the initial cluster, but mutating in other directions will, in
general, produce new cluster variables. The computations involved in the mutation
procedure are typically very difficult, and one of the main problems in the theory
of cluster algebras is to find good computable formulas for the cluster variables.

2.1. Laurent phenomenon and positivity. By definition, the cluster variables
are rational functions, but Fomin and Zelevinsky proved in [I9] that they are ac-
tually Laurent polynomials (meaning that the denominator consists of a single
monomial) with integer coefficients. This is called the Laurent phenomenon. The
coefficients are now known to be non-negative [25[30], but this had been an open
problem for more than ten years. Several different bases have been constructed for
cluster algebras of different types; see [4L22][25]29]33].

2.2. Finite type and finite mutation type. A cluster algebra is said to be of
finite type if the number of its cluster variables is finite and of finite mutation
type it the number of quivers that can be obtained from @ by a finite sequence of
mutations is finite. Finite type cluster algebras are of finite mutation type but the
converse is not true.

LA quiver is an oriented graph.
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A remarkable result shown in [20] classifies the finite type cluster algebras as
precisely those whose initial quiver can be obtained by mutation from a quiver of
Dynkin type A,,,D,,, or Eg, E7, Eg. Notice that the Dynkin diagrams also classify
semisimple Lie algebras as well as the hereditary algebras that have only finitely
many indecomposable modules up to isomorphism.

For the finite mutation type, it is easy to see that every cluster algebra of rank
n = 1,2 is of finite mutation type. For n > 3, it is shown in [I5] that a cluster
algebra is of finite mutation type if and only if its quiver is the adjacency quiver
of a triangulation of a Riemann surface with marked points or it is one of eleven
exceptional types. For example, the Dynkin type A, corresponds to a disk with
n + 3 marked points on the boundary, the type D, corresponds to a disk with
one puncture and n marked points on the boundary, and the types Eg, E7, Eg are
among the eleven exceptional types. The cluster algebras associated to surfaces are
said to be of surface type.

3. RELATIONS TO OTHER AREAS

Cluster algebras are related to many areas of mathematics and physics. Here we
will only focus on the relation to hyperbolic geometry and representation theory.

3.1. Surface type. The relation between cluster algebras and hyperbolic geom-
etry has been established in [I6HI823]. To every oriented Riemann surface with
boundary and marked points one can associate a cluster algebra in such a way that
the cluster variables correspond bijectively to arcs in the surface, clusters corre-
spond to ideal triangulations, mutations to flips of diagonals in quadrilaterals, and
exchange relations to generalized Ptolemy relations.

Explicit combinatorial formulas for cluster variables in terms of perfect matchings
of certain graphs, called snake graphs, have been obtained in [32]. The Laurent
polynomial expansion of the cluster variable is given as a sum over all perfect
matchings of the weight and the height of the matching. For surfaces without
punctures these formulas were used in [33] to define canonical bases for the cluster
algebra in terms of curves in the surface

Moreover, the relations in the cluster algebra are given geometrically by locally
replacing a crossing X of two segments of curves with the sum of segments < and
DC, respectively; see [34]. Thus the curves in the surface completely determine
the algebraic and combinatorial structure of the cluster algebra. In [TTHI3] this
structure was reinterpreted purely in terms of the snake graphs, bypassing the arcs
in the surface and providing a more efficient method for computation.

3.2. Cluster category. The relation to representation theory was established by
the introduction of cluster categories in [5] (and [§] for type A)E Cluster categories
provide a categorification of cluster algebras. The cluster variables correspond
bijectively to the indecomposable (rigid) objects in the cluster category; clusters
correspond to tilting objects and exchange relations to exact triangles in the cate-

goryl]

2In the case were there is only one marked point, this uses [10].

3Generalizations were given later in [21[36] using quivers with potentials developed in [I4].
Another connection to representation theory via preprojective algebras was given in [2I]. A
different type of categorification was introduced in [261[35].

4An object T in the cluster category is called rigid if Ext!(T,T) = 0, and it is tilting if it is
maximal with respect to this property.
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This connection to cluster algebras has triggered a spectacular development in
representation theory introducing or advancing the theory of cluster-tilted algebras
[618], 2-Calabi-Yau categories [27], 7-tilting theory [I], relation extensions [3], and
more. On the other hand, the categorification provided a better understanding of
cluster algebras, for example via expansion formulas for cluster variables in terms
of Euler—Poincaré characteristics of quiver Grassmannians, [7,[9], and construction
of bases for the cluster algebra [22].

4. THE BOOK

Marsh’s book is a short and very well-written introduction to cluster algebras
that will be valuable to graduate students as well as researchers in many disciplines.
It can be used as a textbook for a graduate topics course or for self-study. Detailed
references are given where proofs are not included.

After a short introductory section, the book gives a concise definition of cluster
algebras and even presents an alternative description of the exchange relations
using polynomials. This approach was actually the original definition of Fomin
and Zelevinsky and was used in the first proof of the Laurent phenomenon. Marsh
points out very nicely that some flexibility is needed in the definition of cluster
algebras when it comes to the question of invertibility of the coefficients in a cluster
algebra.

Marsh then gives a short introduction to reflection groups, which is interesting in
its own right, and uses it to present the finite type classification of cluster algebras.

The book then touches upon various aspects of cluster algebras: the introduction
of generalized associahedra associated to cluster algebras of finite type; periodicity
related to cluster algebras, including periodicity of integer sequences, mutations
sequences, as well as a sketch of Keller’s proof of Zamolodchikov’s periodicity con-
jecture. The author also discusses cluster algebras of finite mutation type and their
classification using triangulated surfaces. The last chapter contains a self-contained
account of the cluster structure of the homogeneous coordinate ring of the Grass-
mannian Gr(k,n) following Scott [37].
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