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MRO0043432 (13,261g) 90.0X

Nash, John

Non-cooperative games.

Annals of Mathematics. Second Series 54 (1951), 286-295.

The general finite n-person game has previously been analyzed by considering
the related two-person games obtained by partitioning the set of players into two
disjoint subsets or coalitions [von Neumann and Morgenstern, Theory of Games and
Economic Behavior, Princeton University Press, 1944; MR0011937]. This paper
gives an entirely new treatment of such games in which cooperation (coalitions)
are excluded. The main result is a generalization of the fundamental theorem
of two-person zero-sum games (existence of a value) to general n-person games,
and may be described as follows: Let s1,s83, -+ ,s, denote mixed strategies for
players 1,2, -+  n,and let p;(s1, S2,- - , S ) be the pay-off function to the ith player,
where, as usual, each p; is an n-linear function of the s;’s. An n-tuple of strategies
(81,82, ,8,) is called an “equilibrium point” if, for all i, p;(s1,82, - ,8n) >
pi(s1,82,++,8/, -+ ,8,), where s;/ is any strategy of the ith player. Theorem:
Every finite n-person game has an equilibrium point. Making use of this concept
the author defines the notion of solution of a game (which, however, need not
exist). Further sections are devoted to analyzing the structure of solutions and
giving examples.

D. Gale
From MathSciNet, December 2016

MRO0050928 (14,403b) 14.0X

Nash, John

Real algebraic manifolds.

Annals of Mathematics. Second Series 56 (1952), 405-421.

An algebraic variety defined over the real field in Euclidean n-space FE, may
consist of several sheets. Any one of these which has no singular points is called an
algebraic sheet. If M, is a real closed differentiable manifold, it is known that it
can be embedded differentiably in F,,, for a suitable value of n, and the principal
theorem proved in this paper shows that this embedding can be approximated by
an algebraic sheet M,;" belonging to an algebraic variety V. If the other sheets of
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V4 do not meet this sheet, My’ is said to be a proper representation of My, and it
is shown that a proper representation of My exists in E,, if n > 2d + 1.
Let My be any real closed analytic manifold and suppose that on it there exists
a ring R of analytic functions such that (a) in R there exists a set of functions
which define an algebraic representation of My, (b) if f1,- -, far1 € R, there exists
a real polynomial ¢(X1, -+, Xg41) such that ¢(f1, -+, far1) = 0 on My, (¢) R
is not contained in any larger ring having these properties. The pair (My, R) is
called a real algebraic manifold, and two manifolds (Mg, R), (My', R) are said to
be equivalent if there exists an isomorphism between R and R’. The second part
of the paper develops a few properties of real algebraic manifolds, most of which
correspond to well-known properties of algebraic geometry. The most important
result obtained is that two real algebraic manifolds are equivalent if and only if
they are analytically homeomorphic.
W. V. D. Hodge

From MathSciNet, December 2016

MRO0065993 (16,515¢) 53.0X

Nash, John

C! isometric imbeddings.

Annals of Mathematics. Second Series 60 (1954), 383-396.

This paper contains some surprising results on the C'-isometric imbedding into
an Euclidean space of a Riemannian manifold with a positive definite C°-metric.
The theorems are: 1) Any closed Riemannian n-manifold has a C-isometric imbed-
ding in E?" (the Euclidean space of dimension 2n). 2) Any Riemannian n-manifold
has a Cl-isometric immersion in E?" and an isometric imbedding in E?"*!
3) If a closed Riemannian n-manifold has C*-immersion or imbedding in E* with
k > n+2, it also has respectively an isometric immersion or imbedding in E*. The
basic idea is a perturbation process defined in a neighborhood and relative to two
normal vector fields. The imbedded or immersed manifold is of course generally
quite pathological.

S. Chern

From MathSciNet, December 2016

MRO0075639 (17,782b) 53.1X

Nash, John

The imbedding problem for Riemannian manifolds.
Annals of Mathematics. Second Series 63 (1956), 20-63.

Continuing his work on the imbedding problem, begun in his former paper on
C’-embeddings [Ann. of Math. (2) 60 (1954), 383-396; MR0065993], the author
turns to the study of imbeddings of Riemannian manifolds of class C® or higher,
and establishes that every such manifold can be embedded in a C3-isometric way
in a Euclidean space, whose dimension can be estimated. The main part of the
proof rests on a perturbation theorem of the “open-mapping” variety. This may
most easily be explained as follows: Let ¢ be a non-linear map of a Banach space X
of functions or tensors into another such space Y. Let y = A(x, &) be the Fréchet
derivative of ¢ at the point x, and suppose that the equation y = A(x, &) can be
solved for & in terms of ¢ in the form & = F(z,¥), so that y = A(x, F(z,y)). In
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this case, ¢ may be regarded as having a “non-vanishing Jacobian” in a suitable
abstract sense. Nash then proves that with suitable assumptions on the analytic
nature of ¢, A, F', much weaker however than continuity of F' in x, the range of ¢
covers an open set. If F' were known to be continuous in ¢, this could be done as
usual by solving the equation z; = F(x, Ay) for any desired variation Ay of y. In
the present case, in which F' acts on z as a partial differential operator of second
order, Nash modifies the equation z; = F(x, Ay) to a system of integral equations
as follows:

0
2(9)220-1-/9 F(Spz, M) df, L(0) =

0
/ w(® — 0){A(z, F(Sgz, M) — M)} db.
0o

Here u is a C'°° function vanishing for # < 0 and identically one for 6 > 0; Sy is a
suitably chosen “smoothing operator” or “mollifier” such that Spz — z as z — oo,
and

M= M(L) = %{u(@ —00)G + L}.

If 6y is sufficiently large, these integral equations may be solved, and ¢(z(c0)) =
#(20) + G. Using the main perturbation theorem reported above, together with a
number of devices taken from “C'!-isometric embeddings”, the author is then able to
establish Theorem 2: A compact Riemannian n-manifold with a C* positive metric
has a C* isometric imbedding in any small volume of Euclidean %n(?m + 11)-space,
provided 3 < k < .

An especially interesting feature of the proof is that the bound on the number of
dimensions required for the imbedding is obtained by the application of “algebraic-
geometry” dimensionality arguments, whose use is justified by appeal to an earlier
result of the author giving an algebraic imbedding for general differential manifolds
[ibid. 56 (1952), 405—-421; MR0050928].

The paper ends with the extension of Theorem 2 to noncompact manifolds, the
result being as follows: Theorem 3: Any Riemannian n-manifold with a C* positive
metric, where 3 < k < oo, has a C* isometric imbedding in %n(n + 1)(3n + 11)-
dimensional euclidean space, in fact, in any small portion of this space.

The proof uses Theorem 2 and a special device for localizing the embedding
problem on a non-compact manifold, using a special covering of the manifold by
neighborhoods suitably defined in terms of a triangulation.

J. Schwartz

From MathSciNet, December 2016

MRO0100158 (20 #6592) 35.00
Nash, J.
Continuity of solutions of parabolic and elliptic equations.
American Journal of Mathematics 80 (1958), 931-954.
1 n
)

In this paper, the writer considers bounded solutions T(x,t) (z = z',- -,z
of parabolic equations of the form T; = V - a - VT, in which the eigenvalues of the
matrix a = ||a;;(x,t)| are always between two numbers ¢; and co, with 0 < ¢1 < ¢3,
and V denotes the z-gradient. He first proves that any solution T'(z,t) such that
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|T(x,t)] < B for t >t satisfies a Hélder condition of the form
T(1, 1) = T(wa, )] < AB(|j21 — wal/(t — t0)2)*,0 < @ < 1,

where A and « depend only on n, ¢y, co; he also shows that any such T satisfies a
corresponding Hélder condition in the time variable. The writer bases his proof on
a succession of inequalities for fundamental solutions S(z, t; T, t) which are solutions
for t >t and have a unit source at (T, t). Using these results he shows that bounded
solutions of the elliptic equations V - a - VI' = 0 satisfy certain Holder conditions
on interior domains which depend only on sup|T|, n, c¢1, co, and the distance
of the interior domain from the boundary of the domain of definition. This result
generalizes to the case n > 2 an old result of the reviewer [Trans. Amer. Math. Soc.
43 (1938), 126-166], which he used to prove the differentiability of the solutions of
certain variational problems and which Nirenberg [Comm. Pure Appl. Math. 6
(1953), 103-156, 395; MR0064986] used to establish the existence of the solutions
of certain quasi-linear elliptic equations. Recently, E. DeGiorgi has proved (by
completely different methods) similar results in the elliptic case only [Mem. Accad.
Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3 (1957), 25-43; MR0093649], but
for solutions which may only be in Ls. The present writer also announces results
concerning continuity on the boundary in the elliptic case.

C. B. Morrey Jr.

From MathSciNet, December 2016

MRO0656198 (83j:58014) 58C15; 46G05, 58D15

Hamilton, Richard S.

The inverse function theorem of Nash and Moser.

American Mathematical Society. Bulletin. New Series 7 (1982), no. 1, 65-222.

This paper is a careful exposition of the Nash-Moser inverse function theorem
in a setting that allows one to apply the theorem without the need to prove a new
version of it for each new kind of application. Along with this comes much useful
extra equipment (a priori estimates) fitting perfectly into the setting. Convincing
examples show the theorem with its different “outfits” at work.

The first part of the paper deals with calculus in Fréchet spaces. A mapping is
smooth if all directional derivatives exist and are jointly continuous in all the vari-
ables involved. This is the weakest notion of differentiability utilizing continuity
and admitting a chain rule. A very elegant proof of the so-called omega lemma is
given. Then Fréchet manifolds are investigated, spaces of mappings and diffeomor-
phisms are equipped with Fréchet manifold structures, composition and inversion
of mappings are shown to be smooth (some gaps here—but there are lots of correct
proofs in the literature now). Spaces of compact submanifolds of manifolds and of
regions with smooth boundary are shown to be Fréchet manifolds. We point out
that the space of smooth mappings from X to Y is a Fréchet manifold if and only
if X is compact—the same restriction is necessary for all the examples. Finally the
stage is set for inverse function theorems. The inverse function theorem on Banach
spaces is proved in such a way that all partial results that hold on Fréchet spaces are
obtained there. Numerous counterexamples are given which show that the Nash-
Moser theorem is in some sense the best possible; e.g., the exponential mapping of
the Fréchet-Lie groups of diffeomorphisms is not surjective on any neighbourhood
of the identity (following Omori). Nice examples are given to illustrate the use
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of the inverse function theorem on Banach spaces: finding geodesics with given
endpoints; solving the classical Plateau problem; studying oscillatory motions in
a smooth convex trough; a smooth vector field on a Fréchet space that factors
over a Banach space admits a local flow (this is essential later in the proof of the
Nash-Moser theorem).

The second part introduces the category of tame Fréchet spaces and tame smooth
mappings, the category in which the Nash-Moser theorem inverts mappings. First
of all one considers graded Fréchet spaces, i.e., spaces with distinguished increas-
ing families of seminorms generating the topology (written | |,, » € N). A
linear mapping between graded Fréchet spaces is tame of degree r and base b if
|ILz||, < C||||ntr for all n > b with a constant that may depend on n. A graded
Fréchet space is said to be tame if it is a tame direct summand in a space X(B)
of exponentially decreasing sequences (x) in some Banach space B, with grad-
ing ||(x1)|l» = supy €™*||z,||B, e.g. The point is that tame Fréchet spaces admit
smoothing operators. Originally the smoothing operators of John Nash were con-
volutions with carefully chosen functions, on spaces of C*°-functions on the torus.
Via Fourier development one notices that cutting the Fourier series at a certain
order does the same thing, and on the space ¥(B) of exponentially decreasing se-
quences cutting the sequence at a certain order (depending smoothly on the order)
is a very convenient family of smoothing operators. The following are tame Fréchet
spaces: C*°(X) for a compact manifold X, with or without boundary, spaces of
smooth sections of vector bundles with compact base, Banach spaces, some spaces
of holomorphic functions. Most of those are seen to be tame using the Fourier
transform.

A (nonlinear) mapping P between graded Fréchet spaces is tame (of base b and
degree r) if || P(f)|ln < C(1 4+ || fllntr) for n > b, locally in f. P is called a smooth
tame map if P is smooth and all its derivatives are tame. It turns out that all par-
tial differential operators (nonlinear) on manifolds are smooth tame, so the chart
changes of manifolds of mappings are smooth tame; thus all manifolds of mappings
considered are tame manifolds. Composition and inversion of diffeomorphisms are
smooth tame mappings. One of the main requirements for a smooth tame map
P to be locally invertible by the Nash-Moser theorem is that DP(x) be invertible
in a whole neighbourhood and that the family of inverses V P(z) = DP(x)~! be
smooth and tame. To check this is the hardest part in applying the theorem; it
usually involves some a priori estimates for linear partial differential operators. The
main body of the second part is devoted to checking exactly this for a number of
important cases of tame families of linear mappings: certain ordinary linear dif-
ferential equations; elliptic linear partial differential equations (using interpolation
and Garding’s inequality), invertible, or having kernel and cokernel of finite di-
mension and admitting an elliptic invertible modification; elliptic boundary value
problems (with linear coercive boundary conditions); linear differential operators of
degree 1, mapping sections of a vector bundle to sections of the dual bundle, with
symmetric symbol, nowhere characteristic at the boundary, admitting a “positive
weight function” (“symmetric systems”).

The third and last part of the paper is devoted to the Nash-Moser inverse function
theorem proper, which is stated as follows: Let F and G be tame spaces and
P:U C F — G a smooth tame map. Suppose that the equation for the derivative
DP(f)h =k has a unique solution U = VP(f)k for all f in U and all k, and that
the family of inverses VP: U x G — F' is a smooth tame map. Then P is locally
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invertible and each local inverse P~! is a smooth tame map. There are partial
results if DP has only a smooth tame family of left or right inverses. The proof is
by the Newton method, written as an ordinary differential equation for the error
term, modified by smoothing operators in such a way that the vector field of this
ordinary differential equation factors over a Banach space and thus admits a local
solution. By a priori estimates this solution is shown to exist for all times and
converges exponentially to a solution of P(f) = g. That the inverse is smooth and
tame is easy.

Then, instructive and convincing applications are given, using all the a priori
estimates from the second part: embedding compact oriented surfaces with strictly
positive curvature into R? (elliptic equation with finite-dimensional null space);
solving the shallow water equations on any compact Riemannian manifold (A) with
arbitrary initial conditions for short time, and (B) for long time with small initial
conditions (symmetric system); the space of compact submanifolds of total measure
r of a finite-dimensional Riemannian manifold is a smooth tame submanifold of the
Fréchet manifold of all compact submanifolds of X. If a tame Fréchet Lie group
acts tamely on a tame connected Fréchet manifold, and the infinitesimal action
is everywhere surjective with tame right inverse, then the group acts transitively.
This is applied to show that neighbouring symplectic forms representing the same
cohomology class of a compact manifold are conjugate by diffeomorphisms. The
same holds for contact structures that are near enough.

If X is a compact smooth manifold, then the diffeomorphism group D(X) acts
transitively on the space M(X) of smooth positive measures of total mass 1, and
this makes D(X) into a principal fibre bundle over M(X) with fibre D, (X) over
€ M(X), the group of p-preserving diffeomorphisms.

Then the Nash-Moser theorem for exact sequences is presented (without proof)
and applied to imbed annuli with strictly negative curvature in “proper position”
into R?, by giving an embedding of one boundary component first (symmetric
system).

Next the Nash-Moser theorem with quadratic error is presented (the proof de-
pends on another paper of the author), and then applied to a (abstract) situation
where the error comes from the choice of a smooth tame connection on a tame vec-
tor bundle in the plane which is in turn applied to a free boundary problem in the
plane (there exists a unique perfect flow around any convex obstacle in the plane
which is stagnant outside a compact set and has arbitrarily given outer velocity
and circulation).

Peter Michor

From MathSciNet, December 2016

MR1381967 (98f:14011) 14E15
Nash, John F., Jr.
Arc structure of singularities.
A celebration of John F. Nash, Jr.
Duke Mathematical Journal 81 (1995), no. 1, 31-38.
From the text: “We prove the following results: Proposition 1. Corresponding
to any algebraic subset W of a variety, there are a finite number of families of
associated arcs x(t) where x(0) is on W.
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“Proposition 2. Given a resolution of the variety, each arc family will correspond
to a specific component of the image of W in the resolution.

“Corollary. There are essential components for W which must appear as com-
ponents of the image of W in any resolution, equivalence of components being the
birational correspondence of their monoidal transforms.

“Observation. If, in a resolution, a component of the image of the singular set of
the singular variety is a hypersurface not birationally equivalent to a ruled variety,
then it is an essential component and will appear in every resolution.”

From MathSciNet, December 2016



