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One of the basic facts of Fourier analysis is that the sequence of complex ex-
ponentials with integer frequencies {e*™* : n € Z} forms an orthonormal basis
for L2[0,1]. This is a consequence of the fact that 27Z and [0, 1] (with summation
modulo 1) are Abelian groups dual in a very precise sense. It is natural to wonder
what would happen with the basis properties of this system if we perturb one or
both of these two groups. Clearly, the group structure and the corresponding or-
thonormality will almost always be lost. Still, one might hope that some of the basis
properties of the perturbed exponential system will be preserved. More precisely,
we have the following question:

(Q) What will happen if we replace the integers with an arbitrary sequence
of real numbers A = {)\,} and [0,1] with a more general measurable set
S C R? More precisely, can we describe in terms of the frequency sequence
A the basis properties (if any) of the sequence of nonharmonic complex
exponentials £(A) := {e2™* : X\ € A} in the space L%(S)?
This is probably one of the most classical questions in Fourier analysis, which,
as expected, has received significant attention in the past. It is safe to say that
this question and its higher-dimensional analogue represent a central topic of the
Olevskii—Ulanovski book, with clear accent on the case when S is disconnected.
The case of connected S, at least in the one-dimensional setting, is much simpler
(although by no means simple). This is probably why for these sets the problem
was essentially settled much earlier. The reason is as follows. Applying the Fourier
transform in the usual way,

f(6) = / F(@)PmE d,

this problem can be transferred to an equivalent question in the corresponding
Paley—-Wiener space PWg. This space is still a Hilbert space (closed subspace of
L?(R)), but its advantage is that when S is bounded, PWs consists of entire func-
tions. Moreover, if S is an interval, due to the well-known Paley—Wiener theorem,
these entire functions can be characterized by their truly exponential growth de-
pending only on the length of the interval S (exponential type is the more precise
notion here). This characterization is not possible for more general sets S, even in
the case when S is just a union of two intervals. Therefore, in the case when S is an
interval, one can use the full arsenal of techniques from classical complex analysis,
which makes the problem significantly more tractable (though not at all easy).
Historically, the first results related to question (Q) were connected to the Riesz
basis problem. Since even a slight perturbation of the integer frequencies destroys
the orthonormality of £(A), it is natural to see whether the next best possible basis
property (that of a Riesz basis) remains. In the Hilbert space context, Riesz bases
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are nothing but sequences obtained as images of orthonormal bases under bounded
invertible linear operators. The first result in this direction is probably the one
of Paley and Wiener who showed that £(A) is a Riesz basis for L?[0, 1] whenever
|An —n| < 1/7?% for all n € Z. The optimal constant 1/4 was obtained by Kadec [5],
and the complete description was obtained by Pavlov [I6] much later. In the case
when S is not an interval, this problem is significantly more difficult. For a general
measurable set S it is not even clear whether there exists any sequence A for which
E(A) is an orthonormal or even just a Riesz basis for L?(S). The famous Fuglede
conjecture is that compact sets S that admit translations that tile R™ are exactly
the sets for which one could find A such that £(A) is an orthonormal basis for
L?(S). This conjecture was proved for convex planar bodies S by Iosevich, Katz,
and Tao [4], but it was disproved for general S in dimension n > 5 by Tao [19]. There
are counterexamples now showing that both directions of the conjecture are false
in dimension n > 3. The Riesz basis counterpart is also still wide open, although
important recent progress was made by Kozma and Nitzan [7] who proved that any
S that is a finite union of intervals admits a Riesz basis of complex exponentials.
Very recently, it was proved by Nitzan, Olevskii, and Ulanovski [I2] that any set
S of finite measure admits a frame (spanning part of the Riesz basis) of complex
exponentials. The proof relies crucially on the recent solution of the Kadison—Singer
and Feichtinger conjectures by Marcus, Spielman, and Srivastava [9]. Tt is presented
in Lecture 10 of the book under review.

In the basic question (Q) above, we loosely used the term basis properties. Let
us explain more precisely what is meant by this. As their names suggest, Riesz and
orthonormal bases are both bases, meaning that they both have linear independence
and spanning property incorporated in them. In other words, any element in the
space can in a unique way (due to independence) be expanded (due to the spanning
property) as an appropriate linear combination of the basis elements. Among many
ways to generalize linear independence and spanning property in the Hilbert space
setting, due to their stability, are that the notions mostly used nowadays are those
of a Riesz sequence and a frame. (It is interesting to note that frames were actually
introduced first in the context of nonharmonic complex exponentials [2].)

A sequence of vectors {e, } in a Hilbert space H is said to be a Riesz sequence if
there exist 0 < ¢ < C' < oo such that for any {a,} € (2,

cZ|an|2 < HZ anen|l < CZ|an|2.

So, basically we have linear independence with bounds. A sequence {e,} is called
a frame if there exist 0 < ¢ < C' < o0, such that for any f € H we have

cllfIP <[ fren)> < ClAP

In this case we can find a family {e}}, a so-called dual frame, such that any f € H
can be expanded as

f=Z<f7€Z>6n=Z<f7€n>€Z,

with control on the [2-norm of the coefficient sequence. It is easy to show that
on the Paley—Wiener space these two concepts are equivalent to the notions of
interpolation (corresponding to Riesz sequences) and sampling (corresponding to
frames). Namely, A is sampling/interpolating for PWs if and only if £(A) is a
frame/Riesz sequence for L?(S).
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Since Riesz sequences and frames represent two dual and complementary sides
of a Riesz basis, it is natural to ask whether we can characterize these two basic
basis properties of £(A) in L?(S) in terms of the frequency sequence A only. For
intuitive reasons, let us consider the following analogy with the finite-dimensional
situation: As we know from linear algebra, the number of elements in any lin-
early independent set is not greater than the dimension of the corresponding vector
space, and similarly the number of elements in any spanning set is not smaller than
the dimension. It turns out that there is a very close analogue in the context of
complex exponentials. Namely, for a sequence of complex exponentials £(A) to be
a Riesz sequence for L2[0,1], it is necessary for the frequency sequence A to be
asymptotically sparser than the sequence Z everywhere on R. Similarly, for £(A)
to be a frame for L2[0, 1], A needs to be asymptotically denser than the sequence Z
everywhere on R. It is remarkable that almost a full converse of these statements
holds as well. These comparison results are most elegantly expressed with the con-
cept of Beurling densities (other names such as Landau density or uniform density
are sometimes attached to them). The lower Beurling density D~ (A) of a sequence
A C R is defined by

D7 (A) = lim inf #AN(e—rat T))
r—oo a€R 2r
The upper Beurling density DT (A) and their higher-dimensional analogues are
defined analogously. As mentioned above, Beurling densities can be used to almost
characterize Riesz sequences and frames of complex exponentials in L?[a,b], i.e.,
to almost answer question (Q) when S is an interval. The answer is provided by
the following result of Kahane [6]. For simplicity, we state it in the case when A is
uniformly discrete (i.e., inf |A\; — A;] > 0) and S = [0, 1].

Theorem 1. Let A C R be a uniformly discrete sequence.
(i) If D=(A) > 1, then E(A) is a frame for L2[0,1]. If D=(A) < 1, it is not.
(ii) If D*(A) <1, then E(A) is a Riesz sequence for L*[0,1]. If DY (A) > 1, it
8 not.

In other words, for a system £(A) to be a frame in L?[0, 1], it is necessary to have
D= (A) > 1, with D~ (A) > 1 being sufficient, and similarly for Riesz sequences.
The borderline cases D™ (A) = 1 and DT (A) = 1 are not covered by the previous
result. In these cases both options can occur and additional analysis is required.
This remaining open part of the problem was addressed in [I5].

It should be noted that earlier Beurling gave a characterization, which is equiv-
alent to the characterization of sampling and interpolation in the Bernstein space
(a close relative of the Paley—Wiener space). Since it is not hard to derive the
Paley—Wiener result from the one for Bernstein space, many people attribute the
Kahane result to Beurling as well.

The first part of the book is devoted to proving Theorem [II The full proof is
given in Lectures 3 (frames) and 4 (Riesz sequences). The proof is based on the
Beurling’s original approach, but it is fully adapted to the Paley-Wiener (and the
Bernstein) space. It should be noted that Beurling’s approach was instrumental in
Seip’s characterization of sampling and interpolating sets in the Bergman and the
Bargmann-Fock spaces [I7}[1§].

Simple counterexamples show that the sufficiency part of Theorem [I] fails (more
on this below). Therefore, it is natural to ask (as Beurling himself did) whether the
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necessity part remains true in higher dimensions. The answer was given by Landau
in his influential paper [8]. Using a completely new method, Landau proved the
following general result. (Here and elsewhere we use |S| to denote the Lebesgue
measure of S.)

Theorem 2. Let S C R"™ be a bounded measurable set, and let A C R™ be a
uniformly discrete sequence.

(i) If E(A) is a frame for L*(S), then D~(A) > |S].

(ii) If E(A) is a Riesz sequence for L2(S), then DT (A) < |S].

Landau’s method is based on spectral analysis of certain (depending on S) con-
centration operators. The advantage of his method is that it does not rely on
complex analysis and is considerably less technical, compared to the Beurling’s ap-
proach. Very recently, Olevskii jointly with Nitzan [I1] found an even simpler proof
of this important result. It is not surprising that the authors chose to present this
proof (it is presented in the Lecture 5). Their proof also shows that even a weaker
independence concept, such as that of uniform minimality, implies the same upper
bound on the upper density DT (A). Recall that a sequence of vectors {e,} in a
Hilbert space is said to be uniformly minimal if inf d,, > 0, where

d,, := dist(en, span{e,,, m # n}).

If we only have d,, > 0 for all n (without the uniform bound), then we say that
the sequence is minimal. In the intermediate case d, > Ce="" for some C > 0
and 0 < v < 1, the authors of the book proved the following slightly weaker upper
bound,
D*(A) :=limsup Af(zaa) <|9].
a—00 2a

The upper density D*(A) cannot be replaced by the Beurling upper density DT (A).
In the case when S is an interval, it was proved by the authors of the book that
even minimality implies the same upper bound for D*(A). It is an open problem
whether this continues to hold for more general sets S. These results are presented
in Lecture 8.

The above-mentioned result of Kahane and Beurling (Theorem [Il) gives an al-
most complete solution of (Q) in the one-dimensional case, when S is a (bounded)
interval. Landau’s follow-up result (Theorem [2]) provides an extension of the neces-
sity part for general bounded S of finite measure (the boundedness restriction was
recently removed by Nitzan and Olevskii) and holds in any dimension. One may
hope that the sufficiency part might hold for some S and A of special type (e.g.,
when S is a union of intervals or when A is a lattice). Unfortunately, it is not hard
to construct examples that show that even in the case when S is a union of two
intervals, the density conditions appearing in the above results are not sufficient
either for sampling or for interpolation. In the view of these negative results, it
is remarkable that there still do exist sequences A of very special type which are
sampling sets for any PWg with compact S of measure |S| < D~ (A). Similarly,
there also exist sets A which are interpolating for any PWsg with open S of mea-
sure |S| < DT (A). Such sets are called universal sampling/interpolation sets. The
existence of such sets is far from obvious, and their existence was first proved by
Olevskii and Ulanovski in [I4]. Their proof is presented in the first part of Lecture
6. The universal sampling set A that they construct is a perturbation of 277 and
represents a universal interpolation set in the same time. Namely, what they do is
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construct a set A such that the corresponding exponential system £(A) is a Riesz
basis for a certain class of sets 2. The class of such sets €2 is sufficiently rich so
that any compact set S is contained in some €2, and any open set S contains some
Q of this class. This implies that A is both a universal sampling and a universal in-
terpolation set. It is interesting to note that it is still not known whether universal
sampling/interpolation sets of optimal density exist.

There is an alternative approach to the universal sampling problem based on
Meyer’s model sets. The construction of these sets is presented in the second part
of Lecture 6. These interesting sets were first defined by Meyer much earlier in
connection with other harmonic analysis questions. The fact that they represent
universal sampling sets was observed only recently in [I0]. We will briefly explain
the way these sets are constructed. For simplicity (as done in the book), we restrict
to the one-dimensional case. Denote by p; and ps the coordinate projections of R2.
For a lattice I' C R? and a “window” € which is a finite union of closed intervals
in R, the Meyer model set is defined by

AT, Q) :={p1(7) : v € T, pa(y) € Q.

Denote by I'* the dual lattice of I'. The following duality result is crucial in estab-
lishing that some of these sets are universal sampling/interpolating: Let Q and S
be two windows (disjoint unions of closed intervals). If A(T*,S) is an interpolating
set for PWgq, then A(T, Q) is a sampling set for PWg. Using this duality result, it
is not hard to show that for any a > 0 and any lattice (in a generic position), the
model set A(T', [—a,a]) is a universal sampling set.

The topological restriction (requiring S to be only compact/open) in the defi-
nition of universal sampling/interpolating sets turns out to be essential. Namely,
if one removes this restriction, such sets will cease to exist. More precisely, for
any uniformly discrete set A one can find a bounded set S with arbitrary small
measure such that A is not a sampling set for PWsg. The proof of this result is
presented in Lecture 7. The proof (due to Olevskii and Ulanovski) is a beautiful
combination of analytic and combinatorial arguments. It is interesting to note that
the combinatorial part depends crucially on the celebrated Szemerédi theorem on
arithmetic progressions.

As mentioned above, the sufficiency part in Theorem [ fails miserably in higher
dimensions. It is therefore natural to ask whether there are some stronger conditions
that would imply sampling/interpolation in PWyg in the higher-dimensional case.
In the case of interpolation, it is very well known that the following generalization
(due to Kahane) of the classical Ingham’s theorem gives one such condition.

Theorem 3. Let B be the unit ball in R™. If A C R"™ is a sequence with a separation
constant greater than 1, then A is an interpolating sequence for PWg.

Can a result like this be obtained for more general sets S? A natural starting
point is the case when S is a compact, symmetric convex body in R"”, in which
case the full higher-dimensional analog of the Paley—Wiener theorem holds. It is
tempting to investigate if there exists some type of symmetry between S and the
Ingham-type separation condition. One way to look for such a symmetry is to
introduce another compact, symmetric convex body K that will play the role of a
gauge (in the usual way) in the Ingham separation condition. Therefore, one could
ask if there is a condition on S and K (preferably symmetric) which would imply
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the following generalization of Theorem Bt if A C R™ is a sequence such that
(A-A)nK =A{0},

then A is an interpolating set for PWs. It is proved in Lecture 9 (using the
Minkowski lattice) that any such pair of sets would have to satisfy |S||K| > 1.
This condition, of course, brings to mind the following uncertainty principle: if a
function F € L?(R") is supported on a set S and its Fourier transform is supported
on a set K, then |S||K| > 1 (see, e.g., [3]). So it is natural to hope that some type
of weakening of the support condition will give us a sufficient condition on S and
K. There is one such condition: the pair of sets (S, K) admits e-concentration if
there exist € > 0 and F' € L%(R™) of norm 1 such that

/ |F(x))* dz > 1—¢, /|F(§)|2d§>1—e.
K S

Now the question becomes whether there exists a simple metric condition on S
and K that would imply e-concentration for some € > 0. One conjecture is that
|S||K| > 1 already implies such a concentration. Some results (for a special type
of S and K) in favor of this conjecture are presented in the book, but despite the
attention of some top analysts, this question (and many other questions surrounding
it) still remains open.

The last part of the book is concerned with a slightly different topic. The central
problem is the description of completeness spectra, i.e., the sets A C R for which
there exists a weight w € L*(R),w > 0 a.e. on R, such that £(A) is complete in
the weighted space L?(R,w). Notice that here the frame property is replaced by
the weaker spanning property, that of completeness. This is for a good reason,
since it can be shown that no matter how we choose a sequence A we cannot find a
weight w such that £(A) is a frame in L?(R, w) (notice here that we require w > 0
a.e. on R which excludes indicator functions). As in many of the results discussed
above (connected to question (Q) for sets S which are not intervals), the density
of A is not the sole factor entering in the description of completeness spectra. To
illustrate this, consider the following examples. It can be shown that any A that is
sufficiently dense (e.g., with infinite upper density) is a completeness spectrum. On
the other hand the sequence of integers Z is not. For a long time it was believed
that the reason for this is that Z is not sufficiently dense. However, the following
striking result of Olevskii [I3] shows that the reason must be more intricate.

Theorem 4. Any sequence A = {\,} of the form A\, = n+y, with 0 < |vy,| = o(1)
as |n| = oo is a completeness spectrum.

This theorem shows that besides the density, the arithmetic of the set A plays a
significant role in the completeness spectrum problem.

The completeness spectrum problem above can be easily reformulated in the
following way. Describe those sets A C R for which there exists a generator g €
L?(R) such that the corresponding set of translates {g(z — \) : A € A} is complete
in L?(R). This reformulation makes perfect sense in LP(R) for p # 2 as well. The
p # 2 problems are considered in the last Lecture 12. Without going into details,
we just point out that the case p = 1 has an especially elegant solution due to
Bruna, Olevskii, and Ulanovski [T]: A discrete set A is a completeness spectrum for
L'(R) if and only if it has infinite upper Beurling—Malliavin density.

We will end with a few general comments about the book. A big portion of
the book has a monographic character, mainly containing results obtained by the
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authors and their collaborators in the last twenty years or so. These results are
nicely supplemented with a quick introduction and a detailed discussion of two
of the most important results in sampling theory. The book is remarkable in the
way it manages to introduce the reader from the very basics to the current state
of the art in the field in just 130 pages, doing this in a very readable and lucid
way. The material is organized into twelve lectures, many of which can be read
independently. Still, the book tells a story which can only be appreciated if the
lectures are covered in the right order. The book is essentially self-contained and
assumes only very basic knowledge in real, complex, and functional analysis. The
text is supplemented by well-chosen exercises (many of which are given with hints)
and some open problems. It is suitable for a one semester graduate topics course
in Fourier analysis, but can equally well be used for self-study for those interested
in a relatively quick introduction into this classical, but still very vibrant, area of
mathematical analysis.
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