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FROM NEWTON TO NAVIER–STOKES,

OR HOW TO CONNECT FLUID MECHANICS EQUATIONS

FROM MICROSCOPIC TO MACROSCOPIC SCALES

ISABELLE GALLAGHER

Abstract. In this survey we present an overview of some mathematical results
concerning the passage from the microscopic description of fluids via Newton’s
laws to the macroscopic description via the Navier–Stokes equations.

1. Introduction and plan of the survey

The mathematical description of fluids is an intricate process which depends on
the scale of observation:

• at a microscopic level one sees atoms, and the gas may be described by
a classical mechanics picture via Newton’s ordinary differential equations
(ODEs), which is presented in Section 2.1; and

• at a macroscopic scale one is interested in an average behavior modeled by
partial differential equations (PDEs) such as the Navier–Stokes equations,
which are described in Section 2.2;

• an intermediate regime, called mesoscopic scale, can also be used, and the
corresponding Boltzmann PDE is presented in Section 2.3.

Our goal in this survey is to explain how these apparently very different descrip-
tions (ODEs vs PDEs, reversible vs irreversible dynamics . . . ) can be related one
to the other from a mathematical point of view: this question goes back to Hilbert
(see Section 2.4) and has known quite a lot of progress in recent years; we refer
for instance, among many others, to [41, 42, 70–72]. In Section 3 we present some
mathematical attempts to justify the passage from one scale to the other by a
limiting process, and we show the limitations of those approaches which prevents
solving the full problem: justifying nonlinear fluid mechanics PDEs from the mi-
croscopic ODEs. Section 4 describes one situation where the full problem does have
an answer, in a linear setting. Finally, in Section 5 a few questions are presented.

2. Microscopic, mesoscopic, and macroscopic scales in fluids

2.1. Newton: A microscopic point of view.

2.1.1. The equations. A gas is made of a very large number of particles evolving and
interacting in a d-dimensional space domain. Throughout this survey we assume
that the space dimension is d ≥ 2, and we denote by N � 1 the number of particles.
Typically N is larger than the Avogadro number 6.02 · 1023.
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A number of simplifying assumptions will be made throughout this survey, con-
cerning the space domain, the types of particles considered, and their interactions.
These are listed below, and comments on these assumptions can be found in the
concluding section:

• the particles are all identical spheres of mass 1 and diameter ε > 0;
• the particles evolve in a periodic box of size 1 denoted T

d := [0, 1]d;
• the particles interact elastically at each binary collision, and there is no
other type of interaction nor forcing.

We label by integers i ∈ {1, . . . , N} each particle—note that the particles are in-
distinguishable, so this labeling is arbitrary and all the functions we shall con-
sider will be symmetric with respect to permutations of the labels. We denote
by (xi, vi) ∈ T

d × R
d the position and velocity of particle i for 1 ≤ i ≤ N . Due to

the fact that the particles are hard-spheres, the nonoverlapping condition holds

|xi − xj | > ε .

We denote by ZN := (z1, . . . , zN ) the set of configurations of the particles, with zi :=
(xi, vi) for each particle. We also denote in the following by XN := (x1, . . . , xN )
the set of positions and by VN := (v1, . . . , vN ) the set of velocities of the particles.
The positions and velocities of the system of N particles obey the Newton laws,
which are the following equations of motion

(2.1) ∀i ∈ [1, . . . , N ] ,
dxi(t)

dt
= vi(t) ,

dvi(t)

dt
= 0 ,

provided that the exclusion condition |xi(t) − xj(t)| > ε is satisfied for all j �= i.
Therefore, the flow takes place in the domain

(2.2) Dε
N :=

{
ZN ∈ T

dN × R
dN ∀i �= j, |xi − xj | > ε

}
.

We further have to prescribe a reflection condition at the boundary of Dε
N : if there

exist j �= i such that |xi − xj | = ε, then the incoming velocities vini , vinj are related

to the outgoing velocities vouti , voutj through the relations

(2.3)
vini = vouti − νi,j · (vouti − voutj ) νi,j ,

vinj = voutj + νi,j · (vouti − voutj ) νi,j ,

where

νi,j :=
xi − xj

|xi − xj |
·

Note that incoming velocities are defined by the fact that

νi,j · (vini − vinj ) < 0 ,

meaning that incoming velocities are precollisional, and similarly

νi,j · (vouti − voutj ) > 0 ,

meaning that outgoing velocities are postcollisional. Note that this is a Hamiltonian
system and the Lebesgue measure in the phase space is preserved by the flow.
Moreover, the momentum and energy are conserved through a collision (see Figure
1),

(2.4)
vini + vini = vouti + voutj ,

|vini |2 + |vini |2 = |vouti |2 + |voutj |2 .
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Figure 1. Collision of two particles

2.1.2. Solving the Newton equations. It is not obvious to check that the Newton
equations (2.1)–(2.3) define global dynamics. Indeed this is not a simple con-
sequence of the Cauchy–Lipschitz theorem since the boundary condition is not
smooth, and it is even not defined for all configurations. We call a trajectory
pathological when either

• there exists a collision involving more than two particles, or the collision is
grazing (meaning that νi,j · (vini − vinj ) = 0), hence the boundary condition
is not well-defined; or

• there are an infinite number of collisions in finite time so the dynamics
cannot be globally defined.

In [1, 2], it is proved that outside a negligible set of initial data there are no
pathological trajectories.

Proposition 2.1. Let N, ε be fixed. The set of initial configurations leading to a
pathological trajectory is of measure zero in T

dN × R
dN .

Sketch of proof. Let us recall briefly the proof given in [36], following [1,2]. For any
integer s ∈ N

∗ and any R > 0, we denote

Bs
R := {Vs ∈ R

ds, |Vs| ≤ R},

where | · | is the euclidean norm. Now let us fix R > 0, δ < ε/2 (recall that ε is the
diameter of the particles), and t > 0, and let us assume t/δ is an integer. Then it
is easy to see that the set{

ZN ∈ BN
R ×BN

R / one particle will collide with two others on the time [0, δ]
}

has measure smaller than C(N, ε,R)δ2 . Moreover, up to removing a measure zero
set of initial data, each collision on [0, δ] is nongrazing. We can repeat this argument
starting again at time δ since the measure is invariant by the flow, so repeating the
procedure t/δ times produces a subset Iδ(t, R) of BN

R ×BN
R , of measure

|Iδ(t, R)| ≤ C(N,R, t, ε)δ ,
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such that for any initial configuration in BN
R ×BN

R outside that set, the flow is well-
defined up to time t. The intersection I(t, R) :=

⋂
δ>0 Iδ(t, R) is of measure zero,

and any initial configuration in BN
R × BN

R outside I(t, R) generates a well-defined
flow until time t. Finally, any initial configuration in T

dN × R
dN outside I :=⋃

n I(tn, Rn), where tn and Rn go to infinity, generates a globally defined flow. The
proposition is proved. �

2.2. Euler and Navier–Stokes: A macroscopic point of view.

2.2.1. The equations. The history of the mathematical study of fluids goes back
many centuries, but one can probably date to the mid-eighteenth century the first
equations describing fluid flows. In 1748, the Academy of Sciences in Berlin an-
nounced a Mathematics Prize for 1750, regarding the resistance of fluids when a
rigid body is immersed in the fluid. J. d’Alembert took part in the competition and
submitted a manuscript [3] which was revolutionary in many aspects: in particu-
lar for the first time the movement of a fluid was described by partial differential
equations acting on the velocity field of the fluid. This model was close to being
correct, and the final equations were coined by L. Euler in [34]—if u is the time- and
space-dependent, three-component vector field denoting the velocity of the fluid,
then it solves the following system of PDEs:

(2.5) (E)

{
∂tu+ u · ∇u = −∇p ,

div u = 0 ,

where p is the pressure of the fluid, also an unknown, guaranteeing that the fluid
remains incompressible (meaning div u = 0) for all times. The first equation in (E)
translates the conservation of momentum, while the second one stands for the
conservation of mass.

However, d’Alembert quickly realized that a solid body placed in a fluid whose
velocity satisfies those equations can evolve without suffering any resistance, which
is obviously contrary to intuition and physical experiments. This is known as
d’Alembert’s paradox. To understand why a solid body is submitted in general to a
force tending to slow it down, one needs to take into account friction phenomena,
at a molecular level: as it evolves, the fluid will have a tendency to dissipate energy
under the form of heat. This phenomenon is absent from the Euler equations. In
1820, L. Navier [61] had the idea of introducing an additional term to the Euler
equations, intended to represent this dissipation of energy. Followed, among others,
by G. Stokes in 1845 ([75]), Navier suggested the following model to describe the
evolution of a viscous fluid:

(NS)

{
∂tu+ u · ∇u− νΔu = −∇p ,
div u = 0 .

The parameter ν > 0 is the fluid’s viscosity, and it measures the discrepancy be-
tween a viscous and a perfect fluid.

2.2.2. Solving the Navier–Stokes equations. The question of the resolution of (NS)
is not the topic of this survey. It is however useful to go rapidly through its main
properties and recall the main results concerning its solutions. The most important
property of (NS) relates to the conservation of energy. Formally, if one computes
the scalar product of u with the momentum conservation equation in (NS), noticing
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that

(u · ∇u | u)L2 = −1

2

∫
div u |u|2 dx = 0 and (∇p | u)L2 = − (p | div u)L2 = 0 ,

one finds that
1

2

d

dt
‖u(t)‖2L2 + ν‖∇u(t)‖2L2 = 0 .

After integration in time this implies that for all t ≥ 0, the solution u(t) associated
with the initial data u0 satisfies (formally)

1

2
‖u(t)‖2L2 + ν

∫ t

0

‖∇u(t′)‖2L2 dt′ =
1

2
‖u0‖2L2 .

This implies in particular that the map t 
→ ‖u(t)‖L2 is decreasing. Moreover. this
equality shows the smoothing effect induced by viscosity since as soon as the initial
data is of finite energy (meaning that it lies in L2), the solution is instantaneously
smoother in the sense that ∇u belongs to L2(R+;L2).

Another important property of (NS) is its scale invariance: if u solves (NS)
on [0, T ]× R

d, then for any λ > 0

uλ(t, x) := λu(λ2t, λx)

solves (NS) on [0, λ−2T ]× R
d (for the rescaled data λu0(λx)).

The issue is now to use those properties to solve the equations: Given an initial
data u0, is there a solution to (NS) associated with this initial data? Is it unique?
Does it exist globally in time? Unfortunately, to this day there is no complete,
satisfactory answer to this question in general. If the flow has one invariant direction
(which is often physically unrealistic), then it has been known since the fundamental
work of J. Leray ([57]) in 1934 that the equations are well-posed in the sense that
for any finite energy initial data there is a unique, global-in-time solution, which has
decreasing energy. On the other hand, in three space dimensions the situation is
less clear. One can solve the equations (uniquely and globally in time) if the initial
data is small enough, where the smallness is measured in a function space invariant
under the scaling of the equations; see for instance [19, 35, 48, 50, 65]. If the data
is large, there are (possibly nonunique) global solutions of finite energy [56], which
solve the equation in the sense of distributions, but uniqueness and smoothness
are only known to hold for a short time. We shall not describe more in detail the
numerous contributions on the question of the resolution of the (NS) equations but
rather refer to [5, 54, 55] for surveys on the Cauchy problem for (NS).

2.3. Boltzmann: A mesoscopic point of view.

2.3.1. The equations. L. Boltzmann’s equation goes back to 1872. It can be un-
derstood as an intermediate step in the analysis of fluid motion, between Newton’s
microscopic approach and the Navier–Stokes macroscopic description. The idea is
to place the description at a more statistical level, describing the number, or density,
of microscopic particles, which at a time t have position x and velocity v. Denot-
ing this quantity by the probability density f = f(t, x, v), Boltzmann’s equation
(introduced in [14, 15]) states that f evolves following

(B) ∂tf + v · ∇xf︸ ︷︷ ︸
free transport

= αQ(f, f) ,︸ ︷︷ ︸
localized binary collisions
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where the parameter α is the inverse of the mean free path of the microscopic
particles and keeps track of the collision rate. The Boltzmann collision operator
present in the right-hand side of (B) is the quadratic form, acting on the velocity
variable, associated with the bilinear operator

Q(f, f) :=

∫∫
Sd−1×Rd

[f ′f ′
1 − ff1]

(
(v − v1) · ω

)
+
dv1dω ,

where ω is the deflection angle, and we have used the standard abbreviations

(2.6) f = f(t, x, v) , f ′ = f(t, x, v′) , f ′
1 = f(t, x, v′1) , f1 = f(t, x, v1) ,

with (v′, v′1) given, as in (2.3), by

v′ = v + ω · (v1 − v)ω , v′1 = v1 − ω · (v1 − v)ω .

The Boltzmann collision operator can be split into a gain term and a loss term
(see [20, 79])

Q(f, f) = Q+(f, f)−Q−(f, f) .

The loss termQ− counts all collisions in which a given particle of (incoming) velocity
v will encounter another particle, of velocity v1, and thus will change its velocity
leading to a loss of particles of velocity v; whereas the gain term Q+ measures the
number of particles of (outgoing) velocity v which are created due to a collision
between particles of velocities v′ and v′1.

2.3.2. Solving the Boltzmann equation. We shall not detail all the mathematical
literature concerning the resolution of (B) but will merely recall its main properties.
It is important to notice that formally for any test function ϕ, there holds with the
notation (2.6),∫

Q(f, f)ϕdv =
1

4

∫
[f ′f ′

1 − ff1](ϕ+ ϕ1 − ϕ′ − ϕ′
1)
(
(v − v1) · ω

)
+
dvdv1dω .

In particular, ∫
Q(f, f)ϕdv = 0

for all regular enough f , if and only if ϕ(v) is a collision invariant; i.e., ϕ(v) is a linear
combination of

{
1, v1, . . . , vd, |v|2

}
(recall (2.4)). Thus, successively multiplying the

Boltzmann equation (B) by the collision invariants and then integrating in velocity
yields formally the local conservation laws of mass, momentum, and energy,

∂t

∫
Rd

f

⎛⎜⎝ 1
v
|v|2
2

⎞⎟⎠ dv +∇x ·
∫
Rd

f

⎛⎜⎝ v
v ⊗ v
|v|2
2

v

⎞⎟⎠ dv = 0 .

This provides a link to a macroscopic description of the gas.
The other very important feature of the Boltzmann equation comes also from

the symmetries of the collision operator. Disregarding integrability issues, we
choose ϕ = log f and find

D(f) := −
∫
Rd

Q(f, f) log fdv

=
1

4

∫
Td×Rd×S

d−1
1

(f ′f ′
1 − ff1) log

f ′f ′
1

ff1

(
(v − v1) · ω

)
+
dvdv1dω ≥ 0 .
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The so-defined entropy dissipation is therefore a nonnegative functional and the
total entropy

∫
Rd f log fdv is formally decreasing. This leads to the Boltzmann

H-theorem, also known as second principle of thermodynamics, stating that the
entropy is (at least formally) a Lyapunov functional for the Boltzmann equation,

(2.7) ∂t

∫
Rd

f log fdv +∇x ·
∫
Rd

f log fvdv ≤ 0 .

As to the equation Q(f, f) = 0, it is possible to show that it is only satisfied by
the so-called Maxwellian distributions Mρ,u,θ, which are defined by

Mρ,u,θ(v) :=
ρ

(2πθ)
d
2

e−
|v−u|2

2θ ,

where ρ ∈ R+, u ∈ R
d, and θ ∈ R+ are, respectively, the macroscopic density, bulk

velocity, and temperature, under some appropriate choice of units. Maxwellian
distributions are therefore stationary states; their entropy in particular does not
decrease. In the following we set

Mβ(v) :=

(
β

2π

) d
2

e−
β|v|2

2 and M(v) := M1(v) .

Concerning the Cauchy problem, the theory is far from being complete, similarly
to the three-dimensional Navier–Stokes equations recalled in the previous section:
global existence of weak (actually renormalized) solutions is known to hold [29],
but uniqueness is only known in the case when the initial data is small enough (and
decaying sufficiently fast at infinity in velocity space); see for instance [76, 77].

2.4. Hilbert’s sixth problem. At the second International Congress of Mathe-
maticians held in Paris in 1900, D. Hilbert presented his famous list of twenty-three
open questions [44]. Some of those questions have since been solved, and some
remain open to this day. Among these, we are interested here in the following
question: to develop “mathematically the limiting processes [ . . . ] which lead from
the atomistic view to the laws of motion of continua”.

Our aim in this survey is to present some some mathematical progress that has
been made recently on this question. Note that an answer to this question contains
in particular an explanation to the appearance of irreversibility when passing from
one description to the other, since the system of hard-spheres (2.1)–(2.3) is time-
reversible while the Boltzmann equation (B) and the Navier–Stokes equations (NS)
are not.

3. Some mathematical attempts at reconciling scales

3.1. Introduction. In the large N limit, individual trajectories become irrelevant,
and our goal is to describe an average behavior. This average is of course over
particles which are indistinguishable. Because we have only a vague knowledge
of the state of the system at initial time, we average over initial configurations.
At time 0, we thus start with a distribution f0

N (ZN ), where we use the notation
introduced in Section 2.1, and we define a probability fN = fN (t, ZN ), referred to as
theN-particle distribution function. We assume that it satisfies for all permutations
σ of {1, . . . , N},
(3.1) fN (t, Zσ(N)) = fN (t, ZN ) ,
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with Zσ(N) = (xσ(1), vσ(1), . . . , xσ(N), vσ(N)). Since fN is an invariant of the particle
system, the Liouville equation relative to the particle system (2.1) is

(3.2) ∂tfN +

N∑
i=1

vi · ∇xi
fN = 0

on the domain Dε
N defined in (2.2), with the boundary condition

fN (t, Zin
N ) = fN (t, Zout

N ) ,

meaning that on the part of the boundary of Dε
N such that |xi − xj | = ε, there

holds

(3.3) fN (t, . . . , xi, v
out
i , . . . , xj , v

out
j , . . . ) = fN (t, . . . , xi, v

in
i , . . . , xj , v

in
j , . . . ) ,

where the ingoing and outgoing velocities are related by (2.3).

3.2. A direct approach from microscopic to macroscopic scales. A natural
approach to derive fluid mechanics equations from particle systems is to start with
the following empirical distributions acting on R

+ × T
d:

ρN (t, x) :=
1

N

N∑
i=1

δx−xi(t) ,

uN (t, x) :=
1

N

N∑
i=1

vi(t)δx−xi(t) ,

eN (t, x) :=
1

2N

N∑
i=1

|vi(t)|2δx−xi(t) ,

and to try to use laws of large numbers or large deviation principles to obtain their
limiting behavior as N goes to infinity. For a relation between the N -particle distri-
bution function fN (which is a joint distribution of the system of N indistinguish-
able particles) and empirical distributions (probability measures on the 1-particle
phase space) and their projections in physical space defined above, we refer for
instance to [38]. This has been achieved successfully in some asymptotic regimes,
in the case when noise is added to the microscopic system. We refer for instance
to [64] for a derivation of the Euler equations when the momenta of nearby particles
are exchanged stochastically (with a noise of very small amplitude) or to [33, 67]
for a derivation of the incompressible Navier–Stokes equations. We shall not give
more detail here as our goal is to derive fluid mechanics equations from determin-
istic particle systems, and to this day the direct approach starting from empirical
distributions, with no additional randomness, seems out of reach.

3.3. From mesoscopic to macroscopic scales. Starting from the Boltzmann
equation (B), it is possible to derive formally a number of (though not all classes
of) fluid mechanics equations. The formal method goes back to Hilbert [44] and
Chapman and Enskog [23], and it consists in looking for asymptotic expansions in
terms of α. More precisely, expanding the solution f to (B) under the form

f(t, z) =
∑
n≥0

α−nfn(t, z) ,

recalling that z = (x, v), plugging the expansion into (B), and identifying pow-
ers of α formally gives rise to the Euler equations as well as the weakly viscous
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incompressible Navier–Stokes equations at the next order (but also at higher or-
ders for other equations such as the Burnett model). Using truncated asymptotic
expansions, it has been possible [18, 51] to obtain a a rigorous justification of the
compressible Euler limit up to the first singular time for the solution of the Euler
system, and similarly for the Navier–Stokes system [24]. In [6, 7], Bardos, Golse,
and Levermore devised a program for deriving weak solutions of the Navier–Stokes
equations (NS) from the DiPerna–Lions solutions of the Boltzmann equation (B).
One of the fundamental ideas behind this program is that the proof should only
require a priori estimates coming from physics (namely mass, energy, and entropy
bounds). The difficulty in the approach however lies in the very poor understand-
ing of renormalized solutions. Nevertheless, F. Golse and L. Saint-Raymond [39,40]
were able to achieve this program in the diffusive scaling limit. The precise state-
ment, in three space dimensions, is the following.

Theorem 3.1 ([39, 40]). Consider a family (fα,0)α>1 of initial data, the relative
entropy of which satisfies, uniformly in α,

1

α2

∫
fα,0 log

(
fα,0
M

)
dxdv ≤ C0

and such that as α goes to infinity the following limits hold in the sense of distri-
butions

1

α
P

∫
fα,0 vdv ⇀ u0 and

1

α

∫
(fα,0 −M)(

1

5
|v|2 − 1) dv ⇀ θ0 ,

where P denotes the projection onto divergence-free vector fields.

If fα = M(1+
1

α
gα) is an associate family of renormalized solutions to the scaled

Boltzmann equation
1

α
∂tf + v · ∇xf = αQ(f, f) ,

then gα is relatively weakly compact in L1
loc(dtdx;L

1((1 + |v|2)Mdv)) as α goes to
infinity, and any limit point g of gα can be written as

g = ρ+ u · v + θ
|v|2 − 3

2
,

where u satisfies the incompressible Navier–Stokes equations with data u0 and ρ, θ
are linked by the Fourier system

∂tθ + u · ∇θ − κΔθ = 0 , θ|t=0 = θ0 , and ∇(ρ+ θ) = 0 .

The viscosities can be explicitly computed.

The proof of this result is difficult and will not be described in these notes. Let
us simply mention that it relies on an approach known as the moment method going
back to [7] and [58], and one of the main difficulties in implementing this method
is to control large velocities while gaining some equi-integrability properties in the
space variable. That is the main achievement of [39, 40], following an idea of [68];
see also [69].

In Section 4 we describe the proof of a considerably simpler result, going from
a linear scaled Boltzmann equation to the heat equation: this is by no means
intended as an explanation of the proof of Theorem 3.1, but it will give an idea
of the reason why a diffusive equation appears as an asymptotic regime for the
Boltzmann equation.
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3.4. From microscopic to mesoscopic scales. The previous paragraph showed
that it is possible to derive the incompressible Navier–Stokes equations from the
nonlinear Boltzmann equation as α goes to infinity, in diffusive times (see Theo-
rem 3.1). The question is now about deriving the Boltzmann equation from particle
systems, as putting both arguments together should provide a complete derivation
of the incompressible Navier–Stokes equations from particle systems. As we shall
see in this paragraph, this part of the program remains largely unsolved.

We shall present the strategy of Lanford [52], which is essentially the only one
known to this day (we refer the interested reader to a variant introduced in [60]
via a semigroup approach to the study of the probability of trees). It consists in

studying the asymptotics of the first marginal f
(1)
N of the distribution function fN ,

defined by

f
(1)
N (t, z1) :=

∫
fN (t, ZN ) dz2 · · · dzN .

More generally, we define the marginal of order s ∈ [1, N ] by

f
(s)
N (t, Zs) :=

∫
fN (t, ZN ) dzs+1 · · · dzN .

It corresponds to the joint probability of s-particles. Notice that for example in the
particular case of tensorized (or chaotic, see the statement of Theorem 3.2 below)
functions

fN (t, ZN ) :=

N∏
i=1

f(t, zi)

with f a probability, there holds simply

f
(s)
N (t, Zs) =

s∏
i=1

f(t, zi) .

Lanford’s theorem is the following.

Theorem 3.2 ([52]). Consider a system of N hard-spheres of diameter ε on the d-
dimensional periodic box T

d = [0, 1]d (with d ≥ 2), initially independent in the
sense that

(3.4) fN,0(ZN ) =
1

ZN

N∏
i=1

f0(zi)
∏
k �=j

1|xk−xj |>ε ,

where f0 is a continuous density such that

(3.5)
∥∥f0 exp(μ+

β

2
|v|2)

∥∥
L∞(Td

x×Rd
v)

≤ 1 ,

for some β > 0, μ ∈ R. We have denoted by ZN the partition function, that is the
normalizing constant for fN,0 to be a probability.

In the limit N → ∞ with Nεd−1 = α, the one particle distribution f
(1)
N converges

almost everywhere to the solution of the Boltzmann equation (B) with initial data f0,
on a time interval [0, t∗/α] where t∗ depends only on the parameters β, μ.
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Remark 3.3.

• The statement and main steps of the proof of Theorem 3.2 go back to [52].
We refer also to [21], [22], and [36] for details of the proof.

• The limit N → ∞ with Nεd−1 = α is known as the Boltzmann–Grad, or
low density, limit (see [43]). It corresponds to a dilute gas since the volume
occupied by the gas Nεd goes to zero as N goes to infinity. On average a
particle of given speed has O(α) collisions in a given time.

• The main drawback of the statement lies of course on the time interval on
which the convergence is proved. Recall indeed that our aim is to take the
limit α → ∞ to recover fluid mechanics equations, and that is impossible
with Theorem 3.2 since the life span shrinks to zero in that limit. Note that
in the case when the initial distribution is close to vacuum, it is possible to
extend this result globally in time [46, 47].

Sketch of proof of Theorem 3.2. Let us explain the strategy of the proof, which is
due to [52]. The details are rather long and technical, and we refer the interested
reader to [36] for instance.

It is not difficult to check that f
(1)
N = f

(1)
N (t, x1, v1) satisfies the equation

(3.6) ∂tf
(1)
N + v1 · ∇x1

f
(1)
N = C1,2f (2)

N ,

where

C1,2 = C+
1,2 − C−

1,2

and

(3.7)

(
C±
1,2f

(2)
N

)
(z1) := (N − 1)εd−1

∫
S
d−1
1 ×Rd

f
(2)
N (x1, v1, x1 + εω, v2)

× (ω · (v2 − v1))± dωdv2 ,

the index “+” corresponding to postcollisional configurations and the index “−” to
precollisional configurations. The boundary condition (3.3) imposes that

(3.8)

(
C+
1,2f

(2)
N

)
(z1) = (N − 1)εd−1

∫
S
d−1
1 ×Rd

f
(2)
N (x1, v

′
1, x1 + εω, v′2)

× (ω · (v2 − v1))+ dωdv2 ,

where

v′1 := v1 − ω · (v1 − v)ω , v′2 := v2 − ω · (v2 − v)ω .

On the other hand after a change of variables ω 
→ −ω, one finds(
C−
1,2f

(2)
N (Z2) := (N − 1)εd−1

∫
S
d−1
1 ×Rd

f
(2)
N (x1, v1, x1 − εω, v2)

× (ω · (v2 − v1))+ dωdv2 ,

so that

(3.9)

(
C1,2f (2)

N

)
(z1) = (N − 1)εd−1

∫
S
d−1
1 ×Rd

(
f
(2)
N (x1, v

′
1, x1 + εω, v′s+1)

− f
(2)
N (x1, v1, x1 − εω, v1)

)
(ω · (v2 − v1))+ dωdv2 .

Notice that the process of transforming (3.7) into (3.9) may seem arbitrary, but it

is actually not since the value of f
(2)
N at outgoing configurations is prescribed by

the boundary condition (3.3) so the transformation (3.8) is actually not optional.
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Assuming that f
(1)
N has a limit f when N → ∞ under the Boltzmann–Grad

scaling Nεd−1 = α, and similarly for f
(2)
N (which we denote f (2)), we find that

formally
∂tf + v1 · ∇x1

f = C0
1,2f

(2),

where
C0
1,2 = C0+

1,2 − C0−
1,2

with (
C0,±
1,2 f (2)

)
(z1) :=

∫
S
d−1
1 ×Rd

(
f (2)(x1, v

′
1, x1, v

′
2)− f (2)(x1, v1, x1, v2)

)
×(ω · (v2 − v1))+ dωdv2 .

To conclude, one now assumes that

(3.10) f (2)(x1, v1, x2, v2) = f(x1, v1)f(x2, v2) ,

which is known as the propagation of chaos assumption, and the Boltzmann equa-
tion (B) appears immediately.

The difficulty in transforming the above argument into a rigorous proof lies in
the justification of the different limits taken above, as well as on the justification of
the propagation of chaos (3.10). Let us explain Lanford’s main ideas (which were
subsequently developed and made precise by, among others, [21, 22, 25, 36, 73, 74]).

First, since the equation (3.6) on f
(1)
N involves f

(2)
N , one needs to write the whole

hierarchy of equations known as the BBGKY hierarchy (for N. Bogoliubov [13], M.
Born and H. S. Green [16], J. G. Kirkwood [49], and J. Yvan [80])

(3.11) ∂tf
(s)
N +

∑
1≤i≤s

vi · ∇xi
f
(s)
N = Cs,s+1f

(s+1)
N ,

where as above one can write

Cs,s+1 =

s∑
i=1

Ci
s,s+1 ,

where the index i refers to the index of the interaction particle among the s fixed
particles, with the notation(

Ci
s,s+1f

(s+1)
N

)
(Zs) := (N − s)εd−1

∫
S
d−1
1 ×Rd

∫ (
ω · (vs+1 − vi)

)
+

×
(
f
(s+1)
N (z1, . . . , xi, v

′
i, . . . , zs, xi + εω, v′s+1)

− f
(s+1)
N (Zs, xi − εω, vs+1)

)
dωdvs+1 .

Denote by Ψs(t) the s-particle flow associated with the hard-spheres system, and
by Ss the associated solution operator

Ss(t) : f ∈ L∞(Dε
s;R) 
→ f(Ψs(−t, ·)) ∈ L∞(Dε

s;R) .

The time-integrated form of equation (3.11) is

f
(s)
N (t, Zs) = Ss(t)f

(s)
N (0, Zs) +

∫ t

0

Ss(t− τ )Cs,s+1f
(s+1)
N (τ, Zs) dτ .

Notice that actually the only way to make sense of the collision operators is to use
the above Duhamel formulation consisting in applying a transport operator to lift
the singularity of the collision integral (where a trace on a hypersurface is taken);
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we refer to [36] for details. The total flow and total collision operators S and CN

are defined on finite sequences GN = (gs)1≤s≤N as

(3.12)

{
∀s ≤ N , (S(t)GN )s := Ss(t)gs ,

∀ s ≤ N − 1 , (CNGN )s := Cs,s+1gs+1 ,
(
CNGN

)
N

:= 0 .

We finally define solutions to the BBGKY hierarchy to be solutions of

FN (t) = S(t)FN (0) +

∫ t

0

S(t− τ )CNFN (τ ) dτ , FN = (f
(s)
N )1≤s≤N .

The main idea is then to define a limit hierarchy by formally taking the limitN → ∞
under the Boltzmann–Grad scalingNεd−1 = α. We thus define the limiting collision
operators

C0
s,s+1 =

s∑
i=1

C0,i
s,s+1

with

C0,i
s,s+1f

(s+1)(t, Zs)

:= α

∫ (
ω · (vs+1 − vi)

)
+

×
(
f (s+1)(t, x1, v1, . . . , xi, v

′
i, . . . , xs, vs, xi, v

′
s+1)

− f (s+1)(t, Zs, xi, vs+1)
)
dωdvs+1 .

As in (3.12), we can then define the total Boltzmann flow and collision operators S0

and C0 as

(3.13)

{
∀s ≥ 1 ,

(
S0(t)G

)
s
:= S0

s(t)gs ,

∀ s ≥ 1 ,
(
C0G

)
s
:= C0

s,s+1gs+1 ,

so that solutions to the Boltzmann hierarchy solve

(3.14) F (t) = S0(t)F (0) +

∫ t

0

S0(t− τ )C0F (τ ) dτ , F = (f (s))s≥1 .

The crucial point is to notice that if

f (s)(t, Zs) =

s∏
i=1

f(t, zi)

(meaning f (s)(t) is tensorized), then f satisfies the Boltzmann equation (B). It
follows that the chaos property (3.10) will automatically be satisfied if one proves
the convergence of one hierarchy to the other, as well as uniqueness for the limit
hierarchy.

It turns out that the restriction on the time interval on which Theorem 3.2 holds
is precisely due to the proof of the well-posedness of the hierarchy. Indeed the proof
relies on a Cauchy–Kowalevskaya type argument (in the spirit of [62,63,78]) which
completely misses the structure of the collision operators which are dealt with as if
the nonlinear term in the Boltzmann equation was f2 instead of Q(f, f). We refer
to [36] for details.

Once well-posedness is proved, the main difficulty in the proof of the convergence
of one hierarchy to the other lies in the possibility of recollisions in the BBGKY
flow, meaning that two particles that have collided in the past (directly or indirectly
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via collisions in chain with other particles) may collide again in the future and be
deflected one by the other. This type of situation is impossible in the Boltzmann
hierarchy, where each C0,i

s,s+1 term in the Duhamel formulation corresponds to a
collision of a particle labeled i with a fresh particle labeled s+1, and in between each
collision there is free flow—particles finding themselves at the same place at some
moment simply continue their trajectory without being deflected. Recollisions must
be eliminated, and that turns out to be possible thanks to geometric arguments
which are valid as long as the following hold:

• There are not too many particles at play (of the order of logN at most).
It is therefore necessary to truncate the Duhamel sum, which expresses
the number of particles that have actually interacted at time t, directly or
indirectly. This is possible thanks to the well-posedness of the hierarchy,
which provides the necessary a priori bounds on the Duhamel series.

• The velocities of the interacting particles are under control (at most of
size O(logN)). Truncating velocities is possible thanks to the a priori
bounds.

• Collision times are not too close, namely in the iterated Duhamel for-
mula |ti − ti+1| ≥ δ where δ scales like a power of ε. This is possible
thanks to a Lebesgue dominated convergence argument.

We refer to [36] for more details. �

4. Both limits reconciled: Linear models of fluids

Summarizing the two previous paragraphs, the limit from the mesoscopic to the
macroscopic description of fluids corresponds to taking α → ∞ in the Boltzmann
equation (B) (and rescaling time), and it is known in some situations, namely near
equilibrium or for weak (renormalized) solutions. On the other hand the limit
from the microscopic to the mesoscopic description corresponds to taking N → ∞
with Nεd−1 = α, and it is known for small times only, of the order of α−1. This
prevents it from combining both limits to go from particles to fluids.

There are however some (linear) cases where much progress on the Hilbert pro-
gram has been made; we refer for instance to the works [17, 27, 28, 37]. The full
program we are after has been achieved recently in two linear contexts [10, 11],
namely in deriving the linear heat and in Stokes–Fourier equations. We describe
briefly the case studied in [10] in this paragraph: in the case of a tagged particle
in a background at equilibrium, it is proved in [10] that its distribution satisfies
a heat equation at the limit N → ∞, using the linear Boltzmann equation as an
intermediate step (with a parameter α going slowly to infinity with N). The precise
result is the following.

Theorem 4.1 ([10]). Consider the initial distribution

f0
N (ZN ) :=

1

ZN
ρ0(x1)M

⊗N
β (VN )

∏
k �=j

1|xk−xj |>ε ,

with ZN the normalizing constant. Assume that ρ0 belongs to C0(Td). Then for

all T > 0 and all τ ∈ [0, T ], the distribution f
(1)
N (ατ, x, v) remains close for the L∞-

norm to ρ(τ, x)Mβ(v) where ρ(τ, x) is the solution of the linear heat equation

∂τρ− κβΔxρ = 0 in T
d , ρ|τ=0 = ρ0 ,
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and the diffusion coefficient κβ is given by

(4.1) κβ :=
1

d

∫
Rd

vL−1v Mβ(v)dv ,

where L is the linear Boltzmann operator (4.3) and L−1 is its pseudo-inverse defined
on (KerL)⊥. More precisely,

(4.2)
∥∥f (1)

N (ατ, x, v)− ρ(τ, x)Mβ(v)
∥∥
L∞([0,T ]×Td×Rd)

→ 0

in the limit N → ∞, with α = Nεd−1 going to infinity much slower than
√
log logN .

In the same asymptotic regime, the process Ξ(τ ) = x1(ατ ) associated with the
tagged particle converges in law toward a Brownian motion of variance κβ, initially
distributed under the measure ρ0.

This is an extension of the works [9, 53] where the linear Boltzmann equation
was derived for long times. We shall not describe further those results here, but
simply mention that the main achievement consists in deriving the linear Boltzmann
equation for an arbitrarily long time (contrary to the Lanford theorem which only
holds for times of the order α−1), thanks to the use of the maximum principle
associated with this very special type of initial data. To conclude this paragraph, we
shall merely explain why the linear Boltzmann equation does have the heat equation
as an asymptotic regime. Compared with Theorem 3.1, this can be considered as an
exercise, but we feel it has some interest as it at least gives a flavor of the reason why
a transport-type equation like (B) can lead asymptotically to a diffusive equation.

The linear Boltzmann equation is defined by linearizing the Boltzmann equa-
tion (B) around a Maxwellian Mβ and in dropping two of the four terms appearing
in the linearization of the collision integral: factoring out the Maxwellian leads to
the equation

(4.3)

∂tϕα + v · ∇xϕα = −αLϕα ,

Lϕα(v) :=

∫∫
[ϕα(v)− ϕα(v

′)]Mβ(v1)
(
(v − v1) · ω

)
+
dv1ω .

It is not difficult to prove that as soon as the initial data belongs to L∞, then there
is a unique global solution to (4.3), which remains uniformly bounded in α, for all
times. The precise result describing the limit α → ∞ of ϕα in diffusive times is the
following.

Proposition 4.2. Consider ρ0 a continuous density of probability on T
d, and let ϕα

be the associate solution of (4.3) with initial data ρ0. There holds for all T ∈ [0, T ]

(4.4) sup
τ∈[0,T ]

sup
(x,v)∈Td×Rd

∣∣∣Mβ(v)
(
ϕα(ατ, x, v)− ρ(τ, x)

)∣∣∣ → 0 , α → ∞ ,

where ρ solves

∂τρ− κβΔxρ = 0 in T
d , ρ|τ=0 = ρ0 ,

and the diffusion coefficient κβ is given by (4.1).

Main steps of the proof. Let us define

ϕ̃α(τ, x, v) := ϕα(ατ, x, v) ,

which satisfies

(4.5) ∂τ ϕ̃α + αv · ∇xϕ̃α + α2Lϕ̃α = 0 .
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Notice that by the maximum principle on the heat equation, we may assume without
loss of generality that ρ0 is smooth. As recalled above, the formal Hilbert expansion
consists in writing an asymptotic expansion of ϕ̃α in terms of powers of α−1,

ϕ̃α(τ, x, v) = ρ̃0(τ, x, v) +
1

α
ρ̃1(τ, x, v) +

1

α2
ρ̃2(τ, x, v) + · · · ,

in plugging that expansion into equation (4.5), and in canceling successively all
the powers of α. This gives formally the following set of equations, keeping only
the O(1), O(α), and O(α2) terms:

(4.6)

Lρ̃0 = 0 ,

v · ∇xρ̃0 + Lρ̃1 = 0 ,

∂τ ρ̃0 + v · ∇xρ̃1 + Lρ̃2 = 0 .

In order to find the expressions for ρ̃1 and ρ̃2, as well as the equation on ρ̃0 (which we
expect to be the heat equation), it is necessary to be able to invert the operator L.
It is known (see [44]) that L is invertible on the set of functions{

g ∈ L2(Rd, aβMβdv),

∫
Rd

g(v)Mβ(v)dv = 0
}
,

where

aβ(v) :=

∫
Sd−1×Rd

Mβ(v1)
(
(v − v1) · ω

)
+
dωdv1 .

The first equation in (4.6) therefore reflects the fact that ρ̃0 does not depend on v.
We next define the vector b(v) =

(
bk(v)

)
k≤d

with
∫
Rd b(v)Mβ(v)dv = 0 by

(4.7) Lb(v) := v .

Returning to (4.6), we have

ρ̃1(τ, x, v) = ρ1(τ, x, v) + ρ1(τ, x) ,

with
ρ1(τ, x, v) := −b(v) · ∇xρ̃0(τ, x) and ρ1 ∈ Ker L .

Next we consider the last equation in (4.6), and we notice that for ρ̃2 to exist it is
necessary for ∂τ ρ̃0+ v ·∇xρ̃1 to belong to the range of L. Since ρ̃0 does not depend
on v, this means that

(4.8) ∂τ ρ̃0 +

∫
Rd

v · ∇xρ̃1(τ, x, v)Mβ(v) dv = 0 .

We then define the diffusion matrix D(v) =
(
Dk,�(v)

)
k,�≤d

by

(4.9) LD(v) := v ⊗ b(v)−
∫
Rd

v ⊗ b(v)Mβ(v)dv .

From the symmetry of the model, one can check (see [26] for instance) that there
is a function γ such that

b(v) = γ(|v|)v .
The end of the formal proof is an easy computation, noticing that by symmetry
of b

1

d

∫
Rd

vL−1v Mβ(v)dv =
1

d

∫
Rd

γ(|v|)|v|2 Mβ(v)dv .

Turning these formal arguments into a proof of convergence is not difficult and
follows from the maximum principle. We refer for instance to [8,10] for details. �
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5. Conclusion and open problems

In this survey we have presented some recent mathematical results concerning the
derivation of fluid mechanics equations from the fundamental laws of mechanics and
have shown that the full derivation of the Navier–Stokes equations from Newton’s
laws is still widely open, due in particular to our lack of understanding of the
derivation of the Boltzmann equation for large times. One of the reasons that this
derivation fails to hold for large times (or large α) is that to this day we are unable
to use the fundamental property of the Boltzmann equation—namely the entropy
dissipation—at the level of particles.

Setting this problem aside, there are still many other open problems, even in the
short-time derivation of the Boltzmann equation.

• We have assumed that the particles are all identical spheres of mass 1 and
diameter ε > 0. This assumption could be slightly relaxed to masses of
comparable size; however, if the masses, shapes, and sizes of the particles
differ substantially, then some different phenomena may appear (see [12,
30–32,45] for instance).

• We have assumed that the particles evolve in a periodic box of size 1 de-
noted T

d = [0, 1]d. Other situations could be considered, like the whole
space R

d—the absence of boundaries substantially simplifies the analysis.
In particular, although the passage from Boltzmann to Navier–Stokes does
hold in the presence of boundaries [59], essentially nothing is known in the
derivation of the Boltzmann equation in a domain with boundaries—except
of course if the problem can be reduced to the whole space or to a periodic
box by symmetry.

• We have assumed that the particles interact elastically at each binary col-
lision and there is no other type of interaction nor forcing. The case when
more than two particles collide at the same time can be neglected rather
easily (see Proposition 2.1). The case of more general interaction poten-
tials is of course very interesting and physically relevant, but to this day
this has only been considered under very stringent conditions on the po-
tential [4, 36, 66].

Finally, we have focused on the derivation of the incompressible Navier–Stokes
equations, but almost all remains to be done concerning the first limit of Boltzmann
when α → ∞ (without rescaling in time), namely the compressible Euler equation;
we refer to Section 3.3 for some comments.
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