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related to the paper in the previous section by

JESUS A. DE LOERA ET AL.

MR0187147 (32 #4601) 52.30; 05.00

Tverberg, H.

A generalization of Radon’s theorem.

Journal of the London Mathematical Society 41 (1966), 123–128.

A set of points in Rn is r-divisible if it can be divided into r subsets in such
a way that the convex hulls of the r subsets have a non-empty intersection. The
author proves that any set of r(n + 1) − n points in Rn is r-divisible. The case
r = 2 is essentially Helly’s theorem, and the case n = 2 has previously been proved
by the reviewer [Proc. Cambridge Philos. Soc. 55 (1959), 289–293; MR0109315].
The author’s ingenious proof is entirely combinatorial; though elementary and fairly
short, it is decidedly difficult. His main step is to show that ifQ,P1, · · · , Ps are alge-
braically independent, and the set P1, · · · , Ps is r-divisible, then so is Q,P2, · · · , Ps;
to do this, he pushes P1 along a straight line towards Q, and shows that if T is the
set of values of t for which (1− t)P1 + tQ, P2, · · · , Ps is r-divisible, then T , which
is clearly closed, is also open.

B. J. Birch

From MathSciNet, May 2019

MR1171558 (93h:52008) 52A37; 52A35

Bárány, I.; Larman, D. G.

A colored version of Tverberg’s theorem.

Journal of the London Mathematical Society. Second Series 45 (1992), no. 2,
314–320.

Let Pn ⊂ Rd be n distinct points and let r ≥ 1 be such that n ≥
(d + 1) · r. Let Pn be divided into d + 1 subsets C1, C2, · · · , Cd+1, each Ci hav-
ing cardinality at least r. The “colored Tverberg problem” is to find the least
value N(r, d) of n such that if n ≥ N(r, d) and Pn is any set as above, then
there exist points pij ∈ Ci, i = 1, 2, · · · , d + 1, j = 1, 2, · · · , r, such that the

sets Aj := {pij}d+1
i=1 , j = 1, · · · , r, are mutually disjoint but

⋂r
j=1 conv(Aj) �= ∅.

For r = 2, this is the “colored Radon problem”. The authors prove that (i)
N(r, 1) = 2r; (ii) N(r, 2) = 3r; (iii) N(2, d) = 2(d + 1). They also conjecture
that N(r, d) = r(d + 1). The proof of (i) is a simple induction on r. As pointed
out by the authors, (iii) is a well-known statement proved by many people indepen-
dently (in the paper an unpublished elegant proof of L. Lovász, 1989, is reproduced).
The proof of (ii) given in the paper is not simple. As indicated, (ii) might also be

credited to J. Jaromczyk and G. Świa̧tek [“The optimal constant for the colored
version of Tverberg’s theorem”, Geom. Dedicata, to appear] who proved (ii) only
for r = 3 but whose proof can be extended easily to the general case r ≥ 3. (An
interesting problem would be to compare the two proofs.)

Béla Uhrin
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MR1193538 (94a:52007) 52A20

Kahn, Jeff; Kalai, Gil

A counterexample to Borsuk’s conjecture. (English)

Bulletin of the American Mathematical Society (New Series) 29 (1993), no. 1,
60–62.

Sixty years ago K. Borsuk [Fund. Math. 20 (1933), 177–190; Zbl 6, 424] con-
jectured that every bounded subset A of Euclidean n-space Rn containing at least
two points can be partitioned into at most n + 1 sets, each of diameter less than
that of A. Without loss of generality we may restrict our attention to subsets of
Rn of diameter 1. Letting f(n) denote the smallest integer such that every set in
Rn of diameter 1 admits a partition into at most f(n) subsets, each of diameter
less than 1, Borsuk’s conjecture becomes the assertion that f(n) = n+1. The ver-
tices of the regular n-simplex in Rn show that f(n) ≥ n + 1. Borsuk’s conjecture
has been verified for dimensions 2 and 3, and the best result to date concerning
the first unresolved case, n = 4, is that a subset of R4 of diameter 1 admits a
partition into at most nine sets, each of diameter less than 1. The conjecture has
been confirmed in all dimensions for both centrally symmetric convex bodies and
convex bodies with smooth boundary, and the conjecture seems to have been gen-
erally believed. Despite the labor of many mathematicians over the past sixty years
to obtain polynomial growth bounds on f(n), the results obtained to date place
at best exponential bounds on the growth of f(n) as n approaches ∞. See, for
example, papers by M. Lassak [Bull. Acad. Polon. Sci. Sér. Sci. Math. 30 (1982),
no. 9-10, 449–451 (1983); MR0703571] and O. Schramm [Mathematika 35 (1988),
no. 2, 180–189; MR0986627].

The paper under review constructs an unexpected counterexample to Borsuk’s
conjecture. The construction shows that Borsuk’s conjecture is false for n = 1825
and for every n > 2144. Even more surprising is the verification that f(n) grows

exponentially as n approaches ∞; in fact, the authors show that f(n) ≥ (1.1)
√
n,

making earlier exponential bounds on f(n) seem much more reasonable than for-
merly.

Interesting questions remain. From the paper under review: “It would be of
considerable interest to have a better understanding of the asymptotic behavior of
log f(n)” and “of interest would be counterexamples in small dimensions”. Con-
cerning the latter statement, what is f(4)? What is the smallest value of n for
which f(n) > n+ 1? The counterexamples constructed in this paper are examples
of finite sets that violate the Borsuk bound of n+ 1. How many elements has the
smallest counterexample to the conjecture?

Philip L. Bowers

From MathSciNet, May 2019

MR2156212 (2006d:55007) 55M20; 05A99, 05B30, 52B70

Prescott, Timothy; Su, Francis Edward

A constructive proof of Ky Fan’s generalization of Tucker’s lemma.
(English)

Journal of Combinatorial Theory. Series A 111 (2005), no. 2, 257–265.

Tucker’s combinatorial lemma, named after this reviewer’s father A. W. Tucker,
plays the same role for the Borsuk-Ulam theorem that Sperner’s lemma plays for the
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Brouwer fixed point theorem. It was presented at the first Canadian Mathematical
Congress in 1945 but has recent applications to Kneser-type coloring theorems and
fair-division problems. Tucker’s original lemma, presented as a problem of deal-
ing cards onto a table, states that for any labeling by ±1,±2 of the vertices of a
two-dimensional rectangular grid, if antipodal points on the boundary get opposite
labels (i.e. summing to 0), then at least one pair of adjacent vertices also gets
opposite labels. K. Fan’s generalization [Ann. of Math. (2) 56 (1952), 431–437;
MR0051506] is to label by ±1, . . . ,±m the vertices of a barycentric subdivision of
the octahedral subdivision of the sphere Sn so that antipodal vertices get opposite
labels and adjacent vertices do not. The conclusion is that there are an odd num-
ber of n-simplices whose labels are an alternating sequence, strictly increasing in
absolute value. In particular, no such labeling exists for n = m.

This paper presents a new constructive proof of Ky Fan’s lemma applied to
any antipodally symmetric triangulation of Sn that contains a flag of hemispheres.
The proof defines an adjacency relationship for the labeled simplices such that the
associated graph consists of disjoint paths beginning at a vertex and ending at an
n-simplex having the desired type of labeling. Tucker’s original proof, as well as Ky
Fan’s, depends on a nonconstructive parity argument. The clever constructive proof
presented by the authors is closer in spirit to the constructive proofs of Sperner’s
lemma that inspired the 1970s work by M. J. Todd and others on the computation
of fixed points.

Thomas W. Tucker

From MathSciNet, May 2019

MR2946447 14P05; 51Bxx, 52C10, 52C30

Solymosi, József; Tao, Terence

An incidence theorem in higher dimensions. (English)

Discrete & Computational Geometry. An International Journal of Mathematics
and Computer Science 48 (2012), no. 2, 255–280.

In this interesting article the authors generalize (a weaker form of) the Szemerédi-
Trotter theorem that bounds the number of point-line incidences in the plane to
points versus real algebraic varieties. The main theorem proven is the following:
For any given integers k, d ≥ 0, d ≥ 2k and real numbers ε > 0, c0 ≥ 1 there is a
constant a = a(k, ε, c0) > 0 such that

|I| ≤ a|P |2/3+ε|L|2/3 + 3|P |/2 + 3|L|/2

holds, whenever P ⊂ Rd are finitely many points, L are finitely many real algebraic
varieties in Rd, each of dimension k and degree at most c0 (to be made precise),
I is a set of (not necessarily all) pairs (p, l) with p ∈ P , l ∈ L and p ∈ l, and
P , L and I satisfy certain pseudo-line type axioms which we explain next. Each
l ∈ L is in fact assumed to be the restriction to Rd of a complex algebraic variety
l′, and the dimension and degree refer to those of l′. As to the axioms: (i) if
l, l′ ∈ L, l �= l′ then |{p ∈ P | (p, l), (p, l′) ∈ I}| ≤ c0, (ii) if p, p′ ∈ P , p �= p′

then |{l ∈ L | (p, l), (p′, l) ∈ I}| ≤ c0, (iii) if (p, l) ∈ I then p is a smooth, in
the real sense, point of l (there is a unique tangent space Tpl of l at p, which is a
k-dimensional real affine space containing p) and (iv) if (p, l), (p, l′) ∈ I, l �= l′ then
Tpl ∩ Tpl

′ = {p} (so l and l′ intersect transversally at p).

https://www.ams.org/mathscinet-getitem?mr=0051506
https://www.ams.org/mathscinet-getitem?mr=2946447


524 SELECTIONS REPRINTED FROM MATHEMATICAL REVIEWS

The proof of the main theorem is given in Section 5, the main tools being “the
polynomial ham sandwich theorem and induction on both the dimension and the
number of points”. In addition to a comparison with existing results, Section 2
contains several applications of the main theorem, for example one on the sums
versus products theme: If A ⊂ Rk×k are n matrices such that each M − M ′,
M,M ′ ∈ A, M �= M ′ is non-singular and V,W ⊂ Rk are two n-element sets of
column vectors, then |V +W |+ |AW | 
k,ε n

5/4−ε for ε > 0. Section 3 sketches the
proof of a particular case of the main theorem, the “cheap” (i.e., with bound in-
volving ε) complex Szemerédi-Trotter theorem (for points and lines in C2). Section
4 reviews required notions and facts from algebraic geometry, such as dimension
or degree. Lemmas on relation between degree and complexity of a variety and on
smooth points are proven (sometimes by referring to the literature). The appendix
contains two theorems, with proofs, giving bounds on the numbers of connected
components of various real semi-algebraic sets.

Martin Klazar

From MathSciNet, May 2019

MR3336834 52A35; 05A18, 55S91

Blagojević, Pavle V. M.; Matschke, Benjamin; Ziegler, Günter M.

Optimal bounds for the colored Tverberg problem. (English)

Journal of the European Mathematical Society (JEMS) 17 (2015), no. 4, 739–754.

The colored Tverberg problem is stated as follows: Determine the smallest num-
ber t = t(d, r) such that for every collection C = C0 � · · · �Cd of points in R

d with
|Ci| ≥ t, there are r disjoint subcollections F1, . . . , Fr of C satisfying

(A) |Ci ∩ Fj | ≤ 1 for every i ∈ {0, . . . , d} and j ∈ {1, . . . , r}, and
(B) conv(F1) ∩ · · · ∩ conv(Fr) �= ∅.
This problem originated from Tverberg’s 1966 theorem saying that any family

of (d+ 1)(r − 1) + 1 points in R
d can be partitioned into r sets whose convex hulls

intersect. In 1990, I. Bárány, Z. Füredi and L. Lovász [Combinatorica 10 (1990),
no. 2, 175–183; MR1082647] dealt with the case of three triangles in the plane.
In 1992, Bárány and D. G. Larman [J. London Math. Soc. (2) 45 (1992), no. 2,
314–320; MR1171558] formulated the above general problem and solved the planar
case. In addition, they also posed the Bárány-Larman conjecture: t(d, r) = r for
all r ≥ 2 and d ≥ 1. This conjecture became one of the main components of the
colored Tverberg problem.

The paper under review deals with the topological versions of the colored Tver-
berg problem and the Bárány-Larman conjecture. The important contributions of
the paper under review are stated as follows:

Theorem A. Let r ≥ 2 be prime, d ≥ 1, and N = (r − 1)(d + 1). Let ΔN be
an N -dimensional simplex with a partition of its vertex set into m+ 1 parts (color
classes)

C = C0 � · · · � Cm

with |Ci| ≤ r− 1 for all i. Then for every continuous map f ΔN −→ R
d, there is a

colored r-partition given by disjoint faces F1, . . . , Fr of ΔN whose images under f
intersect, that is,

(A) |Ci ∩ Fj | ≤ 1 for every i ∈ {0, . . . ,m} and j ∈ {1, . . . , r}, and
(B) f(F1) ∩ · · · ∩ f(Fr) �= ∅.
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This theorem is a strengthening of the topological Tverberg theorem in the prime
case.

Theorem B. If r + 1 is prime, then t(d, r) = tt(d, r) = r, where tt(d, r) is the
topological version of t(d, r).

One of the key ingredients in the proof is relative equivariant obstruction theory.
Zhi Lü

From MathSciNet, May 2019

MR3726616 52A35; 05C15, 68U05

Mirzakhani, Maryam; Vondrák, Jan

Sperner’s colorings and optimal partitioning of the simplex. (English)

A journey through discrete mathematics, 615–631, Springer, Cham, 2017.

In this paper the authors study a number of variations of Sperner’s lemma,
a classical result in combinatorial topology. To state some of their results, let
e1, . . . , ek denote the standard basis for R

k. Given q ∈ N, let Δk,q denote the
(k − 1)-dimensional simplex

Δk,q := conv(qe1, . . . , qek) =
{
x ∈ R

k :

k∑
i=1

xi = q and x ≥ 0
}
.

Also let Hk,q denote the set of simplices S(b) := conv(b + e1, . . . ,b + ek) for
b ∈ Δk,q−1 ∩ N

k.
These simplices of Hk,q are all contained in Δk,q and can be extended to a trian-

gulationT of Δk,q. Sperner’s lemma shows that any Sperner-admissible colouring of
the vertices of T contains a (k−1)-dimensional simplex whose vertices receive k dis-
tinct colours. On the other hand, these multicoloured simplices need not appear in
Hk,q. The authors prove a tight lower bound on the number of non-monochromatic
simplices of Hk,q that must appear under a Sperner-admissible colouring. They
also construct a Sperner-admissible colouring in which these simplices receive at
most four colours, provided k ≥ 4 and q ≥ k2.

The second focus of the paper is a variant of the Knaster-Kuratowski-Mazurkie-
wicz lemma, a geometric version of Sperner’s lemma. This result says that given
closed sets A1, . . . , Ak with Δk,1 =

⋃
i∈[k] Ai and Ai ⊂ Δk,1 ∩ {x : xi > 0} for

all i ∈ [k], we have
⋂

i∈[k] Ai �= ∅. The authors prove an optimal lower bound on

the measure of
⋃

i �=j (Ai ∩ Aj), showing that it is minimised when A1, . . . , Ak are

Voronoi cells in Δk,1 induced from the points {e1, . . . , ek}.
The paper concludes with a large number of open problems.

Eoin Long
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