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Renewal theory is a classical branch of probability which generalizes the notion of
Poisson processes. Given a sequence of nonnegative, i.i.d. random variables (T},)n>0
such that 0 < E[T,,] < oo, one defines the renewal process (X;)¢>o by

N
Xt:sup{NZO : ZTngt}.
n=1

A standard interpretation for the above process is the following: if one considers
a sequence of events occurring one after the other at random times (75,),>1 (e.g.,
T, can be the lifetime of the nth light bulb), then X; is the number of events
that occurred up to time ¢, which in our example is the number of light bulbs that
stopped working up to time ¢. Since the random variables (7},),>1 are independent,
the Strong Law of Large Numbers (SLLN) implies that S T, ~ NE[T}] and

n=1

therefore X; = t/E[T}]. This is made precise by the following result:
Theorem 1 (Elementary Renewal Theorem (ERT)).

.1 1 1 1
tlgglo ;Xt = BT a.s. and tlglolo g]E[Xt] = Em

One can also regard the process (T},),>1 as generating a random semimetric
on the natural numbers. Indeed, consider N with the standard edge set
{{n — 1,n} : n > 1}. For every n > 1, assign the edge {n — 1,n} a weight
Sy, which can be thought of as the amount of time needed to cross it or as the
distance between n — 1 and n. Then X; is the maximal location reachable up to
time (distance) ¢ when starting from 0.

First Passage Percolation (FPP) was introduced by Hammersley and Welsh [16]
as a generalization of renewal theory and percolation to arbitrary graphs. Here, for
the sake of simplicity, we will only consider the d-dimensional Euclidean lattice Z¢
for d > 1. We denote by | - ||, the £, norm and by &, the set of edges in Z, i.e.,
pairs of vertices z,y € Z% such that ||z — y||; = 1.

FPP is defined as follows: Let (T%)ces, be a family of i.i.d. nonnegative random
variables with distribution function F. We consider T, as the time needed to cross
the edge e (or as the length of the edge) and for a finite (or infinite) path v, a
sequence of edges (e(n)),>1 such that e(n) Ne(n+1) # 0 for every n > 1, we define

the passage time of ~
T(y) =) T..

ecy
The distance (passage time) between any pair of vertices z,y € Z% is

T(xz,y) =inf{T(y) : v is a finite path from z to y}
and the analogue of the renewal process (X¢):>¢ is defined to be
Bt)={zecz% : T(0,z) <t}  Vt>0.
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If F(0) = P(T. < 0) = 0, then T(-,-) almost surely defines a metric on Z¢, and
B(t) is the random ball of radius ¢ around the origin in it. For simplicity we will
assume throughout the remainder of the review that F(0) = 0.

We extend the definition of 7 and B to R? by letting [y] be the unique point in
Z% such that y € [y] + [~1/2,1/2)4, setting T(y,2) := T([y],[z]) for all y,z € R?
and defining

Bty={z eR? : T(0,2) <t} = |J (z+[-1/2,1/2)%).
z€B(t)

Some of the fundamental questions we would like to understand about the model
are the following: What can we say about T'(z,y) as || — y|l2 = co? How does
f?(t) looks like as t — 00? How do geodesics in the random metric 1" look like?
How does the answer to the above questions depend on the distribution F'? What
can be said about the model on different graphs?

In the one-dimensional setting (i.e., d = 1) for every N > 1, there exists a
unique path from 0 to N and therefore T'(0, N) = ZnN:1 T(pn—1,n)- Consequently,
by Theorem [I],

1, ~ 1 1 1 1
Jm (BN [0,00) = lim o[~ 5. X+ 5| = [O> m} Pas.,
which answers all of the above questions for the graph Z.

When d > 2, there is more than one path between any pair of points and therefore
the situation is much more involved. Indeed, denote by e; = (1,0,0,...,0) the first
coordinate vector in Z%. In the one-dimensional case T'(0, Ne;) = Zg;ll Tin-1n)
that is the passage time is additive, and one can use the SLLN. However, when
d > 2, one can only show that T(0, Ne;) < Zﬁf;ll Tiney,(n+1)er)> Which is not
sufficient for applying the SLLN.

Subadditivity and the shape theorem. Hammersley and Welsh [16] extracted
from the study of FPP an important family of stochastic processes, called sub-
additive processes (see definition in Theorem [2]), and they conjectured that the
limit limpy oo XTN exists whenever (X,,),>0 is subadditive. Their conjecture was
proved by Kingman in his seminal work on the subadditive ergodic theorem [20,21].
As of today the subadditive ergodic theorem has quite a few versions with different
assumptions. We bring here a simplified version of a result by Liggett [23]:

Theorem 2 (Subadditive ergodic theorem). Let (X, n)o<m<n be a family of non-
negative random variables that satisfies the following conditions:

(1) Xon < Xom +Xmpn for all0 <m <n.
(2) The distribution of (Xpm m+k)k>1 and (Xm41,mt+1+k)k>1 @5 the same for all
m > 0.
(3) For every k > 1, the sequence (Xyk (n+1)k)n>1 18 stationary and ergodic.
(4) E[Xo1] < 0.
Then the limit limn_,oo% exists inP-a.s. and in L' and is equal to inf, >4 %]E[Xom].
One can apply the subadditive ergodic theorem to the process X,
T'(mey, ney) which satisfies conditions (1)—(3) and prove
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Theorem 3 (Theorem 2.19 in [18§]). Assumdl that E[T(0,e1)] € (0,00). Then there
exists a constant pi(e1) € (0,00) such that

T(0, N
lim 7(  New)

— ol
A ~ = u(ey), a.s. and in L".

In fact, using that in Z? there are 2d disjoint paths (w)?il from 0 to ey, and
therefore Xo1 =T(0,e1) < min{T'(v1),...,T(724)}, one can characterize the cases
when E[T(0,e;1)] < oo.

Lemma 4. E[T'(0,e1)] < oo if and only if E[min{Y1, ..., Yaq}] < oo, where (Y;)3L,
are i.i.d. random variables distributed according to F'.

One can repeat the argument above for an arbitrary rational direction z € Q¢
instead of e;, thus proving the existence of a function p : Q¢ — (0, 00) such that
lim 70, ne) = p(x), a.s. and in L'.
n—oo n
The existence of the limit for all x € Q? together with the subadditivity of 7T,
implies that p is a norm on Q% with a unique continuous extension to a norm on
R?. Furthermore, p is invariant under symmetries of Z? that preserve the origin.
Combining all of the above together with a uniform bound on the growth rate in
different directions (see [5, Theorem 2.17] for detail) one can prove the following
shape theorem:

Theorem 5 (Shape theorem for FPP, Cox and Durrett [9]). Let F be any distribu-
tion such that E[Tp..,] < oo, and define the deterministic set B = {z € R? : p(x) <
1}. Then, for every e > 0,

P ((1 —e)tB C é(t) C (14 e)tB for all sufficiently large t) =1.

Furthermore, B is convex, compact, has a nonempty interior, and has the symme-
tries of Z that fiz the origin.

Despite the success of the subadditive ergodic theorem, it does not give us an
explicit expression for the function p or for the shape B. Determining the value
of pu and, in particular u(e;) as a function of F, is one of the fundamental and
challenging problems in FPP. Nevertheless, partial results regarding the possible
limiting shapes and the relation between shapes of different distribution do exist.
For example, we consider the following.

(1) The limiting shape and the function p are known to be continuous with
respect to weak convergence; see [I0L[I5L[I8]. That is, if F,, = F and if
U, it are respective limits, then lim,, oo g, (2) = p(x) for every z € R4,

(2) If F(17) = 0 and F'(1) is sufficiently large, then the shape theorem is known
to have flat edges in its boundary yet not to be polygonal; see [2[12]24].
Note that it is conjectured that the shape is strictly convex whenever F is
continuous.

!Note that neither the positivity nor the finiteness of E[T(0,e1)] is needed; see [I8] for the
former and [7] for the later.
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FIGURE 1. On the left, B(200) for exponential 1 distribution. On
the right, B(500) for the distribution taking the values 1 and 20
with probability 1/2.

Fluctuations and concentration. The shape theorem provides us with a first-
order approximation for T'(0,-), namely T(0,2) = p(z) + o(||z|l1) as ||z]1 — oo
almost surely. Now, we wish to discuss the error term, i.e., T(0,z) — p(z). The
error is composed of a random part T(0,z) — E[T(0,z)] (the fluctuations) and
a deterministic part E[T(0,2)] — u(x). Here we will concentrate on the former,
referring the reader to [B] for further detail and a discussion on the nonrandom
error.

The most basic control on the fluctuations of a random variable is given by
its variance. It was predicted in the physics literature (see [17,129]) that there
exists a dimension dependent constant x = x(d) such that Var(T(0,z)) ~ [|z[3X as
lz]]2 = oo. Furthermore, this constant is conjectured to be universal in the sense
that it should not depend on the distribution F' (as long as F' satisfies certain mild
conditions) and to be equal to 1/2 for d =1 and 1/3 for d = 2.

In fact, the case d = 1 is relatively simple. Indeed, let us recall that for d = 1, the
term T'(0, Ney) = 25:1 T(n—1,n) is a sum of i.i.d. random variables. The Central
Limit Theorem (CLT) implies that the fluctuations are of order N'/? provided F
has a finite second moment.

If the distribution F' is bounded (i.e., F(M) = P(T. < M) = 1 for some
M € (0,00)), then T'(0,ne1) < Mn and therefore Var(T'(0,ne;)) < M?n?. The
first rigorous nontrivial bound on the variance was given by Kesten [I8, Theorem
5.16] who showed that Var(7'(0,ne;)) < Cn® for some constants C,a € (0, 00)

log™ n
depending only on d. Although the boungd is only logarithmically better than
the trivial bound (at least for bounded distributions), the proof is far from be-
ing trivial. Later on (see [19]) Kesten improved his previous result showing that
Cy < Var((T(0,2)) < Cal|z|)y for some Cy,Cy € (0,00) and all x € Z%, provided
the second moment of F' is finite and positive.

As it turns out, improving the variance bounds, both from below and from
above, is quite a difficult task. As of today, the best known upper bound on the
variance for d > 2 is Var(T(0,z)) < 1ngH|TaU\|11 for some C € (0,00). As in the
original work of Kesten and despite the the improvement being only logarithmic,
the proof is highly nontrivial. The first proof of sublinear variance for T(0, z) is
due to Benjamini, Kalai, and Schramm [6]. Their proof used the notion of influence
in Boolean functions together with a hypercontractivity inequality by Talagrand.
Their proof only applies to Bernoulli distribution, taking two values 0 < a < b < 00
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with equal probability. The proof was generalized later on to Gamma distributions
[14] and to all distributions with [ z?(logz)4 F(dz) < oo; see [L1]. Regarding lower
bounds, the state of the art is the following result (see also []]):

Theorem 6 (Newman and Piza [20]). Let d = 2, and let I be the infimum of the
support of F. If F has a finite and positive second moment and F(I) is sufficiently
small (see [26] for a precise statement), then Var(T'(0,x)) > Blog ||z||1 for some
constant B > 0.

Geodesics and the wandering exponent. The last type of question related to
FPP that we will discuss is about the geometry of geodesics with respect to the
random metric T. A path v from x to y is called geodesic if T(v) = T(x,y). The
first natural question regarding geodesics is whether they exist. Following several
results with different assumptions on the distribution F', the question was finally
settled in the two-dimensional case.

Theorem 7 (Wierman and Reh [28]). For any distribution F, there almost surely
exists a geodesic between any two points in Z2.

In dimension d > 3, geodesics are known to exist for bounded distributions;
however, for general distributions the existence is currently an open problem.

The geometry of geodesics in FPP was studied extensively, although many ques-
tions remain open. Let us mention two results regarding their size and diameter.
A lower bound on the size of geodesics was proved by Kesten in [I8].

Theorem 8 ([I8] Proposition 5.8). There are constants a,C € (0,00) such that

n

P (3 a self-avoiding path~y containing0 s.t. |y| > n and T(v) < an) < e~ ™,

and therefore
lim inf (0, 2)

lzlli—oo ||

> a, almost surely .

The diameter of the set of geodesics was studied by the authors of the book,
Auffinger, Damron, and Hanson.

Theorem 9 ([4] Theorem 6.2). Let GEO(0,z) denote the set of vertices in Z%
belonging to at least one geodesidd from 0 to x. Then, there exist constants M,C €
(0,00) such that for every x € Z%

P(diam(GEO(0, z)) > M||z||s) < e~ Clizlle
In particular, almost surely

limsup diam(GEO(0,))/||z|lec < M.
llzlloc—o0
One of the most natural asymptotic problems related to geodesics is estimating
the distance of the geodesics from the ¢* norm. Since FPP metric can be thought
of as a random perturbation of the ¢! metric, one may wonder how close the two
are. One way to quantify this problem is described in the question, How large is
the distance between the geodesic from 0 to ne; and the line L., = {te; : ¢ > 0}?
Denote by D(n) the maximal distance of a point in GEO(0,ne;) from L.,. Large
deviation results by Kesten [I8] imply that if e; is an exposed point of the limiting

2Note that if F' is continuous, then almost surely there is only one geodesic between any pair
of points.
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shape (i.e., some continuous linear functional on R attains its strict maximum over
Be1), then

lim liminf P(D(n) <en) =1,

e—0 n—oo

i.e., the geodesic from 0 to ne; stay at distance o(n) from L., .

In order to better discuss estimations for D(n), we introduce the wandering
exponent &. Informally, it is a positive number such that D(n) ~ nf. Like the
exponent related to variance Y, it is believed that £ is universal in the sense that,
for a fixed dimensions d, it is the same for all reasonable distributions. Furthermore,
it is believed that for d = 2, one should have £ = % and that the scaling relation
x = 2¢ — 1 holds for all distributions with uniform positive curvature of the limit
shape (see below). There is no agreement on the “correct” way to define the
exponent £, and various upper and lower bounds were proven for different definitions
of it. Note that as of today there is no single distribution for which the relation
x = 2¢ — 1 is proven rigorously.

Let us provide an intuition for the conjecture of the scaling relation xy = 2§ — 1
under the assumption of uniform positive curvature in ey, that is p(u+ 2) — p(u) ~
|z for all z = tey, with [t| sufficiently small. The reader is referred to [3] for a
more general and detailed discussion. Let T7(0,ne;) be an independent copy of
T(0,nep). Then

n?X ~ Var(T(0,ne;)) = E[(T(0,ne1) — T'(0,ne;))?] .

Since the geodesic from 0 to ne; stays within distance n® from L., it follows that
“with high probability” the geodesic from nfes to nfes +ne; and the geodesic from
0 to nep are in disjoint boxes and are thus independent. Therefore,

n?X ~ E[(T(0,ne1) — T(n§€27n562 + nel))Q] ~ (u(ney — nfeg) - ;L(nel))2
=n?(uler —nsles) — per))” ~ nPHETD = pie-2

where in the step before last we used the uniform curvature assumption.

Growth models and other motivations. We end this review with a discussion
on some related models and further motivations for studying FPP. It was noted
already in the original paper of Hammersley and Welsh [16] that FPP has numerous
interpretations and applications. Since then, the list of applications has lengthened
considerably. A very incomplete list includes fluid flow models [16], infection models
[27], defects in solids with imperfections [22], and growth models [II3L25]. As an
example, we discuss Eden growth model.

The Eden model was introduced in 1961 by Murray Eden [13] as a two-dimen-
sional growth process of cells. The model can be described as follows: Start with
a single cell at the origin in Z¢. Assume the nth step ends with a finite, connected
set A, in Z? containing the origin. Then, in the next step one defines A, ; as
Ap U{an41}, where a,4q is chosen uniformly at random (and independently from
all previous choices) from the outer (vertex) boundary of A,, i.e., from 0A, = {y €
Z3\ A, : 3z € A, such that ||z —y|j; = 1}.

The Eden model can be constructed from (a variant of) FPP in Z¢ with exponen-
tial with mean 1 distribution sampled at random times. Indeed, let (X,),cze be a
family of i.i.d. exponential 1 random variables, and define vertex FPP by declaring
T(7), for a path v, to be the sum of the weights of the vertices along . Denoting
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og=0and forn >1
o, =inf{t >0 : |B(t)| =n+ 1},

where B(t) is the ball associated with FPP, one can verify that {4, : n > 0} and
{B(0,) : n >0} have the same distribution.

The last observation allows us to conclude that (A,),>1 has a limit shape,
namely, A, = B(o,) = 0,8, where B is the limiting shape of vertex FPP with
exponential 1 distribution.

About the book. The wonderful book by Auffinger, Damron, and Hanson pro-
vides an up-to-date and thorough discussion of one of the most classical models in
probability theory. The book is readable and user friendly, yet provides the reader
with detailed proofs and intuition for classical and modern results. It is therefore
an excellent source for an advanced course on the subject. In addition, the book
contains dozens of open questions, and it is thus a natural tool for researchers who
are interested in the subject.
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