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Research on random walks has enjoyed long and continuous interest in both
the theoretical and applied disciplines. In physics the study started with Karl
Pearson’s 1905 paper [11], where he asked about the probability that a person (or
an ancient Scottish golfer, as some claim was the inspiration) hitting a ball to an
exact distance l in a random angle will find himself after n hits at distance r ± dr
from where he started. Lord Rayleigh [12,13] had already answered a more general
question while studying sound waves in inhomogenous materials. He modeled the
waves as sums of n isoperiodic vibrations of unit amplitude and random phases.
One can justify the randomness in phases, since the waves change their direction
when hitting scattering parts in the material but keep an approximately constant
amplitude. Lord Rayleigh derived a density for “extremely large” n,

pn(r)dr ∼ 2

nl2
e−

r2

nl2 rdr,

answering Pearson’s question.
A simple random walk is the stochastic process one obtains by summing i.i.d.

(independent and identically distributed) random variables. In the case where the
random walk is on Zd, there is a rich theory (see [8,14]) whose main message is that
under diffusive scaling (multiplying by 1√

n
at time n) the random walk converges

to a Gaussian distribution. This is known as the central limit theorem (CLT).
Moreover, the invariance principle (or functional CLT) tells us that as a stochastic
process, random walk converges to Brownian motion.

The subject of the book under review is a generalization of the random walk
notion called random walk on weighted graphs, allowing a much richer set of phe-
nomena. The mathematical study of random walks on graphs interacts with many
mathematical disciplines, e.g., harmonic analysis, geometry, functional analysis,
PDE, and algebra. These interactions enrich the disciplines in both directions,
providing powerful tools to study random walks and, in exchange, gaining un-
derstanding on some classical questions in those fields. Recently, applications of
random walks on graphs were found in the study of deep neural nets (see [7] for
some background). In this review we will explain the settings of the theory and
delineate some elegant results arising from the interactions with other fields.

Notations and setting

A graph is a pair ג = (V , E), where V is a finite or countably infinite set, called the
vertex set, and E is a subset of {{x, y} : x, y ∈ V}, called the edge set. We say that
x and y are neighbors and denote it by x ∼ y if {x, y} ∈ E . A path in ג is a sequence
x0, x1, . . . , xn with xi ∼ xi+1 for 0 ≤ i ≤ n− 1. Denote by d(x, y) the length of the
shortest path connecting x and y and by B(x, r) = {y ∈ V : d(x, y) ≤ r}.
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Definition 1. ,ג) μ) is a weighted graph with real weights (or conductances)
{μxy}x,y∈V satisfying the following.

(i) μxy = μyx.
(ii) If x �= y, μxy > 0 for x ∼ y and μxy = 0 for x � y.

We abbreviate μx :=
∑

y∼x μxy.

For simplicity we make the following assumptions on the graphs.

(H1) ג is locally finite, i.e., for every x ∈ V , |{y ∈ V : y ∼ x}| < ∞.
(H2) ג is connected, i.e., there is a path connecting every x, y ∈ V .
(H3) ג is of bounded degree, i.e., supx∈V |{y ∈ V : y ∼ x}| < ∞.

(H4) ,ג) μ) has bounded weights, i.e., ∃C1 < ∞ such that C−1
1 ≤ μxy ≤ C1 for

all x, y ∈ V , x ∼ y.
(H5) ,ג) μ) has controlled weights (also known as elliptic), i.e., ∃C2 < ∞ s.t.

μxy

μx
≤ 1

C2
,

for all x, y ∈ V , x ∼ y.

Note that (H3)+(H4) yield (H5).

Definition 2. A random walk on ,ג) μ) is the discrete time Markov chain on the
graph with transition probabilities

P (x, y) = P[Xn+1 = y|Xn = x] =
μxy

μx
.

We write Px for the distribution of the random walk conditioned on X0 = x, i.e.,

Px[Xn = ·] = P[Xn = ·|X0 = x].

Note that P (x, y) is reversible with respect to μ, i.e.,

μxP (x, y) = μyP (y, x) ∀x, y ∈ V .

Definition 3. For A ⊂ V define the first hitting time of a set A ⊂ V by

τA = min{n ≥ 0 : Xn ∈ A}.(1)

Electric networks

A basic question about a random walk on a graph ג is, Given that currently the
walk is in position x, what is the probability it will ever hit position y, or what
is the probability it will hit y before some other vertex z? One important way
to answer this question is via the deep connection of random walks and electric
networks. We will illustrate the connections and use of electric networks thorough
the following gamblers ruin problem. A gambler plays a zero-sum game in which
at every round he may win $1 with probability p and loose $1 with probability
q = 1− p. When the game starts the gambler has $k (0 ≤ k ≤ n), and he decides
that he will fold once he either has $n or $0. We wish to calculate the probability
that the gambler does not leave the game broke. First let us see how we can model
this question in the formalism of weighted graphs. A natural graph to choose is
Z ∩ [0, n] with edges between every two consecutive integers. The position of the
random walk at time t models the amount of money the gambler has after t turns
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of the game. For normalization purposes, set μ01 = 1. For any 1 ≤ x ≤ n − 1
assume that μ(x−1)x = ξ. Since the probability the gambler wins $1 is p, we have

p = p(x, x+ 1) =
μx(x+1)

ξ + μx(x+1)
=⇒ μx(x+1) = ξ

p

q
.

Thus for all 0 ≤ x ≤ n−1, we have μx(x+1) =
(

p
q

)x

. The electric network approach

(which we will justify shortly) claims that the weighted graph (Z∩ [0, n], μ) can be
viewed as a network with potential difference 1 between 0 and n, and with resistance
1/μx(x+1) (conductance μx(x+1)) on the edge (x, x+1) for each 0 ≤ x ≤ n−1. The
advantage of this view is that we can use standard electric network techniques to
reduce the part of the network between 0 and k to a single edge with conductance(

k−1∑
i=0

(
q

p

)i
)−1

,

and the part of the network between k and n to a single edge with conductance(
n−1∑
i=k

(
q

p

)i
)−1

.

Now our network has only two edges and the probability to turn right, correspond-
ing to the random walk hitting n before 0, is

Pk(τ{n} < τ{0}) =

(∑n−1
i=k

(
q
p

)i
)−1

(∑n−1
i=k

(
q
p

)i
)−1

+

(∑k−1
i=0

(
q
p

)i
)−1 =

⎧⎨
⎩

1−( q
p )

k

1−( q
p )

n p �= q,

k
n p = q.

Next, we justify the previous analysis and show the connection between weighted
graphs and electric networks. Let A,Z ⊂ V , and define v(x) = Px(τA < τZ). It is
immediate that ∀x ∈ A, v(x) = 1 and ∀x ∈ Z, v(x) = 0 and for x ∈ V \ (A ∪ Z) by
conditioning on the first step and using the Markov property

v(x) =
∑
y∼x

Px(first step to y)Px(τA < τZ |first step to y)

=
∑
y∼x

Px(first step to y)Py(τA < τZ) =
1

μx

∑
y∼x

μxyv(y).

This means that v(x) is harmonic on the weighted graph. By the uniqueness princi-
ple of harmonic functions [10, Section 2.1], we obtain that v(x) is the voltage at the
point x when we view the graph ,ג) μ) as a network such that between neighboring
vertices x and y there is a conducting wire with resistance 1/μxy. Now that we
have the voltage at any vertex of our graph, we can define the current

ixy := μxy(v(x)− v(y)).

The calculation we did for the gambler’s ruin problem is a simple example of effec-
tive resistance. This concept is well documented in the literature, and we will not
elaborate it here; see [1,6,10] for good expositions on electric networks and effective
resistance.
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Discrete harmonic analysis and potential theory

In this section we present the harmonic analysis setting for random walks that
allowed many crossovers of techniques and results between probability theory and
PDE.

We call pn(x, y) :=
Px(Xn=y)

μy
the discrete time heat kernel of the graph .ג We

abbreviate p(x, y) = p1(x, y). Note that the reversibility of the walk implies that
the heat kernel is symmetric:

(2) pn(x, y) =
Px[Xn = y]

μy
=

μxP
x[Xn = y]

μxμy
=

μyP
y[Xn = x]

μxμy
= pn(y, x).

Define the space L2(V , μ) of real valued functions with finite L2-norms, with the
inner product

〈f, g〉 =
∑
x∈V

f(x)g(x)μx.

Define the operators

Pnf(x) =
∑
y∈V

pn(x, y)f(y)μy = Ex[f(Xn)].

The discrete Laplacian Δ is acting on L2(V , μ) by

Δf(x) =
1

μx

∑
y∈V

μxy(f(y)− f(x)) = (P1 − I)f(x).(3)

The Dirichlet energy form is defined by

E(f, g) =
1

2

∑
x∈V

∑
y∈V

μxy(f(x)− f(y))(g(x)− g(y)),

whenever the sum converges absolutely.
There are deep connections between the analysis of the discrete Laplacian and

Dirichlet energy, and the geometric isoperimetric inequalities (see [5, 15]). This
was first discovered by Cheeger [2, 4] in the framework of manifolds and was later
introduced in the discrete setting by Varopoulos [16].

Definition 4. For a subset A ⊂ ,ג define the boundary weight of A as

μ(A;V \A) =
∑
x∈A

∑
y∈V\A

μxy.

Note that for equal unit weights this corresponds to the cardinality of the edge
boundary of A. We say that a finite weighted graph ,ג) μ) satisfies the relative
isoperimetric inequality (related to the Cheeger constant) if ∃CR < ∞ such that
for every finite set A �= ∅ satisfying μ(A) ≤ 1

2μ(V),

μ(A;V \A)

μ(A)
≥ CR.

The largest CR satisfying the last equation is called the relative isoperimetric
constant (or Cheeger’s constant in some literature), and we denote it by Rג. Posi-
tivity of Rג is related to the concepts of nonamenability and expander graphs.
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An infinite weighted graph ,ג) μ) satisfies the isoperimetric inequality Iα if there
exists a C0 < ∞ such that for every finite nonempty set A ⊂ V ,

μ(A;V \A)

μ(A)1−
1
α

≥ C−1
0 .

The property Iα is stronger than the following Nash inequality. There exists a
constant CN such that for all f ∈ L1 ∩ L2,

E(f, f) ≥ CN‖f‖2+d/α
2 ‖f‖−4/α

1 .

Here the classical Poincaré inequality takes the following form.

Definition 5. The weighted graph ,ג) μ) satisfies the (weak) Poincaré inequality
(PI) if there is a CP < ∞ and λ ≥ 1 such that for all x ∈ V , R ≥ 1, and
f : B(x, λR) �→ R,∑

y∈B(x,R)

(f(y)− f̄B(x,R))
2μy ≤ CPR

2 1

2

∑
x∈B(x,λR)

∑
y∈B(x,λR)

μxy(f(x)− f(y))2

= CPR
2EB(x,λR)(f, f),

where f̄B(x,R) = μ−1
B(x,R)

∑
y∈B(x,R) f(y)μy. We say that ,ג) μ) satisfies the strong

Poincaré inequality if the definition holds with λ = 1.

Due to the following lemma, in order to prove the validity of the Poincaré in-
equality it is enough to control the isoperimetric constant of balls.

Lemma 6. Let ,ג) μ) be a finite graph. Then for any f : V �→ R,

min
λ

∑
y∈V

|f(y)− λ|2μy ≤ 2R−2
ג

E(f, f),

where Rג is the isoperimetric constant of .ג

As we will see in the next section, the Poincaré inequality will provide the expo-
nential heat kernel bounds which are widely used in probability theory and other
fields.

Another important concept connected to isoperimetry and the Poincaré inequal-
ity is the spectrum of a weighted graph. Consider the graph connectivity matrix

Aij :=
μij

(μiμj)1/2
=

μ
1/2
i P (i, j)

μ
1/2
j

.

Since A is a symmetric matrix, all its eigenvalues are real. Denote the eigenvalues
by ρ1 ≥ ρ2 ≥ · · · ≥ ρN . Since they are the same as the eigenvalues of P (i, j),

we get that ∀i, |ρi| ≤ 1. It is clear that ρ1 = 1, since �1 is an eigenvector with
eigenvalue 1,

∑
y P (x, y) · 1 = 1. A more convenient matrix to work with is −Δ,

whose eigenvalues are λk = 1−ρk. Many theorems rely on some kind of convergence
of the discrete Laplacian to the continuous Laplace operator. For a finite connected
graph, the second smallest eigenvalue λ2 is important for mixing time and exit time
calculations (see [9]). Cheeger’s inequality states:

Theorem 7 (Cheeger’s inequality). Let ,ג) μ) be a finite graph, and let λ2 be second
smallest eigenvalue of −Δ (also called the spectral gap). Then

1

2
R2

ג ≤ λ2 ≤ 2Rג.
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Definition 8. A weighted graph ,ג) μ) is amenable if there is a sequence of sub-
graphs An with RAn

→ 0 as n → ∞.

A sufficient condition for a graph to be nonamenable is for the random walk on
the graph to be ballistic; i.e., lim infn→∞

1
nd(x,Xn) > 0, Px-a.s. for each x ∈ V .

Heat kernel bounds

Bounds on the heat kernel (2) have strong connections to the mixing time of
Markov chains and local limit theorems. We start with the maximality of the
diagonal heat kernel.

Lemma 9. For any x, y ∈ V, p2n(x, y) ≤ p2n(x, x)
1/2p2n(y, y)

1/2.

Proof. For every n,m ∈ Z,

pn+m(x, y) =
∑
z∈V

pn(x, z)pm(y, z)μz = 〈pn(x, ·), pm(y, ·)〉.

The lemma follows by taking n = m and using the Cauchy–Schwarz inequality. �

For simple random walk on a vertex transitive graph1 this lemma states that the
vertex you are most likely to visit is your starting point: for every x, y ∈ V ,

p2n(x, x) ≥ p2n(x, y).

Note that we write 2n because of parity issues. This can be avoided by introducing
laziness for the random walk (probability to stay in place) or working with contin-
uous time. The next theorem shows a connection between the Nash inequality or
isoperimetric inequality and bounds on the diagonal heat kernel.

Theorem 10. If ,ג) μ) satisfies the Nash inequality with parameter α (or the
isoperimetric inequality Iα), then there is a constant CH such that for all n ≥ 1
and x, y ∈ V,

pn(x, y) ≤
CH

nα/2
.

Example. The Zd isoperimetric inequality states that for every set A ⊂ Zd, the
edge boundary of A is greater than |A|(d−1)/d. Thus the graph Zd with constant
weights between neighbors (corresponding to simple random walk on Zd) satisfies
Id. By Theorem 10 we get the simple random walk diagonal heat kernel bound

pn(x, y) ≤
C

nd/2
.

Theorem 10 gives no information on the decay as d(x, y) → ∞. The next theorem
is called the Carne–Varopoulos bound [3, 17].

Theorem 11. Let ,ג) μ) be a weighted graph. Then

pn(x, y) ≤
2

(μxμy)1/2)
e−

d(x,y)2

2n ∀x, y ∈ V , n ≥ 1.

1G = (V, E) is a vertex transitive graph, if for every x, y ∈ V there is a graph automorphism
f : V �→ V such that f(x) = y.
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About the book

The book under review delineates very thoroughly the general theory of random
walks on weighted graphs. The author’s expertise in both probability and analysis
is apparent in the exposition and the elegant proofs depicted in the book. There
are many subjects covered in the book that we did not discuss in this review. We
believe this book can be used both as a graduate topic course textbook and as a
reference source for expert researchers.
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