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ALGEBRAIC HYPERSURFACES

JÁNOS KOLLÁR

Abstract. We give an introduction to the study of algebraic hypersurfaces,
focusing on the problem of when two hypersurfaces are isomorphic or close
to being isomorphic. Working with hypersurfaces and emphasizing examples
makes it possible to discuss these questions without any previous knowledge
of algebraic geometry. At the end we formulate the main recent results and
state the most important open questions.
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Algebraic geometry started as the study of plane curves C ⊂ R2 defined by
a polynomial equation and later extended to surfaces and higher dimensional sets
defined by systems of polynomial equations. Besides using Rn, it is frequently more
advantageous to work with Cn or with the corresponding projective spaces RPn and
CPn.

Later it was realized that the theory also works if we replace R or C by other
fields, for example the field of rational numbers Q or even finite fields Fq. When
we try to emphasize that the choice of the field is pretty arbitrary, we use An to
denote affine n-space and Pn to denote projective n-space.
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Conceptually, the simplest algebraic sets are hypersurfaces; these are defined by
one equation. That is, an affine algebraic hypersurface of dimension n is the zero
set of a polynomial h(x1, . . . , xn+1):

X = X(h) :=
(
h(x1, . . . , xn+1) = 0

)
⊂ An+1.

We say that X is irreducible if h is irreducible, and we call deg h the degree of X.
Working over C, one can (almost) harmlessly identify the algebraic hypersurface

X with the corresponding subset of Cn+1, but already over R we have to be more
careful. For example, x2

1 + x2
2 + 1 has no real zeros. Thus when we say “algebraic

hypersurface over R”, we think of not just the real zero set but also the complex
zero set. (One could also think about zero sets in even larger fields, for exam-
ple C(t1, . . . , tm), but it turns out that knowing the zero set over C, or over any
algebraically closed field, determines the zero sets over any larger field.)

Thus in practice we usually think of an affine hypersurface X = X(h) as a subset
of Cn+1, and we keep in mind that it may have been defined by an equation whose
coefficients are real or rational. We use X(C) to denote the set of complex solutions
of the equation h(x) = 0. If h has real or rational coefficients, then it also makes
sense to ask about the real solutions X(R) or rational solutions X(Q).

We say that two hypersurfaces are linearly isomorphic if they differ only by
a linear change of coordinates. In principle one can always decide whether two
hypersurfaces are linearly isomorphic or not, though in practice the computations
may be infeasibly long.

The main question we address in these notes is whether there are other, nonlinear
maps and isomorphisms between algebraic hypersurfaces. The problem naturally
divides into two topics.

Question 1. When are two algebraic hypersurfaces X1 and X2 isomorphic?

Question 2. When are two algebraic hypersurfaces X1 and X2 “almost” isomor-
phic?

Note that we have not yet defined what an “isomorphism” is and gave yet no hint
what an “almost” isomorphism should be. Before we give these in Definition 13,
we start with an example in Section 1.

Prerequisites. This article is aimed at readers with no prior knowledge of alge-
braic geometry. We focus on concrete examples that can be worked out by hand
yet give a good illustration of the general principles. Thus we also avoid any uses
of commutative algebra and of several complex variables, two topics that usually
undergird algebraic geometry. The usual (topological) cohomology groups make a
fleeting appearance in Section 6 and differential forms are used in Section 7.

However, the discussions of Section 10 need some concepts of algebraic geometry,
mainly ampleness and the canonical class.

Throughout, we work with polynomials with complex coefficients and their com-
plex solutions. For most claims this is not very important, but in some examples
it is quite interesting to know what happens when we focus on rational solutions;
this is the theory of Diophantine equations. We point out these, and connections
with other topics, in Side Remarks . These can be skipped.

Algebraic geometers almost always work with systems of equations, leading to
the notions of algebraic sets and varieties. For most of the results that we discuss,
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these form the natural setting; see [Sha74,Mum76,Rei88,CLO92,Dol12,EH16] for
introductions.

However, many definitions and results are much easier to state for hypersurfaces,
and, once the foundational material is well understood, the basic difficulties are
usually very similar.

1. Stereographic projection

The oldest example of an “almost” isomorphism between hypersurfaces is the
stereographic projection. It may well have been invented—originally under the
name planisphaerium—to create star charts that represent the celestial sphere in a
plane. It has been used in mapmaking since the sixteenth century.

A theorem that Ptolemy attributes to Hipparchus (∼190–120 BC) says that
stereographic projection maps circles to circles. Halley (best known for his comet)
proved in [Hal1695] that stereographic projection also preserves angles. Now we
refer to these properties by saying that stereographic projection is conformal.

Instead of these metric properties, we are more interested in the actual formulas
that define it.

3. Stereographic projection. The formulas for stereographic projection are nicest if
we project the unit sphere

(3.1) Sn :=
(
x2
1 + · · ·+ x2

n+1 = 1
)
⊂ Rn+1

from the south pole p0 := (0, . . . , 0,−1) to the plane xn+1 = 0 where we use
y1, . . . , yn as coordinates instead of x1, . . . , xn,

Geometrically, pick any point p ∈ Sn (other than the south pole), and let π(p)
denote the intersection point of the line 〈p0,p〉 with the hyperplane (xn+1 = 0).

Algebraically, we get that

(3.2) π(x1, . . . , xn+1) =

(
x1

1 + xn+1
, . . . ,

xn

1 + xn+1

)
with inverse

(3.3) π−1(y1, . . . , yn) =

(
2y1

1 + Σ
, . . . ,

2yn
1 + Σ

,
1− Σ

1 + Σ

)
,

where Σ = y21 + · · ·+ y2n.
Here π is not defined at the points where xn+1 = −1, and π−1 is not defined

at the points where y21 + · · · + y2n = −1. In the real case we get a one-to-one map
Sn \ (south pole) ∼= Rn and both π and π−1 are given by rational functions.

However, we know that we should also look at the complex case. Note that

Sn(C) :=
(
x2
1 + · · ·+ x2

n+1 = 1
)
⊂ Cn+1

is not a sphere, it is not even compact. Both indeterminacy sets

Sn(C) ∩ (xn+1 = −1) and (y21 + · · ·+ y2n = −1)

are (n− 1)-dimensional hypersurfaces. We get a one-to-one map between the sets

Sn(C) \ (xn+1 = −1) and Cn \ (y21 + · · ·+ y2n = −1),

which is given by rational functions in both directions.
This will be our definition of a birational map, which is the usual name for the

almost isomorphism of Question 2.
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A number theoretic variant of stereographic projection is the following.

4. Side Remark: A diophantine equation. Consider the diophantine equation

(4.1) a1x
2
1 + · · ·+ anx

2
n + x2

n+1 = 1 where ai ∈ Q.

It determines the quadric hypersurface

(4.2) Qn :=
(
a1x

2
1 + · · ·+ anx

2
n + x2

n+1 = 1
)
.

Again projecting from the south pole p0 := (0, . . . , 0,−1), we get the formulas

(4.3) π(x1, . . . , xn+1) =

(
x1

1 + xn+1
, . . . ,

xn

1 + xn+1

)
with inverse

(4.4) π−1(y1, . . . , yn) =

(
2y1

1 + Σ
, . . . ,

2yn
1 + Σ

,
1− Σ

1 + Σ

)
,

where now Σ = a1y
2
1 + · · ·+ any

2
n.

Thus, we conclude that all rational solutions of equation (4.1) satisfying xn+1 �=
−1 can be written as in (4.4) for rational numbers y1, . . . , yn.

Note that in (4.1) we are working with the special case when an+1 = 1. We
could allow instead an+1 to be arbitrary, but then we would need to project from
the point

(
0, . . . , 0,−√

an+1

)
. If an+1 is not a square, the resulting formulas give

irrational solutions of the equation. See Theorem 7 for the right generalization.

2. Projective hypersurfaces

An affine hypersurface of dimension ≥ 1 is never compact over C, thus we fre-
quently work with its closure in CPn+1.

Definition 5 (Projective space). We will think of the points of CPn+1 as the lines
through the origin in Cn+2. Thus we use homogeneous coordinates (X0: · · · :Xn+1),
where at least one of the Xi must be nonzero. Furthermore,

(5.1) (λX0: · · · :λXn+1) = (X0: · · · :Xn+1) for all λ ∈ C∗.

A polynomial h(X0, . . . , Xn+1) cannot be evaluated at a point of CPn+1 since usu-
ally h(λX0: · · · :λXn+1) �= h(X0: · · · :Xn+1). However, if H is homogeneous of de-
gree d, then

(5.2) H(λX0: · · · :λXn+1) = λdH(X0: · · · :Xn+1),

thus the zero set of a homogeneous polynomial is well defined. Thus, we get pro-
jective hypersurfaces

(5.3) X = X(H) :=
(
H(X0: · · · :Xn+1) = 0

)
⊂ Pn+1.

One can go between the affine and the projective versions by the formulas

(5.4)
h(x1, . . . , xn+1) = H(1, x1, . . . , xn+1) and

H(X0, . . . , Xn+1) = Xdeg h
0 · h

(
X1

X0
, . . . , Xn+1

X0

)
.

Of course any of the Xi could play the special role of X0 above, so we usually think
of CPn+1 as being covered by n+ 2 charts, each isomorphic to Cn+1.

The cone over X is the affine hypersurface

(5.5) CX = CX(H) :=
(
H(X0, . . . , Xn+1) = 0

)
⊂ An+2.

This gives another way to go between projective and affine questions.
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Note. It would be quite convenient to keep the notational distinction between affine
coordinates xi and projective coordinates Xi, but people usually use lower case xi

to denote both affine and projective coordinates.

Modern algebraic geometry usually considers the projective variant the basic
object and the affine versions as the local charts on the projective hypersurface.
Note, however, that in algebraic geometry the local charts are very big; they are
always dense in the corresponding projective hypersurface.

Definition 6. A point p ∈ X(G) on a projective hypersurface is called smooth if
∂G
∂xi

(p) �= 0 for some i. If we are over C or R, the implicit function therem tells

us that X is an n-dimensional submanifold of CPn+1 or of RPn+1 at its smooth
points. Here of course over C we count complex dimension, which is twice the real
dimension.

The tangent plane TpX (viewed as a hyperplane in Pn+1) at a smooth point
p := (p0: · · · :pn+1) is given by the equation

(6.1)
∑
i

∂G

∂xi
(p) · xi = 0.

(Our first inclination would be write
∑

i
∂G
∂xi

(p) · (xi − pi) = 0 instead. This does
not seem to make sense as an equation since it is not homogeneous. Luckily,

(6.2)
∑
i

∂G

∂xi
(p) · pi = degG ·G(p) = 0

since G is homogeneous, thus, after all, we do get (6.1) this way.)
The other points are singular. Thus the set of all singular points is defined by

the equations

(6.3)
∂G

∂x0
= · · · = ∂G

∂xn+1
= 0.

It is thus a closed set which is easily seen to be nowhere dense if G is irreducible.

We have the following rather straightforward generalization of the formulas (3.2)–
(3.3) for the stereographic projection.

Theorem 7. Consider the irreducible quadric hypersurface

Qn :=
(
G(x0, . . . , xn+1) = 0

)
⊂ Pn+1.

Let p ∈ Qn be a smooth point with tangent plane TpQ. Pick any hyperplane H ∼= Pn

that does not contain p. Then the following hold.

(1) Projection of Pn+1 from p to H gives a one-to-one map

π : Qn \ TpQ −→ H \ TpQ ∼= An.

(2) The coordinate functions of π are quotients of linear polynomials.
(3) The coordinate functions of π−1 are quotients of quadratic polynomials.

Side Remark. Furthermore, if the coefficients of G, of the equation of H, and the
coordinates of p are all in a field k, then so are the coefficients of π and π−1.
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3. Rational and birational maps

Definition 8 (Rational maps, affine case). The basic functions in algebraic geom-
etry are polynomials p(x1, . . . , xn) and their quotients

φ(x1, . . . , xn) =
p(x1, . . . , xn)

q(x1, . . . , xn)

are called rational functions. Since a polynomial ring has unique factorization, we
may assume that p, q are relatively prime. In this case φ is not defined along the
hypersurface (q = 0).

A rational map from An to Am is a map given by rational coordinate functions

Φ(x1, . . . , xn) =
(
φ1(x1, . . . , xn), . . . , φm(x1, . . . , xn)

)
,

where φi = pi/qi. As before, Φ need not be everywhere defined.

Definition 9 (Rational maps, projective case). As we already noted in (5.2), a
polynomial or a rational function p(x0, . . . , xn) usually cannot be evaluated at a
point of Pn. However, if φ is a quotient of two homogeneous polynomials of the
same degree, then

(9.1) φ(λx0: . . . :λxn) = φ(x0: · · · :xn)

and φ defines a rational function on Pn.
A rational map from Pn to Pm is a map given by rational functions

(9.2) Φ(x0: · · · :xn) =
(
φ0(x0: · · · :xn) : · · · : φm(x0: · · · :xn)

)
.

We denote rational maps by a dashed arrow ���.
The nonuniqueness of projective coordinates leads to two basic questions: When

are two rational maps the “same”, and where is a rational map defined?
Given two rational maps Φ = (φ0, . . . , φm) and Φ′ = (φ′

0, . . . , φ
′
m), they agree at

a point x iff

(9.3)
(
φ0(x) : · · · : φm(x)

)
= λ ·

(
φ′
0(x) : · · · : φ′

m(x)
)

for some λ �= 0. Here λ itself can depend on x, thus it is a rational function λ(x).
Thus, two rational maps Φ and Φ′ are considered the same if

(9.4) φ0/φ
′
0 = · · · = φm/φ′

m.

Next write each φi is a quotient of two polynomials φi = pi/qi. This suggests that φi

is not be defined along the hypersurfaces (qi = 0). Furthermore, every point in Pm

has at least one nonzero coordinate, so Φ is also not defined along the intersection
of the hypersurfaces (p0 = 0) ∩ · · · ∩ (pn = 0). Do we get the same answer if we
start with Φ′? Confusingly, the answer is no, but we can turn the nonuniqueness
of projective coordinates to our advantage. Multiplying through with the least
common denominator of the φi in (9.2) and canceling common factors, we can
represent Φ as

(9.5) Φ(x) =
(
P0(x) : · · · : Pm(x)

)
,

where the Pi are polynomials that do not have a common factor. Such a represen-
tation of a rational map Pn ��� Pm is unique (up to multiplication by a constant),
and Φ is defined outside the common zero set of the Pi. From this we can read off
two important properties.
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Claim 9.6. Φ : Pn ��� Pm is everywhere defined iff the Pi in (9.5) have no common
zero. �
Claim 9.7. Write Pi(x) = ci

∏
jrj(x)

m(i,j), where the ci are constants, the rj are

irreducible polynomials, and m(i, j) ≥ 0. Then Φ is defined outside the set

Z :=
⋃

j1 �=j2

(
rj1(x) = rj2(x) = 0

)
. �

Note that Z is made up of many pieces, but each of them is defined by the van-
ishing of two relatively prime polynomials. Thus we expect that Z has codimension
≥ 2 in Pn. This is not hard to see; we state a general version as Theorem 12.

Definition 10 (Rational maps of hypersurfaces). A rational function on a hyper-
surface X ⊂ Pn+1 is the restriction of a rational function φ on Pn+1 to X, provided
the restriction makes sense. That is, when φ is defined on a dense open subset of
X.

As before, a rational map Φ from a hypersurface X ⊂ Pn+1 to Pm is given by
rational functions (φ0: · · · :φm). If Φ(X) is contained in a hypersurface Y ⊂ Pm,
then Φ defines a rational map Φ : X ��� Y . (If we work over C, then by Φ(X) ⊂ Y
we mean that Φ(p) ∈ Y whenever Φ is defined at p ∈ X. In general we need the
algebraic version given in Remark 15.)

We use three important basic properties of rational functions.

Claim 10.1. If X is irreducible and φ is defined at a single point of X, then it is
defined on a dense open subset of X, cf. [Sha74, Sec.I.3.2].

Claim 10.2. If X ⊂ An+1 is affine and φ|X is everywhere defined, then there is a

polynomial p on An+1 such that p|X = φ|X . For example, x3−y
x+y has poles but its

restriction to the x-axis is everywhere defined. We can take p := x2.
This is usually proved as a consequence of Hilbert’s Nullstellensatz , see [Sha74,

Sec.I.3.2].

Purity Principle 10.3. Let φ : X ��� P1 be a rational function on a hypersurface
X. Then the set of points where φ is not defined has codimension 1 everywhere.

This is more subtle. In books it is usually treated as a combination of Krull’s
principal ideal theorem and Serre’s S2 property for hypersurfaces; however, this
form goes back to Macaulay [Mac1916].

Side Remark. Readers may recognize Purity Principle 10.3 as an algebraic coun-
terpart of Hartogs’s extension theorem in several complex variables.

Definition 11 (Morphisms). Φ is defined at a point p ∈ X if it has some repre-
sentation

(11.1) Φ(x) =
(
φ0(x) : · · · : φm(x)

)
as in (9.2), where every coordinate function is defined at p and at least one of them
is nonzero. (The traditional terminology is “Φ is regular” at p, but be warned that
“regular” has other, conflicting uses, even in algebraic geometry.)

A morphism is a rational map that is everywhere defined. We denote morphisms
by a solid arrow →.

Warning 11.2. A major difficulty is that, unlike for Pn where we could write down
the optimal representation in (9.5), there need not be a single form (11.1) that
shows regularity at every point.
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For example, consider the smooth hypersurface Q := (x1x2 = x3x4) ⊂ P3 and
the rational map

Φ : Q ��� P1 given by (x1:x2:x3:x4) �→ (x1:x3).

It is defined outside (x1 = x3 = 0). Next note that x1/x4 = x3/x2, thus Φ can also
be written as

Φ : (x1:x2:x3:x4) �→ (x4:x2),

hence Φ is defined outside (x4 = x2 = 0). Thus Φ is everywhere defined on Q—it
is a morphism.

However, no matter how we write Φ = (p1:p2) for some polynomials pi, the sys-
tem p1 = p2 = x1x2−x3x4 = 0 always has a solution in P3. Thus, unlike Claim 9.6,
we cannot conclude that Φ is everywhere defined using just one representation of
it.

A major theorem of Lefschetz implies that the situation is better for smooth
hypersurfaces of dimension ≥ 3; see paragraph 34 for a discussion.

By contrast, the following generalization of (9.6) holds; see [Sha74, Sec.II.3.1].

Theorem 12. Let X be a smooth hypersurface, and let Φ : X ��� Pm be a rational
map. Then there is a closed subset Z ⊂ X of codimension ≥ 2 such that Φ is
defined on X \ Z. �

Now we come to the definition of “isomorphism” and “almost isomorphism.”

Definition 13. Let Φ : X ��� Y be a rational map between hypersurfaces.

(1) Φ is birational if there is a rational map Φ−1 : Y ��� X that is the inverse
of Φ. That is, Φ−1 ◦Φ and Φ◦Φ−1 are both the identity, wherever they are
defined. If this holds, then we say that X and Y are birationally equivalent
or birational.

(2) An n-dimensional hypersurface X is called rational if it is birational to Pn.
(3) Φ is an isomorphism if both Φ and Φ−1 are morphisms, that is, everywhere

defined.

14. Why birational equivalence? The notion of birational equivalence usually seems
unnatural to people coming from topology—where open dense subsets remember
only the dimension of the manifold—but it should be more natural to people who
work in analysis, measure theory, or probability, where ignoring measure 0 subsets
is common in many questions.

Algebraic geometers feel that this concept is forced upon us, since many inter-
esting maps, for example the stereographic projection, are not defined everywhere.
Thus with many questions it is profitable to study first its birational version, and,
once that is understood, try to see whether the question makes sense or is solvable
up to isomorphism.

Remark 15. Note that an affine hypersurface is birational to its projective closure,
thus its birationality can be checked using affine equations. Two hypersurfaces

X :=
(
h(x1, . . . , xn+1) = 0

)
⊂ An+1

x and
Y :=

(
g(y1, . . . , yn+1) = 0

)
⊂ An+1

y

are birational if there are rational maps

Φ =
(
φ1(x1, . . . , xn+1), . . . , φn+1(x1, . . . , xn+1)

)
and

Ψ =
(
ψ1(y1, . . . , yn+1), . . . , ψn+1(y1, . . . , yn+1)

)
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with the following properties.

(15.1) Φ maps X to Y . In terms of equations this means that g
(
φ1, . . . , φn+1

)
vanishes on X. That is, if we write g

(
φ1, . . . , φn+1

)
as the quotient of two

relatively prime polynomials, then the numerator is divisible by h.
(15.2) Ψ maps Y to X.
(15.3) Φ : X ��� Y and Ψ : Y ��� X are inverses of each other. Note that

Ψ ◦ Φ =
(
ψ1(φ1, . . . , φn+1), . . . , ψn+1(φ1, . . . , φn+1)

)
,

and this is the identity on X iff xi − ψi(φ1, . . . , φn+1) vanishes on X for
every i. Similarly, yj − φj(ψ1, . . . , ψn+1) vanishes on Y for every j.

4. The main questions

Now we are ready to formulate the precise versions of Questions 1 and 2. In
both cases the ideal complete answer would consists of two steps.

• Describe a set of elementary isomorphisms/birational maps between hyper-
surfaces.

• Prove that every isomorphism/birational map between hypersurfaces is el-
ementary, or at least a composite of elementary maps.

So what are these elementary isomorphisms/birational maps?

Isomorphisms of projective hypersurfaces. For projective hypersurfaces X ⊂
Pn+1 the elementary isomorphisms are those that are induced by an automorphism
of Pn+1. It is not hard to see that Aut(Pn+1) ∼= PGLn+2 (cf. [Sha74, III.1.Exrc.17]),
so these are exactly the linear isomorphisms. This leads to the projective version
of Question 1.

Question 16. Let X1, X2 be projective algebraic hypersurfaces in Pn+1, and let
Φ : X1 → X2 be an isomorphism. Is Φ linear? That is, is there an automorphism
Ψ ∈ Aut(Pn+1) ∼= PGLn+2 such that Φ = Ψ|X1

?

We discuss almost complete answers to this is Section 6.

Isomorphisms of affine hypersurfaces. The projective case suggests that for
affine hypersurfaces the elementary isomorphisms should be those that are induced
by an automorphism of An+1. A major difficulty is that Aut(An+1) is infinite
dimensional. For example, given any polynomials gi(xi+1, . . . , xn+1), the map

Φ : (x1, . . . , xn+1) �→
(
x1 + g1, x2 + g2, . . . , xn+1 + gn+1)

is an automorphism of An+1. These automorphisms and GLn together generate the
tame subgroup of Aut(An+1). If n = 1, then we get the whole Aut(A2) by [Abh77]
but the analogous result does not hold in higher dimensions. The counterexample

(x, y, z) �→
(
x− 2(xz + y2)y − (xz + y2)2z, y + (xz + y2)z, z

)
was proposed by Nagata [Nag72] and proved in [SU04]; see [Kur16] for a survey
and [AL92] for a complex analytic version.

Already, the simplest case of the affine isomorphism problem is a quite nontrivial
result of [AM75] and [Suz74].

Theorem 17 (Abhyankar, Moh, and Suzuki). Let C ⊂ A2 be a curve, and let
Φ : C → A1 be an isomorphism. Then Φ extends to an isomorphism

Ψ :
(
C ⊂ A2

) ∼=
(
(coordinate axis) ⊂ A2

)
. �
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The higher dimensional generalization of this is the Abhyankar–Sathaye conjec-
ture (about which very little is known) and a series of counterexamples is proposed
in [CD94]; see also [vdE00, Chap.5].

Conjecture 18. Let X ⊂ An+1 be a hypersurface, and let Φ : X → An be an
isomorphism. Then Φ extends to an isomorphism

Ψ :
(
X ⊂ An+1

) ∼=
(
(coordinate hyperplane) ⊂ An+1

)
.

Interestingly, the union of the n coordinate hyperplanes (x1 · · ·xn = 0) has a
unique embedding into Cn by [Jel97]. For some recent results connecting the affine
isomorphism problem with the methods of Section 9, see [CDP17].

Birational equivalence of hypersurfaces. It seems natural to formulate Ques-
tion 2 in two variants. Note that an affine hypersurface is birational to its projective
closure, so for the birationality questions there is no need to distinguish the affine
and the projective cases.

Question 19. Which algebraic hypersurfaces are rational (as in Definition 13(2))?

Question 20. When are two algebraic hypersurfaces birational to each other?

Example 21 (Rational hypersurfaces). It has been long understood that even
high degree hypersurfaces can be rational if they are very singular. Here are some
examples of this.

(21.1) Let X ⊂ Pn+1 be given by an equation

Hd−1(x0, . . . , xn)xn+1 +Hd(x0, . . . , xn) = 0,

where Hj is homogeneous of degree j. Projection from the point (0: · · · :0:1)
to the hyperplane (xn+1 = 0) is birational, the inverse is given by

(x0: · · · :xn) �→
(
x0: · · · :xn:

Hd(x0, . . . , xn)

Hd−1(x0, . . . , xn)

)
.

If d = 2, then this is the stereographic projection. If d ≥ 3, then (0: · · · :0:1)
is a singular point of X.

(21.2) Let X ⊂ P2n+1 be a hypersurface of degree 2d+ 1 given by an equation of
the form ∑

I,J,k

aI,J,k ·MI ·NJ · xk,

where MI is a degree d monomial in the variables x0, . . . , xn and NJ is a
degree d monomial in the variables xn+1, . . . , x2n+1 and xk is arbitrary. (In
particular, X contains the linear subspaces L1 := (x0 = · · · = xn = 0) and
L2 := (xn+1 = · · · = x2n+1 = 0).) Then X is rational. We will work out
the 2d+ 1 = 3 case in detail in Proposition 24.

If 2d+ 1 = 3, then a general such X is smooth, but for 2d+ 1 ≥ 5 it is
always singular along the Li.

(21.3) Take degree d homogeneous polynomials p0(x), . . . , pn+1(x). They define
a rational map Φ : Pn ��� Pn+1. It is not hard to show that if the pi
are general, then Φ is a morphism whose image Y = Y (p0, . . . , pn+1) is
a rational hypersurface of degree dn. However, Y has very complicated
self-intersections.
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These and many other examples suggest that Questions 19 and 20 are reasonable
only if the hypersurfaces are smooth or mildly singular. We will focus on the smooth
cases.

Question 22. Which smooth algebraic hypersurfaces are rational?

Question 23. When are two smooth algebraic hypersurfaces birational to each
other?

So far is not even clear that not all hypersurfaces are rational. We see later that
this is not at all the case, but first we give some rational examples.

5. Rationality of cubic hypersurfaces

We proved in Theorem 7 that a smooth quadric hypersurface is rational. In
this section we consider the rationality of cubic hypersurfaces. This is a topic
with many interesting results and still unsolved questions. The simplest rationality
construction is the following special case of (21.2).

Proposition 24. Let S ⊂ P3 be a cubic surface that contains two disjoint lines.
Then S is rational.

Geometric Proof. Let the lines be L1, L2. Pick points pi ∈ Li. The line connecting
them, which we call 〈p1,p2〉, meets S in three points. We already know two of
them, namely p1,p2. Let φ(p1,p2) be the third intersection point. This gives a
rational map

(24.1) φ : L1 × L2 ��� S.

To get its inverse, pick q ∈ P3 and let π : P3 ��� P2 denote the projection from q.
Then π(L1), π(L2) are two lines in P2, hence they meet at a unique point q′. Thus
we get pi ∈ Li such that π(pi) = q′. This gives

(24.2) ψ : P3 ��� L1×L2 such that ψ|S = φ−1. �
Algebraic Proof. We can choose coordinates such that L1 = (x0 = x1 = 0) and
L2 = (x2 = x3 = 0). Thus the equation of S can be written (nonuniquely) as

(24.3)
∑
i=0,1

∑
j=2,3

�ij(x)xixj ,

where the �ij(x) are linear in the variables x0, . . . , x3.
If p1 = (a0:a1:0:0) and p2 = (0:0:a2:a3), then the line connecting them is

(24.4) P1 � (s:t) �→ (sa0:sa1:ta2:ta3) ∈ P3.

Substituting into (24.3), we get an equation

(24.5)
∑
i=0,1

∑
j=2,3

�ij(sa0:sa1:ta2:ta3)saitaj = st
∑
i=0,1

∑
j=2,3

�ij(sa0:sa1:ta2:ta3)aiaj .

After dividing by st, the remaining equation is linear in s, t, thus it has a unique
solution (up to a multiplicative constant)

(24.6) (s:t) =
(
−

∑
i=0,1

∑
j=2,3

�ij(0:0:a2:a3)aiaj :
∑

i=0,1

∑
j=2,3

�ij(a0:a1:0:0)aiaj

)
. �

This can be used to prove the following result of [Cle1866].

Corollary 25 (Clebsch). Every smooth cubic surface over C is rational.
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Hint of Proof. By Proposition 24 it is enough to find two disjoint lines. In fact,
every smooth cubic surface over C contains 27 lines. This was first proved by
Cayley and Salmon in 1849 and published in [Sal1865]; see the next example or any
of [Rei88, Chap.7], [Rei97, Chap.1], or [Sha74, Sec.IV.2.5] for proofs.

Example 26. Consider the degree d hypersurface

X :=
(
xd
0 + · · ·+ xd

2n+1 = 0
)
⊂ P2n+1.

Divide the indices into n+ 1 disjoint ordered pairs (xτ(i), xσ(i)) : i = 0, . . . , n. Fix
dth roots ε0, . . . , εn of −1. Then

L = L(τ, σ, ε) :=
(
xτ(i) = εixσ(i) : i = 0, . . . , n

)
is a linear space of dimension n contained in X. Thus X contains at least

dn+1(2n+ 2)!

2n+1(n+ 1)!

linear subspaces of dimension n. Not all but many pairs of these linear subspaces
are disjoint, for example L(τ, σ, ε) is disjoint from L(τ ′, σ′, ε′) if τ = τ ′, σ = σ′ but
εi �= ε′i for every i. For n = 2, d = 1 we get all 27 lines on the particular cubic
surface.

The following is proved in [Seg43]; see [KSC04, Chap.2] for a modern treatment.

Side Theorem 27 (Segre). The cubic surface

S = S(a0, a1, a2, a3) :=
(
a0x

3
0 + a1x

3
1 + a2x

3
2 + a3x

3
3 = 0

)
⊂ P3

defined over a field k is not rational over k if for every permutation σ of the indices,
the quotient (aσ(0)aσ(1))/(aσ(2)aσ(3)) is not a cube in k. �

28. Cubic 3-folds. In contrast to Corollary 25, smooth cubic 3-folds X3 ⊂ P4 are
all nonrational [CG72]. This is proved by analyzing the Hodge structure of the
cohomology groups. This method has been very successful for many other three-
dimensional cases, but extensions to higher dimensions are still lacking.

29. Cubic 4-folds. A cubic 4-fold is defined by a degree 3 homogeneous polynomial
in six variables. These form a vector space of dimension

(
8
5

)
= 56. Since we do

not care about multiplicative constants, we can think of the set of all cubic 4-folds
as points in a P55. The smooth ones correspond to an open subset of it. (This is
a general feature of algebraic geometry. Isomorphism classes frequently naturally
correspond to points of another algebraic variety, called the moduli space.)

A long-standing conjecture that grew out of the works of [Mor40,Fan43] says that
a general smooth cubic 4-fold is not rational. [Has99] describes countably many
hypersurfaces Hi ⊂ P55 and conjectures that a cubic 4-fold X is not rational if the
corresponding point [X] ∈ P55 is outside these hypersurfaces. See the collection
[BHKV16] for recent surveys.

The strongest results, due to Russo and Staglianò [RS17], prove rationality for cu-
bic 4-folds corresponding to three of the hypersurfacesHi (i = 14, 26, 38 in Hassett’s
notation). Just to show that there are some rather subtle rationality constructions,
here is one of the beautiful examples they discovered for H38.

Pick ten general points Pj ∈ P2 and six general polynomials pi(x, y, z) of degree
10 that vanish with multiplicity 3 at all the points Pj . Let F be the surface obtained
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as the image of the map

Ψ : P2 ��� P5 : (x:y:z) �→
(
p0(x:y:z) : · · · : p5(x:y:z)

)
.

[RS17] shows that there are five linearly independent quintic polynomials q0, . . . , q4
on P5 that vanish along F with multiplicity 2. These give a rational map Φ : P5 ���
P4 whose general fiber is a conic that intersects F at five points. A conic and a
cubic hypersurface typically have six points in common, and F accounts for five of
these for the conics of the form Φ−1(p). Thus, sending a point p ∈ P4 to the unique
sixth intersection point in X ∩ Φ−1(p) gives the inverse of Φ|X : X ��� P4.

It turns out that this construction works for a 54-dimensional subfamily H38 of
the 55-dimensional family of all cubics.

The method of the proof of these claims in [RS17] shows both the power and
the limitations of algebraic geometry. Consider for instance the claim about the
five linearly independent quintic polynomials. Standard methods imply that there
are at least five such linearly independent quintics. Then other semicontinuity
arguments show that if there are exactly five in at least one concrete example, then
there are exactly five in almost all cases. Moreover, it is enough to find one such
example over a finite field. Russo and Staglianò programmed a computer to try out
random cases until it hit one that worked. Since in algebraic geometry the term
“almost all” usually means a dense open subset, there is every reason to believe
that this leads to a solution.

The disadvantage is that while we proved rationality for smooth cubics corre-
sponding to an open, dense subset in the 54-dimensional hypersurface H38 ⊂ P55,
we have no idea which open, dense subset it is.

Fortunately, in this case the recent results of [NS17,KT17] imply that for any
family of smooth hypersurfaces parametrized by a variety V , once rationality holds
for hypersurfaces corresponding to points in an open, dense subset of V , then ration-
ality holds for all hypersurfaces in the family, but this requires entirely different
methods. In particular, rationality holds for all smooth cubics corresponding to
H38.

6. Isomorphism of hypersurfaces

The following theorem answers Question 16.

Theorem 30. Let X1, X2 ⊂ Pn+1 be irreducible hypersurfaces, and let Φ : X1
∼= X2

be an isomorphism. Then Φ is obtained by a linear change of coordinates in Pn+1,
except possibly in the following three cases:

(1) dimX1 = dimX2 = 1 and {degX1, degX2} = {1, 2},
(2) dimX1 = dimX2 = 1 and degX1 = degX2 = 3, or
(3) dimX1 = dimX2 = 2 and degX1 = degX2 = 4.

First we describe in detail the exceptional cases.
The first exceptional case is given by the stereographic projection of a plane

conic to a line. This is the only dimension where the stereographic projection is an
isomorphism.

The second exceptional case is d = 3 and n = 1, that is, degree 3 curves in P2.
This is the theory of elliptic curves and elliptic integrals. We give a description
using the theory of the Weierstrass ℘-function; see [Sie69, Chap.1], [Sil86, Chap.6],
[SS03, Chap.9], or many other books on complex analysis for details.
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31. Side Example: Weierstrass ℘-function. Let Λ ⊂ C be a lattice. After multi-
plying by a suitable c ∈ C∗, we can achieve that its generators are 1 and τ where
Im(τ ) > 0. The Weierstrass ℘(z) and its derivative ℘′(z) satisfy an equation

℘′(z)2 = 4℘2(x)− g4℘(z)− g6,

where the precise formulas for the gi are not important for us. Thus σ : z �→(
℘(z):℘′(z):1

)
gives an isomorphism

σ : C/Λ ∼= Cτ :=
(
y2w = 4x3 − g4xw

2 − g6w
3) ⊂ P2

xyw.

The origin is mapped to the point at infinity which is an inflection point of the
curve.

For any z0 ∈ C, we can also use σz0 : z �→
(
℘(z− z0):℘

′(z− z0):1
)
to get another

isomorphism

σz0 : C/Λ ∼= Cτ =
(
y2w = 4x3 − g4xw

2 − g6w
3) ⊂ P2

xyw.

Here the point z0 ∈ C is mapped to the inflection point at infinity.
A linear automorphism of P2

xyw preserves inflection points, so the automorphism

σz0 ◦ σ−1 : Cτ
∼= Cτ cannot be linear if σ(z0) is not an inflection point.

With a little more work, we get that σz0σ
−1 : Cτ

∼= Cτ is linear iff z0 ∈ 1
3Λ.

Example 32. A more geometric way of obtaining a nonlinear automorphism of a
smooth plane cubic C ⊂ P2 is the following. Pick a point p0 ∈ C and for p ∈ C let
τp0

(p) denote the third intersection point of the line 〈p, p0〉 with C. Thus τp0
is an

involution of C, and it is linear iff p0 is an inflection point of C.
In the description of Side Example 31, we can get τp0

as z �→ 2z0 − z, where
σ(z0) = p0.

The third exceptional case is d = 4 and n = 2, that is, degree 4 surfaces in
P3. Here there are many known examples of nonlinear isomorphisms, but these are
not easy to find and we do not have a complete description. A rather large set of
examples is the following.

Example 33. Start with P3
x×P3

y and four bilinear hypersurfaces given by equations

Hk := (
∑

ij a
k
ijxiyj = 0). Set S := H1∩· · ·∩H4. In order to compute its projection

to P3
x, we view the Hk as linear equations in the y-variables. The coefficient matrix

is

B =
(
bkj

)
where bkj =

∑
i

akijxi.

A given point p ∈ P3
x is in πx(S) iff B(p)yt = 0 has a nonzero solution y and this

in turn holds iff detB(p) = 0. Thus

πx(S) =
(
detB(x) = 0

)
⊂ P3

x.

Similarly, the image of the projection to P3
y is given by

πy(S) =
(
detC(y) = 0

)
where C =

(
cki

)
=

( ∑
j

akijyj

)
.

It is not hard to check that, for general akij , the projections give isomorphisms

S ∼=
(
detB(x) = 0

)
and S ∼=

(
detC(y) = 0

)
.
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In particular, the quartic surfaces
(
detB = 0

)
and

(
detC = 0

)
are isomorphic to

each other. By Cramer’s rule the isomorphism between them can be given by the
coordinate functions

φj(x) = (−1)j−1 detB4j(x),

where B4j is the submatrix obtained by removing the fourth row and jth column.
So the φj(x) are cubic polynomials.

In principle it could happen that
(
detB(x) = 0

)
and

(
detC(y) = 0

)
are iso-

morphic by a linear isomorphism. This does not occur for general akij , though this
needs proof. See [SS16,Ogu16] for this and other such examples.

One can play the same game with Pn+1
x × Pn+1

y and n + 2 bilinear hypersur-
faces. It turns out that for n ≥ 3 the projections are birational but they are not
isomorphisms, and the image hypersurfaces are always singular. Nonetheless, this
construction gives very interesting examples of mildly singular (in fact with termi-
nal singularities) hypersurfaces that are birational to each other in an unexpected
way.

34. Comments on the Proof of Theorem 30. The theorem is an easy consequence
of some big theorems, and one should prove the big theorems. I give only the bare
outlines and references.

Assume first that dimX ≥ 3. The main point is to show that rational maps
X ��� Pm have a unique optimal representation, analogous to (9.5). We start with
a single rational function.

Claim 34.1. Let X ⊂ Pn+1 be a smooth hypersurface of dimension n ≥ 3. Let φ be
a rational function on X. Then there are homogeneous polynomials p, q such that
φ = (p/q)|X and

(a) the (closure of the) zero set of φ is exactly X ∩ (p = 0) and
(b) the (closure of the) polar set of φ is exactly X ∩ (q = 0).

A key observation of Lefschetz is that although Claim 34.1 is algebraic, the
hardest part of it is topological. The closure of the zero set of φ is a subset Z ⊂ X(C)
of real codimension 2. It has a homology class in H2n−2

(
X(C),Z

)
, we prefer to use

instead its dual cohomology class [Z] ∈ H2
(
X(C),Z

)
. So the topological version

of Claim 34.1 asks whether [Z] ∈ H2
(
X(C),Z

)
is obtained as the restriction of

an element of H2
(
CPn+1,Z

)
. The following is a consequence of the Lefschetz

hyperplane theorem; see [Lef50], [Gro68] or [GH78, p.156] for proofs.

Theorem 34.2. Let X ⊂ Pn+1 be a smooth hypersurface. Then the natural map

(34.2.a) Hi
(
CPn+1,Z

)
→ Hi

(
X(C),Z

)
is an isomorphism for i < n. �

We already hinted that Claim 34.1 needs the case i = 2 (hence the assumption
n ≥ 3), and going from the topological to the algebraic version also needs (34.2.a)
for i = 1.

From Claim 34.1 it is easy to derive the following generalization of (9.5).

Claim 34.3. Let X ⊂ Pn+1 be a smooth hypersurface of dimension n ≥ 3, and let
Φ : X → Pm be a nonconstant morphism. Then it can be written as

Φ =
(
P0(x) : · · · : Pm(x)

)
, where

(a) the Pi are homogeneous polynomials of the same degree d and
(b) they do not have a common zero on X. �
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Finally, it is straightforward to conclude that if Φ is an injection, then the degree
of its image is ddimX · degX. Thus X ↪→ Pn+1 is the unique smallest degree
embedding of X into any projective space, up to linear coordinate changes.

As we saw in Warning 11.2, Claim 34.1 does not hold if dimX = 2, and, by
Example 33, the case dimX = 2, degX = 4 is exceptional. A different approach
for all cases where dimX ≥ 2, degX �= dimX+2, will be discussed in paragraph 43.

Finally, for n = 1, a theorem of Noether [Noe1882, Sec.5] describes all low degree
embeddings of a plane curve into some projective space. A particular case of this
says that an irreducible plane curve of degree ≥ 4 has a unique embedding into P2.
A complete proof is given by Hartshorne [Har86], see also [ACGH85, p.56].

7. Nonrationality of large degree hypersurfaces

We start with the following answer to Question 22.

Theorem 35. Let X ⊂ Pn+1 be a smooth hypersurface of degree d. If d ≥ n + 2,
then X is not rational. More strongly, the image of every rational map Φ : Pn ��� X
has dimension ≤ n− 1.

The stronger property is usually stated as “X is not unirational”. The theorem
will be a direct consequence of Propositions 40 and 42, and the same method also
answers Question 23 for large degree hypersurfaces.

Theorem 36. Let X1, X2 ⊂ Pn+1 be smooth hypersurfaces of degrees d1, d2 that
are birational to each other. Assume that d1 ≥ n + 3. Then d1 = d2 and the Xi

can be obtained from each other by a linear change of coordinates.

In order to prove Theorem 35, we need to study algebraic differential forms.

Definition 37. Let X be a smooth hypersurface of dimension n. As we noted in
Definition 6, it is also a real manifold of dimension 2n. An algebraic differential
m-form is a differential m-form that locally can be written as linear combination
of terms

(37.1) φ(x) · dψ1(x) ∧ · · · ∧ dψm(x),

where φ and the ψi are rational functions. An algebraic differential form is defined
at a point p ∈ X if it can be written with summands as in (37.1) where φ and the
ψi are all defined at p.

We will be especially interested in n-forms, which are the algebraic volume forms.
(It is not hard to check that if σ is an algebraic volume form, then σ ∧ σ̄ is a usual
volume form, (up to a power of

√
−1), albeit possibly with zeros and poles.)

Example 38 (Algebraic volume forms on Cn). On Cn the standard volume form
is dz1 ∧ · · · ∧ dzn. If ψ is a rational function, then

dψ =
∑
i

∂ψ

∂zi
dzi,

hence every algebraic volume form can be written as

(38.1) σ := φ(z) · dz1 ∧ · · · ∧ dzn,

where φ is a rational function. This in undefined precisely where φ is undefined.
Thus, as we noted in Definition 8, either σ is everywhere defined or it is undefined
exactly along a hypersurface.
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The projective case behaves quite differently.

Lemma 39. There are no everywhere defined algebraic volume forms on Pn.

Proof. We use projective coordinates X0: · · · :Xn and show the claim using just two
of the affine charts. Let these be

(x1, . . . , xn) =
(
X1/X0, . . . , Xn/X0

)
,

(y0, . . . , yn−1) =
(
X0/Xn, . . . , Xn−1/Xn

)
.

Thus, we can transition between these charts by the formulas

x1 =
y1
y0

, . . . , xn−1 =
yn−1

y0
, xn =

1

y0
.

This gives that

dx1 ∧ · · · ∧ dxn = d
y1
y0

∧ · · · ∧ d
yn−1

y0
∧ d

1

y0
=

(−1)n

yn+1
0

· dy0 ∧ · · · ∧ dyn−1.

By Example 38, any algebraic volume form on the first chart Cn
x is of the form

f(x) · dx1 ∧ · · · ∧ dxn. On the second chart Cn
y it becomes

(−1)n

yn+1
0

f

(
y1
y0

, . . . ,
yn−1

y0
,
1

y0

)
· dy0 ∧ · · · ∧ dyn−1.

Thus, it has a pole of order ≥ n+ 1 along (y0 = 0), so it is not defined there. �

Proposition 40. Let X be a smooth projective hypersurface that has an everywhere
defined, nonzero, algebraic volume form σX . Then X is not rational. In fact, there
is not even a rational map Φ : Pn ��� X with dense image.

Proof. By Claim 9.6 (or the more general Theorem 12), there is a closed subset
Z ⊂ Pn of codimension ≥ 2 such that Φ is defined on Pn \ Z. Thus Φ∗σX is an
algebraic volume form on Pn \ Z. By the purity of poles noted in Example 38,
Φ∗σ must extend to an everywhere defined algebraic volume form on Pn. This is
impossible by Lemma 39. �

Side Remark. The second part of Proposition 40 is one result that is quite different
in positive characteristic. If we are in characteristic p, then (xp)′ = pxp−1 is iden-
tically 0. Thus the pullback of a nonzero algebraic volume form can be identically
zero.

Thus, should we write down algebraic volume forms on hypersurfaces. We start
with the affine case.

41. Algebraic volume forms on affine hypersurfaces. Let X ⊂ Cn+1 be a hyper-
surface. As in [Sha74, Sec.III.6.4], it is quite easy to write down a nowhere zero
volume form on Xsm, the smooth part of X.

Claim 41.1. For any hypersurface X = (h = 0) ⊂ Cn+1, the volume forms

(41.2) σi :=
(−1)i

∂h/∂zi
dz1 ∧ · · · ∧ d̂zi ∧ · · · ∧ dzn+1

patch together to a volume form σX that is defined and nowhere zero on Xsm.
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Proof. By definition, h|X = 0, thus dh =
∑

j
∂h
∂zi

dzj is also zero on X. Wedging
it with all the dzi except dzi1 and dzi2 gives that σi1 = σi2 . Thus, the σi patch
together to a rational volume form on X.

It is clear that σi is defined and nowhere zero on the open set where ∂h/∂zi �= 0.
Thus at least one of the σi is defined at a smooth point of X, so σX is defined and
nowhere zero on Xsm. �

As a counterpart/consequence of Claim 10.2 we obtain the following.

Claim 41.3. Let X ⊂ An+1 be a smooth hypersurface and ρ an everywhere defined
algebraic volume form on X. Then it can be written as ρ = p(x)σX , where p is a
polynomial on An+1. �

We already noted the following analogue of Claim 10.1 for X = Cn, the general
case is proved similarly using Claim 10.1.

Purity Principle 41.4. Let ρ be an algebraic volume form on a smooth hypersurface
X. Then either ρ is everywhere defined or it is not defined along a codimension 1
subset of X.

Proposition 42. Let X ⊂ Pn+1 be a smooth hypersurface of degree d. If d ≥ n+2,
then it has a nonzero, everywhere defined, algebraic volume form.

More precisely, the vector space of everywhere defined, algebraic volume forms
on X is naturally isomorphic to the vector space of homogeneous polynomials of
degree d− n− 2 in n+ 2 variables.

Proof. We can combine the computations of paragraph 41 and Lemma 39 to de-
termine the volume forms on smooth hypersurfaces, but the following way may be
quicker.

As we discussed in Definition 5, CPn+1 is the quotient of Cn+2 \ {0} by the
C∗-action

(42.1) mλ : (X0, . . . , Xn+1) �→ (λX0, . . . , λXn+1),

which is induced by the vector field vX :=
∑

Xi
∂

∂Xi
.

We can thus think of a volume form on CPn+1 as a C∗-equivariant volume form
on Cn+2 \{0}, contracted by the vector field vX . By Claim 41.3 every volume form
on Cn+2 \ {0} extends to a volume form on Cn+2.

Next, let X = X(H) ⊂ CPn+1 be a smooth hypersurface of degree d, and let
CX := (H = 0) ⊂ Cn+2 be the cone (5.5) over it. Denote the cone minus its vertex
by C◦

X . We can thus view a volume form on X as a C∗-equivariant volume form
on C◦

X contracted by vX . We wrote down a nowhere zero volume form on C◦
X in

(41.2). Choose the chart where it is given by

(42.2) ΣX :=
{ ±1

∂H/∂Xn+1
dX0 ∧ · · · ∧ dXn

}
.

In particular,

(42.3) m∗
λΣX = λn+1−(d−1)ΣX .

Thus if G is any homogeneous polynomial, then

(42.4) m∗
λ

(
GΣX) = λdegG+n+2−d ·GΣX .

Hence GΣX is C∗-invariant iff degG = d− n− 2.
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Let us work out explicitly what we get in terms of the forms σi given in (41.2).
Contracting GΣX by vX gives

(42.5)
∑

Xi
∂

∂Xi

(
GΣX) =

n∑
i=0

XiG · dX0 ∧ · · · ∧ d̂Xi ∧ · · · ∧ dXn

∂H/∂Xn+1
.

We need to pull this back to X by the map (x1, . . . , xn+1) �→ (1:x1: · · · :xn+1). The
pullback of dX0 is then 0, and the only term that survives is

(42.6) G(1, x1, . . . , xn+1)
dx1 ∧ · · · ∧ dxn

∂H(1, x1, . . . , xn+1)/∂xn+1
= G(1, x1, . . . , xn+1) · σn+1,

where σn+1 is as in (41.2). �

43. Comments on the Proofs of Theorems 30 and 36. We proved in Proposition 42
that the vector space of homogeneous polynomials of degree degX −n− 2 in n+2
variables (an invariant of the embedding X ↪→ Pn+1) is naturally isomorphic to
the vector space of everywhere defined algebraic volume forms on X (an intrinsic
invariant of X).

We are completely done with both theorems if d = n+3. Then the volume forms
tell us the linear polynomials, and they define the embedding X ↪→ Pn+1.

We are almost done if d > n+ 3; the missing ingredient is that H2
(
X(C),Z

)
is

torsion free for dimX ≥ 2. This is another special case of the Lefschetz hyperplane
theorem.

If d < n + 3, then we can use the duals of holomorphic volume forms. These
are wedge products of tangent vector fields. We can pull back a vector field by
an isomorphism but not by an arbitrary map. This is why Theorem 30 works for
d < n+ 3 but Theorem 36 does not. �

8. Nonrationality of low degree hypersurfaces

In the previous section we proved that a smooth hypersurface X ⊂ Pn+1 of
degree ≥ n+ 2 is not rational. Here we discuss what is known when the degree is
≤ n+1. Most of the results use different—and much more advanced—methods, so
we give the statements only, with barely a hint of how they can be proved.

We proved in Theorem 7 that every irreducible quadric hypersurface is rational
over C and, by Corollary 25, every smooth cubic surface is rational.

We already noted that smooth cubic 3-folds are all nonrational, and the same
holds for smooth quartic 3-folds [IM71]; we say more about this in Section 9.

Another method, using differential forms over fields of positive characteristic,
was introduced in [Kol95]. We proved in (42.5) that if degX < n + 2, then there
are no everywhere defined n-forms on X. One can show that there are also no
everywhere defined algebraic r-forms on X for r ≤ n.

It turns out that while the first of these claims continues to hold over fields of
positive characteristic, there are some singular hypersurfaces that carry (n − 1)-
forms. After dealing with some technical issues involving these singularities, one
can sometimes conclude that these hypersurfaces are nonrational. However, this
happens in positive characteristic. Nonetheless, one can use some general theorems
going back to Matsusaka and Mumford [MM64] to get similar conclusions over C.

A serious drawback is that we can prove nonrationality only for hypersurfaces
X = (

∑
I aIx

I = 0) whose coefficients satisfy countably many conditions of the
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form pj(aI) �= 0, where the pj are (pretty much unknown) polynomials. We refer
to such hypersurfaces as very general.

Theorem 44 ([Kol95]). Very general hypersurfaces Xd ⊂ Pn+1 of degree d ≥ 2
3n+3

are not rational. Moreover, Xd is not birational to any product P1 × Y , where Y is
a hypersurface (or variety) of dimension n− 1.

I stress that we really do not know which hypersurfaces are covered by the
theorem, though some concrete examples were written down in [Kol96, Sec.V.5].

Another argument, this time using degeneration to certain singular varieties and
the topology of their resolution, was introduced by Voisin [Voi15]. It was used by
many authors to prove nonrationality of varieties. For hypersurfaces the strongest
result is proved by [Sch18].

Theorem 45 (Schreieder). Very general hypersurfaces Xd ⊂ Pn+1 of degree d ≥
2 + log2 n are not rational for n ≥ 3.

9. Rigidity of low degree hypersurfaces

Much less is known about Question 20 for hypersurfacesXd ⊂ Pn+1 whose degree
is 3 ≤ d ≤ n + 1. We studied the degree 3 case in Section 5. The answer in the
d = n + 1 case is one of the crowning achievements of the Noether–Fano rigidity
theory.

I call it the Noether–Fano–Segre–Iskovskikh–Manin–Pukhlikov–Corti–Cheltsov–
deFernex–Ein–Mustaţă–Zhuang theorem, although the contributions of Fano,
Iskovskikh, and Pukhlikov were the most substantial. See [Kol18] for a detailed
survey.

Theorem 46. Let X ⊂ Pn+1 be a smooth hypersurface of degree n + 1. Assume
that n ≥ 3. Then X is not birational to any other smooth hypersurface.

47. A short history of Theorem 46. The first similar result is Max Noether’s
description of all birational maps P2 ��� P2 [Noe1870], whose method formed the
basis of all further developments.

Theorem 46 was first stated by Fano for 3-folds [Fan1908, Fan1915]. His ar-
guments contain many of the key ideas, but they also have gaps. I call this
approach the Noether–Fano method. The first complete proof for 3-folds, along
the lines indicated by Fano, is in Iskovskikh and Manin [IM71]. Iskovskikh and
his school used this method to prove similar results for many other 3-folds; see
[Isk79,Sar80, IP99, Isk01]. This approach was gradually extended to higher dimen-
sions by Pukhlikov [Puk87,Puk98,Puk02] and Cheltsov [Che00]. These results were
complete up to dimension 8, but needed some additional general position assump-
tions in higher dimensions. A detailed survey of this direction is in [Puk13].

The Noether–Fano method and the Minimal Model Program were brought to-
gether by Corti [Cor95]. (See [Kol87] for a by-now outdated but elementary in-
troduction and [KM98] for a detailed treatment.) Corti’s technique has been very
successful in many cases, especially for 3–folds; see [CR00] for a detailed study
and [KSC04, Chap.5] for an introduction. However, usually one needs some special
tricks to make the last steps work, and a good higher dimensional version proved
elusive for a long time.

New methods involving multiplier ideals were introduced by de Fernex, Ein,
and Mustaţă [dFEM03]; these led to a more streamlined proof that worked up to
dimension 12. The proof of Theorem 46 was finally completed by de Fernex [dF16].
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The recent paper of Zhuang [Zhu18] makes the final step of the Corti approach
much easier in higher dimensions. The papers [SZ18, Zhu18, LZ18] contain more
general results and applications.

10. Connections with the classification of varieties

So far I have studiously avoided assuming prior knowledge of algebraic geometry.
However, in order to explain the place of these results in algebraic geometry, it
becomes necessary to use the basic theory, as in [Sha74, Vol.I]. In particular we
need to know the notions of ampleness and canonical class KX .

The classification theory of algebraic varieties—developed by Enriques for sur-
faces and extended by Iitaka and then Mori to higher dimensions—says that every
variety can be built from three basic types:

• General type: KX is ample,
• Calabi–Yau: KX is trivial, and
• Fano: −KX is ample;

see [Kol14] for an introduction. Moreover, in the Fano case the truly basic ones are
those that satisfy H2

(
X(C),Z

) ∼= Z. (It is better think of the last condition as X
having class number equal to 1. That is, every divisor D on X is linearly equivalent
to a (possibly rational) multiple of −KX .)

The computations of Proposition 42 show that if X ⊂ Pn+1 is a smooth hyper-
surface, then it is of general type iff degX ≥ n+3, it is Calabi–Yau iff degX = n+2,
and it is Fano iff degX ≤ n+ 1.

As in Theorem 36, one can see that if two varieties X1, X2 on the basic type
list are birationally equivalent, then they have the same type. Furthermore, in the
general type case they are even isomorphic; this generalizes Theorem 36. In the
Calabi–Yau case, X1 and X2 need not be isomorphic, but the possible birational
maps between two Calabi–Yau varieties are reasonably well understood, especially
in dimension 3; see, for example, [Kol89,Kol91,CK16].

It is very useful to think of Fano varieties as representatives of rationally con-
nected varieties, but this would have taken us in another direction; see [Kol01] for
an overview and [Kol96,AK03] for more detailed treatments.

Thus, from the general point of view, for low degree cases, the best variant of
Question 20 is the following.

Definition 48. A Fano variety X with class number 1 is called weakly superrigid
if every birational map Φ : X ��� Y to another Fano variety Y with class number
1 is an isomorphism.

Question 49. Which Fano varieties are weakly superrigid?

The adjective “weakly” is not standard; I use it just to avoid further definitions.
The correct definition of superrigid allows Y to have terminal singularities and to
be a Mori fiber space; see [Puk95,Che05]. The proofs in the Noether–Fano theory
are designed to prove superrigidity. However, there should be many varieties that
are weakly superrigid but not superrigid; see Question 54.

11. Open problems about hypersurfaces

The following questions are stated in the strongest forms that are consistent
with known examples. I have no reason to believe that the answer to any of them
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is positive, and there may well be rather simple counterexamples. As far as I
know, there has been very little work on low degree hypersurfaces beyond cubics in
dimension 4.

All the known rationality constructions work for even dimensional cubics only,
so the following is still open.

Question 50. Is there any odd dimensional, smooth, rational cubic hypersurface?

We leave to the reader the easy task of generalizing Proposition 24 to the fol-
lowing higher dimensional version.

Proposition 51. Let X ⊂ P2n+1 be a cubic hypersurface that contains two disjoint
linear subspaces of dimension n. Then X is rational. �

This leaves the following open.

Question 52. Is the general even dimensional, smooth, cubic hypersurface of di-
mension ≥ 4 nonrational?

We saw that quadrics are rational and Proposition 51 gives examples of cubic
hypersurfaces that are rational. However, no rationality construction is known
for smooth hypersurfaces of higher degree. Example (21.2) gives higher degree
rational hypersurfaces X2n

2d+1 ⊂ P2n+1, but they are always singular. However, the
singularities are mild when d ≤ n. To be precise, they are canonical if d ≤ n and
terminal if d ≤ n − 1. (See [KM98, Sec.2.3] or [Kol13] for introductions to such
singularities.) Thus, the following problem is still open.

Question 53. Is there any smooth, rational hypersurface of degree ≥ 4?

Understanding birational maps between Fano hypersurfaces is even harder. The-
orem 46 deals with smooth hypersurfaces X ⊂ Pn+1 of degree n+ 1.

Question 54. Is every birational map between smooth hypersurfaces of degree ≥ 5
an isomorphism?

Here ≥ 5 is necessary since there are some smooth quartics with nontrivial
birational maps.

Example 55. Let X ⊂ P2n+1 be a quartic hypersurface that contains two disjoint
linear subspaces L1, L2 of dimension n.

As in Proposition 24, for every p ∈ P2n+1 \ (L1 ∪ L2) there is a unique line �p
through p that meets both L1, L2. This line meets X in four points; two of these
are on L1, L2. If p ∈ X, then this leaves a unique fourth intersection point, call it
Φ(p). Clearly, Φ is an involution which is not defined at p if either p ∈ L1 ∪ L2 or
if �p ⊂ X.

To get a concrete example, for n ≥ 2 consider the smooth, quartic hypersurface

X :=
(
x4
0 + · · ·+ x4

2n+1 = 0
)
⊂ P2n+1.

Then Aut(X) is finite (probably of order 42n+1 ·(2n+2)!) but combining Example 26
with the above observation gives many birational involutions on X. Most likely
these involutions generate an infinite subgroup of Bir(X).
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naud; Séminaire de Géométrie Algébrique du Bois-Marie, 1962; Advanced Studies in
Pure Mathematics, Vol. 2. MR0476737

[Hal1695] Edmond Halley, An easie demonstration of the analogy of the logarithmick tangents
to the meridian line or sum of the secants: With various methods for computing the
same to the utmost exactness, Phil. Trans. Royal Soc. 19 (1695), 202–214.

[Har86] R. Hartshorne, Generalized divisors on Gorenstein curves and a theorem of Noether,
J. Math. Kyoto Univ. 26 (1986), no. 3, 375–386, DOI 10.1215/kjm/1250520873.
MR857224

[Has99] B. Hassett, Some rational cubic fourfolds, J. Algebraic Geom. 8 (1999), no. 1, 103–114.
MR1658216

[IM71] V. A. Iskovskih and Ju. I. Manin, Three-dimensional quartics and counterexamples to
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Algebra i Algebr. Geom., 278–289, Dedicated to Academician Igor Rostislavovich Sha-
farevich on the occasion of his seventieth birthday (Russian). MR1730270

[Puk98] A. V. Pukhlikov, Birational automorphisms of Fano hypersurfaces, Invent. Math. 134
(1998), no. 2, 401–426, DOI 10.1007/s002220050269. MR1650332

[Puk02] A. V. Pukhlikov, Birationally rigid Fano hypersurfaces (Russian, with Russian
summary), Izv. Ross. Akad. Nauk Ser. Mat. 66 (2002), no. 6, 159–186, DOI
10.1070/IM2002v066n06ABEH000413; English transl., Izv. Math. 66 (2002), no. 6,

1243–1269. MR1970356
[Puk13] A. Pukhlikov, Birationally rigid varieties, Mathematical Surveys and Monographs,

vol. 190, American Mathematical Society, Providence, RI, 2013. MR3060242
[Rei88] M. Reid, Undergraduate algebraic geometry, London Mathematical Society Student

Texts, vol. 12, Cambridge University Press, Cambridge, 1988. MR982494
[Rei97] M. Reid, Chapters on algebraic surfaces, Complex algebraic geometry (Park City, UT,

1993), IAS/Park City Math. Ser., vol. 3, Amer. Math. Soc., Providence, RI, 1997,
pp. 3–159. MR1442522
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