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MRO0000169 (1,28f) 14.0X
Cartan, Elie

Sur des familles remarquables d’hypersurfaces isoparamétriques dans
les espaces sphériques.

Mathematische Zeitschrift 45 (1939), 335-367.

An investigation of the existence of families of isoparametric hypersurfaces in
a spherical space (space of constant positive curvature) of an arbitrary number of
dimensions. It is shown that there exist families of isoparametric hypersurfaces
having three distinct principal curvatures in spherical spaces of 4, 7, 13 and 25
dimensions and that such families exist only in spherical spaces of these dimen-
sions. The following general theorem is proved: If in a spherical space there exists
a family of isoparametric hypersurfaces having p distinct curvatures of the same
degree of multiplicity, the general equation of these hypersurfaces is of the form
P(xz1,29,++ ,Zny1) = cos pt where P is a harmonic polynomial of degree p satis-
fying the condition

oP\? _
Z(a:::) =pP(e® + 2o+ aaa?)P
K3

i
Finally it is pointed out that the investigation of families of isoparametric hyper-
surfaces for which all the principal curvatures have the same degree of multiplicity

is reducible to an algebraic problem.
T. Y. Thomas

From MathSciNet, July 2019

MRO0009471 (5,154f) 14.0X

Segre, B.

A note on arithmetical properties of cubic surfaces.

Journal of the London Mathematical Society. Second Series 18 (1943), 24-31.

The first of these two papers concerns non-singular cubic surfaces F' which are
rational in the sense that they are definable over the field of rational numbers. The
questions treated pertain to the existence of rational points on F' and, more gener-
ally, of rational lines and of non-trivial rational curves on F. The results are stated
without proofs; these will be published elsewhere. Concerning the existence of ra-
tional points it is stated that F' either carries no rational points or infinitely many.
The existence of non-trivial rational curves (that is, curves which are not obtained
as the complete intersection of F' with another rational surface) is correlated to the
existence of a rational line, a rational doublet, triplet or sextuplet of such lines and
to the existence of a parametric rational solution of the equation of F. The paper
also contains a discussion of the equation ai21% + asxo® + asrs® + aszs® = 0 and of
special cases of this equation, such as the Reley equation x13 + x93 + 233 +pxs® = 0,
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p not the cube of a rational number. In the second paper the author proves by geo-
metric considerations that a cubic rational surface F' with more than one rational
point necessarily carries infinitely many rational points. The essential part of the
proof is that in which it is shown that, if F' carries three collinear rational Eckhardt
points, then it carries an infinity of rational points (compare with the next review
[MR0009472] of the paper by Mordell).

0. Zariski

From MathSciNet, July 2019

MRO0568901 (58 #27964)| 14B05
Teissier, Bernard
The hunting of invariants in the geometry of discriminants.

Real and complex singularities (Proc. Ninth Nordic Summer School/NAVFE
Sympos. Math., Oslo, 1976), 565-678, Sijthoff and Noordhoff, Alphen aan den
Rign, 1977.

This long, interesting paper is another in a series of self-contained, semi-exposi-
tory articles by the author [Algebraic geometry (Proc. Sympos. Pure Math., Vol.
29, Humboldt State Univ., Arcata, Calif., 1974), pp. 593-632, Amer. Math. Soc.,
Providence, R.I., 1975; MR0422256]. The general theme is equisingularity for hy-
persurface germs f = 0; the moral is: “primitive invariants of the discriminant D
{of the versal deformation V' — T of f = 0}--- yield rather subtle invariants {of
the original hypersurface}.” For instance, the multiplicity of D equals the Milnor
number p of f = 0. The main notion discussed here is the Newton polygon of the
plane curve DN H, where H is a generic “vertical” 2-plane section of T'. This is an
invariant of equisingularity type, this (for this paper) is by definition equivalently:
w*-constancy; Whitney conditions; or condition (c¢). M. Merle has proved [Invent.
Math. 41 (1977), no. 2, 103-111, MR0460336] that this Newton polygon of D
completely recovers the topological type of an irreducible plane curve f = 0. Here
are some highlights of the paper.

Fitting ideals are used in §1 to define a scheme structure on the image of a
finite map (this is not the obvious definition); the goal is a definition of discrimi-
nant compatible with base change, but Bezout’s theorem happens to pop out as a
corollary.

§2, on the module of differentials, has 2 main aspects. First, if X is a reduced
d-dimensional space, the development (or Nash blow-up) is the proper modification
g: X1 — X, defined via the closure of the graph of a section of Grass;(Q%) — X
over the nonsingular points of X. X is the space of limits of tangent vectors (a
theme picked up recently by Lé, Henry, and the author). It is proved that g is an
isomorphism if and only if X is nonsingular. Later, it is shown that the map C' — D
of critical to discriminant locus is not only the normalization, but the development
as well. Second, the “idealistic Bertini’s theorem” is a beautiful algebraic version
of Sard’s theorem. It says that for f: X — Y flat, X reduced, and Y nonsingular,
generically the singular subscheme of X has the same integral closure as the singular
subscheme of f (Sard’s theorem says the radicals of the corresponding ideals are the
same). This condition (on integral closures) is then used to define equisingularity
(= condition (c)) for a family of hypersurfaces.

A key result in §3 says that for a 1-parameter deformation of a (reduced) curve,
the following are equivalent: d-constancy, simultaneous resolution (by normalizing
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the total space), and simultaneous parametrization. For a plane curve, § is shown
to equal dy, the maximum number of singular points in a fibre of V' — T'; from
the point of view of Morse theory, §p =maximum number of critical points with
the same critical value (for a perturbation of f). (This is contrasted with u, the
maximum number of critical points with distinct critical values.) For a general
hypersurface, ITomdin has shown &g is related by inequalities to some p(%).

84 performs the useful function of differentiating between deformation theory
and the Thom-Mather theory of unfoldings (in particular, the role of R, A and
K-equivalence).

In §5, polar curves are introduced and related to vertical plane sections D N H
(most of this material is in another article by the author [ibid. 40 (1977), no. 3,
267-292; MR0470246]). In particular, examples show the Newton polygon is not
an invariant of p-constancy, and the number of components of D N H is not even
an invariant of p*-constancy.

{Reviewer’s remark: the author has pointed out that p. 649, 1.17" to 1.3/, is
incorrect. His attempt to keep this out of the final version was thwarted by the
publisher. }

{For the entire collection see MR0457430.}

Jonathan M. Wahl

From MathSciNet, July 2019

MRO0877010 (88d:14004)| 14B05; 13C15

Knorrer, Horst

Cohen—Macaulay modules on hypersurface singularities. I.
Inventiones Mathematicae 88 (1987), no. 1, 153-164.

Let P be a regular analytic k-algebra, where k is an algebraically closed field of
characteristic different from two, and let f be a nonzero element in the maximal
ideal of P. The main result of this paper is the following theorem: If R = P/(f) is
the local ring of a simple hypersurface singularity in the sense of V. I. Arnol’d [Pro-
ceedings of the International Congress of Mathematicians, Vol. 1 (Vancouver, B.C.,
1974), 19-39, Canad. Math. Congr., Montreal, Que., 1975; MR0431217] and K.
Kiyek and G. Steinke [Arch. Math. (Basel) 45 (1985), no. 6, 565-573; MR0818299],
then there are only finitely many isomorphism classes of indecomposable maximal
Cohen-Macaulay modules over R (i.e. R-modules M with depth M = dim R and
such that M is not a nontrivial direct sum).

To prove this result the author studies the relations between maximal Cohen—
Macaulay modules over the ring of a singularity and the ring obtained by adding
sums of squares of the variables to the equation of the singularity. Thus, the
author proves that there are only finitely many isomorphism classes of indecom-
posable maximal Cohen-Macaulay modules over R = R/(f) if and only if the
same is true for Ry = Pi/(f + y?), where P, = P(y). Then, the main result
is obtained by iterated application of the first result because every n-dimensional
simple hypersurface singularity is isomorphic to a singularity with an equation
g(z,y) + 22 + 23 + -+ 22_, = 0, where g(x,y) = 0 defines a simple plane
curve singularity and, on the other hand, for the case n = 2, the result of M.
Artin and J.-L. Verdier [Math. Ann. 270 (1985), no. 1, 79-82; MR0769609] proves
that there are only finitely many isomorphism classes of indecomposable maximal
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Cohen—Macaulay modules. The results of this paper allow us to determine the
Auslander—Reiten quivers for simple hypersurface singularities.
For part II see the following review [MR0877011].
Tomds Sdnchez-Giralda

From MathSciNet, July 2019

MRO0877011 (88d:14005)| 14B05; 13C15

Buchweitz, R.-0.; Greuel, G.-M.; Schreyer, F.-O.
Cohen—Macaulay modules on hypersurface singularities. II.
Inventiones Mathematicae 88 (1987), no. 1, 165-182.

In the paper under review the main purpose of the authors is to prove that,
if there are only finitely many isomorphism classes of indecomposable maximal
Cohen—Macaulay modules over R = P/(f) (P is a regular analytic k-algebra, where
k is an algebraically closed field of characteristic different from two, and f is a
nonzero element in the maximal ideal of P), then R is the local ring of a simple
hypersurface singularity. This result and its converse, proven by H. Knorrer [part
I, same journal 88 (1987), no. 1, 153-164; see the preceding review; MRO0877010]
provides a characterization of the simple hypersurface singularities in terms of the
indecomposable maximal Cohen—Macaulay modules over the corresponding hyper-
surface ring R.

This theorem of characterization of simple hypersurface singularities for the 1-
dimensional case char(k) = 0 was proven by Greuel and Knorrer [Math. Ann. 270
(1985), no. 3, 417-425; MR0774367] and later by K. Kiyek and G. Steinke [Arch.
Math. (Basel) 45 (1985), no. 6, 565-573; MR0818299]. In the 2-dimensional case
the result is due to M. Artin and J.-L. Verdier [Math. Ann. 270 (1985), no. 1,
79-82; MR0769609] and later M. Auslander [Trans. Amer. Math. Soc. 293 (1986),
no. 2, 511-531; MR0816307] and H. Esnault [J. Reine Angew. Math. 352 (1985),
63-71; MR0809966]. The authors prove that if R is the local ring of a nonsimple
hypersurface singularity then there are infinitely many different ideals I C P such
that f € I? and from this they conclude that there are infinitely many isomorphism
classes of indecomposable maximal Cohen—Macaulay R-modules. Moreover, if k is
the complex field the authors study the nonisolated singularities A, and Dy, of the
equations f = 22+ 23 +---+22 =0 and f = 2922 + 23 + - - + 22 = 0 respectively,
where f belongs to P = C{zg, 21, , 2n}, and they prove that these are the only
hypersurface singularities which are of countable Cohen—Macaulay representation
type (i.e. there are only countably many isomorphism classes of indecomposable
maximal Cohen—Macaulay modules over R). Furthermore, a complete classification
of such modules over A, and D, is given. This paper also includes some results
and applications to vector bundles on projective hypersurfaces with “no cohomology
in the middle”, deformation theory and other topics.

Tomds Sdnchez-Giralda

From MathSciNet, July 2019
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MR1092845 (92g:14014) 14F17; 14J99, 14N05
Bertram, Aaron; Ein, Lawrence; Lazarsfeld, Robert

Vanishing theorems, a theorem of Severi, and the equations defining
projective varieties.

Journal of the American Mathematical Society 4 (1991), no. 3, 587-602.

The key point of the paper is to prove a variant of a statement of Severi [Rend.
Circ. Math. Palermo 17 (1903); per revr.] by means of elementary arguments using
the Kodaira-Kawamata-Viehweg vanishing theorem. More precisely, apart from a
generalization of Severi’s statement, the argument proves the following theorem:
Let M be a smooth projective complex variety, A an ample line bundle and L a
globally generated line bundle on M. Let X be a smooth codimension e subvariety
of M with ideal sheaf Zx which is defined scheme-theoretically in M by the vanish-
ing of m sections s; € HO(M, L®%) with d; > dy > -+ > d,,,. Then it follows that
Hi(M,Ig( ® Ky @ L®k ® A) =0 for i > 1, provided k > ady +da + - - - + d.. This
result has a surprising number of applications to questions involving the equations
defining projective varieties. In particular, the authors show the following: Let X
be a smooth variety of dimension n and codimension e in P". Corollary. If X
is cut out scheme-theoretically by hypersurfaces of degree di > do > -+ > dpy,
and > ¢, d; < r+1 then X is projectively normal. If Y5 d; < r then X is
projectively Cohen-Macaulay. Corollary. If X has degree d and d < r/2e then X
is a complete intersection. Corollary. If X is defined by hypersurfaces of degree
di >dy >+ >d,y, then X is (3 ;_, d;—e+1)-regular (in the sense of Castelnuovo-
Mumford) and it fails to be (3°7_, d; — e)-regular if and only if X is the complete
intersection of hypersurfaces of degrees di,---,d.. Corollary. If X is connected
and defined scheme-theoretically by hypersurfaces of degrees di > do > -+ > d,
then the Hodge type of X is > [(r+1—>"7_; d;)/d1]. (This result gives a partial
answer, under strong hypotheses, to a conjecture of Deligne-Dimca.)

Finally, the theorem applies to extend statements on the projective normality
and defining equations of algebraic curves to higher dimension projective varieties,
following an observation of Mukai. In particular the following theorem is proved.
Let A be a very ample line bundle on a smooth n-fold X; then Ky ® A®"*! is
projectively normal except in the case of (P™, O(1)). This last result was obtained
independently by the reviewer and A. J. Sommese [Comment. Math. Helv. 66
(1991), no. 3, 362-367] and the reviewer, E. Ballico and Sommese [“Appendix”,
ibid., to appear]. Analogous assertions for defining equations and higher order
syzygies were established by Ein and Lazarsfeld [“A theorem on the syzygies of
smooth projective varieties of arbitrary dimension”, to appear].

Marco Andreatta

From MathSciNet, July 2019

MR1491444 (99¢:14018)

Cutkosky, Steven Dale

Local factorization of birational maps.
Advances in Mathematics 132 (1997), no. 2, 167-315.

Since Castelnuovo, Abhyankar and Zariski, we have known that an inclusion
R C S of regular local rings with a common quotient field can be factored by a
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unique finite product of blow-ups with smooth centers if dim(R) = dim(S) = 2 (in
that case, centers are closed points).

If dim(R) = dim(S) > 3, this is not true, even in dimension 3; counterexamples
exist [see J. Sally, Trans. Amer. Math. Soc. 171 (1972), 291-300; MR0309929; erra-
tum; MR0382258; D. L. Shannon, Amer. J. Math. 95 (1973), 294-320; MR0330154]
where S and R are essentially of finite type over a field.

In his paper, Cutkosky proves the following theorem, which gives a positive
answer to Abhyankar’s conjecture [S. Abhyankar, Ramification theoretic methods
in algebraic geometry, Ann. of Math. Stud., 43, Princeton Univ. Press, Princeton,
N.J., 1959; MR0105416 (p. 237)]: Theorem A: Suppose that R, S are excellent
local regular rings of dimension 3, containing a field k£ of characteristic 0, with a
common quotient field K, such that S dominates R. Let V' be a valuation ring of
K which dominates S. Then there exists a regular local ring T', with quotient field
K, such that T dominates S, V dominates T, and the inclusions R — T and S — T
can be factored by sequences of monoidal transformations with regular centers.

If you only use Hironaka’s theorem of desingularization, you can find 7" such that
either R — T or S — T can be factored by sequences of monoidal transformations
with regular centers, but not both. Theorem A is a very difficult result.

Define Z(X) to be the set of all valuation rings V of K, in case K is the quotient
field of a proper k-variety, Z(X) is a naturally ringed space obtained as the inverse
limit of the systems of all projective varieties with K as function field. Z(X)
is called the Zariski-Riemann manifold of K. Theorem A is a local result for
the topology of Z(X). Cutkosky gives an answer to the problem of globalization.
Theorem C: Let &k be a field of characteristic 0, ®: X — Y a birational morphism
of integral nonsingular proper excellent k-schemes of dimension 3. Then there exist
a nonsingular complete k-scheme Z and birational complete morphisms «: Z — X
and #: Z — Y commuting with & such that o and [ are locally products of
monoidal transformations.

You can glue local triangles given in Theorem A and, as Z(X) is quasi-compact,
only a finite number of triangles are necessary to get Theorem C. An important
point: « and 8 may be nonseparated morphisms. The global problem: “given
a birational map between two complete smooth varieties of the same dimension,
is it possible to decompose it in a sequence of blow-ups and blow-downs along
smooth centers?” is still open (it has been solved in the case of toric varieties
[see D. Abramovich, K. Matsuki and S. Rashid, “A note on the factorization the-
orem of toric birational maps after Morelli and its toroidal extension”, Preprint,
http://xxx.lanl.gov/abs/math/9803126; R. Morelli, J. Algebraic Geom. 5 (1996),
no. 4, 751-782; MR1486987; J. Wlodarczyk, Trans. Amer. Math. Soc. 349 (1997),
no. 1, 373-411; MR1370654]). The gap between this last problem and Theorem A is
comparable to the gap between local uniformization and desingularization. These
last two results together with Theorem A lead to great hope that the answer to the
global problem is yes: in [D. Abramovich, K. Matsuki and S. Rashid, op. cit.], a
research program is proposed to solve it.

As noted above, the difficult result in Cutkosky’s paper is Theorem A. Let us
say a few words about the proof, which is 146 pages long. It is carried out case by
case. The valuations v € Z(X) dominating R are classified by the triples rank(v),
rrank(v), dimg(v), which satisfy Abhyankar’s inequality:

rank(v) + dimpg(v) < rrank(v) + dimpg(v) < dim(R),
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where dimp(v) is the transcendence degree of R/ M — O, /M, rank(v) =dim(0,),
rrank(v) = dim(T',) ® Q, T, being the group of v. In the theory of birational maps,
there is a general fact that is always verified: the greater dim(R) — (rrank(v) +
dimp(v)), the worse the case. The (not easy) case where v has maximal rank 3
has already been proved by C. Christensen [J. Indian Math. Soc. (N.S.) 45 (1981),
no. 1-4, 21-47 (1984); MR0828858]. Here the worst case is dimg(v) = 0, with T,
a nondiscrete subgroup of Q. Let us concentrate on this case. First, we suppose k
algebraically closed. Lemma 2.1: Let (z,y, z) be coordinates in S, let v(y)/v(z) =
a/B, with (a, 8) = 1, o/, 8’ nonnegative integers such that aa’— 6" = 1; then there
exists a unique constant ¢ € k such that v(y?/z® — ¢) > 0. Define z; = 2 /y*',
y1 = y? /2% —c, 21 = 2, ) the localization of S[xy,%1] at (21,1, 21). Then S — S
is birational and can be factored by a sequence of monoidal transformations, and
v dominates Sj.

Let us note that the monoidal transformation S — S is quite natural: it was
used in a paper by O. Zariski [Ann. of Math. 40 (1939), 639-689; MR0000159] to
make the uniformization of a surface singularity along a valuation with nondiscrete
group.

Let us start at the end: many computations are done to reach the last case,
where there exist regular systems of parameters (r.s.p.) (u,v,w) of R, (z,y, z) of S
such that u = yz*, v =y, w = 2°A(x, y, z) with v a unit, A(z,y,0) # 0 = A(0,0,0).
By Theorem 2.13, (z,y, A(x,y,2)) is an r.s.p. of S and a = 1. Theorem A is then
trivial. Theorem 2.12: If we have u = wz, v = y, with w a unit, then there
exist R — R’ and S — S’ compositions of monoidal transformations of the type in
Lemma 2.1 such that we have the last case for R’ C S’ and v dominates 5.

The main difficulty in the proof is to desingularize w € S without losing the
assumption v = y. The author has to work with pairs of monoidal transformations
S — 51, R — R; such that Ry C 57 and (with clear notations) v = y;.

Let us note that the assumption u = wz™® in Theorem 2.12 is immediate: it is
a consequence of Hironaka’s desingularization and is stable under any reasonable
monoidal transformation of S. The second assumption is obtained in a classical
way: you do an expansion of v € k[z,y, z] = S:

v = xr(ao +o x4+ anxn + BA(yv Z)xn + $n+1F({E,y7 Z)),

where the Greek letters represent elements of k. By Lemma 2.8, you can suppose
v=2a"(a+ BA(y, z) + «F). By Theorem 2.10, you can suppose mult(A) = 1; then
Lemma 2.9 asserts that you can get the hypotheses of Theorem 2.12.

To get some flavour of the difficulties, note that many different subcases appear:
the elements of the expansion of v are formal, so you have to control an extension
vofvtoS [see J. Sally, op. cit.] in order to control the restriction of U to k[z, y].
For example, it may happen that rrank(?) > rrank(v); then the valuations of some
elements of S are infinitely greater than all elements of T', (see Lemmas 2.5, 2.6).

In the case when k is not algebraically closed, the author has to re-prove the
results above. Base changes do not help much: you can get k algebraically closed
in K: then there is an extension 7 of v to K = K @, k, and T is the localization
of T ® k at the center of 7 for any local regular ring T with fraction field K.
Unfortunately, the assumption k algebraically closed in K is not stable if you have
to deal with nonrational points.

Vincent Cossart

From MathSciNet, July 2019
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MR1978567 (2004d:14009) 14E15; 32545
Hauser, Herwig

The Hironaka theorem on resolution of singularities (or: A proof we
always wanted to understand).

Bulletin of the American Mathematical Society. (New Series) 40 (2003), no. 3,
323-403.

This paper is expository in nature. It seduces the reader with the charming
flavour and lightness of a bedtime story told to children: it gets the audience grad-
ually involved in and obsessed with the theme (in the case of children, until they
fall asleep; in the case of mathematicians, until they pick up paper and pencil to
solve the proposed riddles on their own). In its size and organization the paper
has the status of a monograph. It explains how to prove the existence of resolu-
tions of singularities of algebraic varieties over a field of characteristic zero. Many
mathematicians have been fascinated by this problem; see the introduction of [Res-
olution of singularities (Obergurgl, 1997), Progr. Math., 181, Birkh&user, Basel,
2000; MR1748614]. In [Ann. of Math. (2) 79 (1964), 109-203; ibid. (2) 79 (1964),
205-326; MR0199184] H. Hironaka proved the existence of resolution of singular-
ities in characteristic zero; this was the first result for varieties of any dimension,
but the theorem is non-constructive. At the end of the last century the construc-
tiveness of Hironaka’s theorem was proved [see, e.g., O. E. Villamayor U., Ann. Sci.
Ecole Norm. Sup. (4) 22 (1989), no. 1, 1-32; MR0985852; E. Bierstone and P. D.
Milman, Invent. Math. 128 (1997), no. 2, 207-302; MR1440306], and people also
got interested in the method for resolving singularities, not only in the existence.

Given an algebraic variety X over a field of characteristic zero and embedded in
a regular variety W, an embedded resolution of singularities of X C W is a proper
and birational morphism W’ — W such that W’ is regular, the strict transform X’
of X has no singular points and the total exceptional divisor of the morphism has
only normal crossings with X’. Let us recall that the strict transform X’ may be
defined as the closure of the inverse image of regular points of X, and that a scheme
F is said to have only normal crossings at a point if there is a regular system of
parameters (say a system of coordinates) at the point x1,...,x, such that £ may
be expressed as the zero set of monomials on the x;’s. It is very natural to require
in addition the property that the morphism W’ — W is an isomorphism outside
the singular points of X and other properties like equivariance under group actions;
also, usually, the morphism W’ — W is required to be a sequence of blowups at
regular centers. So the problem is to define the several centers to be blown up.

All constructive proofs define an upper semicontinuous (u.s.c.) function on W
such that the points where the function is maximum form the first center. One
obtains the first blowup W7 — W; then a u.s.c. function is constructed on Wj
defining Wy — W1, and the procedure continues until the resolution is achieved.
The proof of termination follows by the improvement of the function, namely the
function decreases at each stage. The goal of the paper is to construct those func-
tions which define the sequence of centers of the blowups. But, unlike in the usual
mathematical research papers, the author proceeds in a different way: after de-
scribing the problem he develops a naive strategy to try to solve it. This strategy
immediately hits obstructions. Studying these, the author (as well as the reader)
is led to modify and improve the strategy stepwise, exploring and thus discovering
the (rather complicated) structure of the final proof. As the author says, the reader
develops his own proof (under the auspices of the guide).
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In the paper all concepts and ideas are introduced for non-specialists (at least
at the beginning). There are three chapters: Chapter 0 for busy readers, Chapter
1 for moderately interested readers and Chapter 2 for highly interested readers.
Thus, everyone can read only up to the chapter which best fits his interest. But it
could happen that after Chapter 0 the reader may already be so fascinated that he
is tempted to continue with Chapter 1 and also with the more technical Chapter 2.
As the author says, “The question is: How can I understand in one hour the main
aspects of a proof which originally covered two hundred pages?” The objective of
the article under review is to reveal to the reader the beauty of the problem and
to explain to him the main points of the proof. At the end of the introduction
we find the sentence: “The article has accomplished its goal if the reader starts to
suspect—after having gone through the complex and beautiful building Hironaka
proposes—that he himself could have proven the result, if only he had known that
he was capable of it.” And the author may have succeeded in this goal.

In the paper there are several pictures illustrating abstract concepts, and also
lots of examples are found everywhere, helping to motivate the necessity of defining
new objects

Chapter 0 is an overview of the problem of resolution of singularities, written
for non-specialists. First it introduces one of the main concepts, the blowup; then
there is a dictionary which translates concepts from algebraic geometry (high-tech)
to intuitive concepts (low-tech). Followed by an explanation of the result, and a
brief exposition of the inductive nature of the proof, several examples illustrate
concepts like: the strict and weak transform of an ideal, the coefficient ideal of an
ideal and the construction of the centers of the blowups which make the singularities
improve and finally define a resolution of singularities.

Chapter 1 starts with the main ideas of Hironaka’s proof, which may be sum-
marized as follows: how to choose the center at each stage of the resolution process
in order to improve the singularities of X. Here the idea of the coefficient ideal is
developed in more detail. At every point, how the coefficient ideal should be defined
and how it transforms under blowup is justified with examples. The author con-
cludes by the definition of an invariant which will work: it is well defined (does not
depend on any choices), and it has the properties required at the beginning. But
immediately some obstructions are explained, in order to have an invariant which
bring us to the end. In particular one of the obstructions is the normal crossings
condition on the center with respect to the exceptional divisor. Thus the invariant
must be refined or transformed. At the end of Chapter 1 the author introduces us
to the positive characteristic problem and explains the first obstacles in this case.

Chapter 2 is devoted to giving the precise definitions and proofs to the con-
struction of resolution of singularities in characteristic zero. The use of mobiles
has to be mentioned. Mobiles are objects attached to the singularity of X which
were introduced in [S. Encinas and H. Hauser, Comment. Math. Helv. 77 (2002),
no. 4, 821-845 MR1949115]. In the literature one finds several objects encoding
the data for resolving singularities: Hironaka'’s idealistic exponents; Abhyankar’s
trios, quartets and quintets; Villamayor’s basic objects; and Bierstone-Milman’s
infinitesimal presentations. Mobiles seem to be the final concept for how to encode
the required resolution data. In contrast to the earlier concepts, they are intrinsic
and they collect the precise information which one wishes to deal with at each stage
of the resolution process. Using mobiles eliminates the need to consider the history
of prior blowups and makes equivalence relations superfluous.
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At the end of Chapter 2 the author deals with the problems in positive char-
acteristic. Two examples are developed illustrating how the characteristic-zero
techniques fail in several aspects, all motivated by the non-existence of maximal
contact hypersurfaces in positive characteristic.

The paper terminates with five appendices: Appendices A, B and C explain
technical details of the proof of the theorem. Appendices D and E are a resumé of
definitions and a table of notations useful to follow the proofs, especially in Chapter
2.

Santiago Encinas
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MR2079993 (2005i:14055) 14J70; 14M25, 32Q55

Mikhalkin, Grigory

Decomposition into pairs-of-pants for complex algebraic hypersurfaces.
Topology. An International Journal of Mathematics 43 (2004), no. 5, 1035-1065.

The aim of this paper is to describe, or find tools for describing, a smooth
hypersurface V' C CP"*! of arbitrary degree d as a smooth manifold. The results
also apply to smooth hypersurfaces in toric varieties, and give some information
about V' as a symplectic manifold too. The author first explains the cases n = 1,
n =2 and d = n + 2: this is standard material apart from the author’s incautious
statement that the mountain K2 is in Pakistan, which is not the official opinion in
India. (André Weil, whom the author cites, in fact refers more diplomatically to
“la belle montagne K2 au Cachemir”). He then gives an outline of his results (some
of which I repeat below in abbreviated form).

For any n and d the hypersurface V admits a singular fibration A over an n-
dimensional polyhedral complex II. A generic fibre of A is diffeomorphic to a smooth
torus T™. The base II is homotopy equivalent to the bouquet of p, copies of S™.
The local topological structure of II € R™*! is known in differential topology as
the local structure of special spines. In particular there is a natural stratification
of IT and regular neighbourhoods of the vertices essentially exhaust the complex II.
This stratification determines a decomposition of V into d"*! copies of P,,, where
P, is diffeomorphic to the complement of n + 2 hypersurfaces of CP™ in general
position, an analogue of the pair-of-pants decomposition of Riemann surfaces.

The hypersurface V' can be reconstructed as a smooth manifold from II, even
though II has real dimension n and V has real dimension 2n. This is because II and
its piecewise-linear embedding in R"*! encode the combinatorics of gluing together
the d"*! copies of P, to obtain V.

The fibration A produces a number of Lagrangian submanifolds in V. Different
fibres of A are not necessarily homologous, and p, disjoint embedded Lagrangian
tori, linearly independent in H,,(V'), arise in this way. Then there are p, linearly
independent Lagrangian spheres arising as (partial) sections of A.

The complex II is in a suitable sense dual to a lattice polyhedron: in the ba-
sic case of hypersurfaces of degree d in CP"*! the polyhedron is the simplex Aq
with vertices at (d,0,...,0),(0,d,...,0),...,(0,0,...,d) and (0,...,0). More pre-
cisely, it is determined by a function v: A = Ay NZ"™t — R, by Il = {y €
R | max,ea(ry — v(y)) is not a smooth function at y}. Conversely, given an
n-dimensional complex in R™*! satisfying certain compatibility conditions, A (and
hence A) and v can be recovered, up to unimportant ambiguities. In general the
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A that arises is not a simplex, and it is this that leads to the more general con-
sideration of hypersurfaces in toric varieties. Section 2 explains this construction
in detail. Section 3 gives precise statements of the results, and Section 4 describes
some important examples.

Reconstruction of the hypersurface from II is done in Section 5. In Section 6 the
other main results are proved, using as a main technical tool the machinery of non-
Archimedean amoebas, due to M. M. Kapranov [“Amoebas over non-Archimedean
fields”, preprint, 2000; per bibl.].

G. K. Sankaran
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MR3359052 14M20; 14E08, 14F45, 14J30, 14K30

Voisin, Claire

Unirational threefolds with no universal codimension 2 cycle.
Inventiones Mathematicae 201 (2015), no. 1, 207-237.

Let us begin with a consequence (formulated as part of Theorem 1.1; see details
below) of general ideas and constructions of the work: quartic double solids satis-
fying some conditions of generality and having a few nodes are not stably rational
(but unirational). Stable rationality of ¥ means that a product ¥ x P" (for some
r > 0) is rational. The mentioned solids are three-dimensional projective varieties
X c P(1,1,1,1,2) whose weighted homogeneous equations are u? = f(z,...,23),
where f € Clz,...,23)4, deg(u) = 2, deg(z;) =1 (i = 0,...,3). Let k denote
the number of nodes (i.e. double points with non-degenerate tangent cones) of the
quartic branch locus S: = {z|z € P3, f(z) = 0}. Assume that S does not have
singular points besides these k nodes. Every node of S produces a node in the
covering double solid X. The main and essential assumption is that 0 < k < 7, but
following the extreme cases k = 0 and k = 7 is interesting enough. As we have seen
recently for the case k = 0 [A. Beauville, Algebr. Geom. 2 (2015), no. 4, 508-513;
MR3403239)], there is an extension of the above result to some higher dimensions:
if n = 4 or n = 5, then the double cover of P" branched along a very general
quartic hypersurface is not stably rational (but unirational). From the historical
point of view, a possible reason for the assumption k£ < 7 is that a quartic surface S
cannot possess more than 7 nodes which are arbitrarily situated, because 8 nodes
in a general position must be located on a unique elliptic quartic curve and the
sum of these points minus the doubled plane section of the curve is an element of
order two in the group of divisor classes of the curve, hence the position of 8 nodes
is not general. In fact, this observation with respect to 8 general nodes is due to
A. Cayley (1870); see [The collected mathematical papers of Arthur Cayley. Vol.
VII, Cambridge Univ. Press, Cambridge, 1889 (p. 141)], where he writes (using the
same notation ‘k’ as in the work under review!): “The greatest value of k is thus
k=1"

As for other values of k, a specialization to an excluded case k = 10 with a
special position of nodes is essentially used in the proofs and constructions. These
ten points in the quartic Sy C P? (the so-called symmetroid) correspond to ten
quadrics of rank 2 (i.e. quadrics breaking up into pairs of planes) in a general linear
quadric web zgFy+- - -+ z3F3. By the way, this set of ten points was also discovered
in 1870 by G. Salmon [Analytic geometry of three dimensions. Vol. II, Art. 572; per
revr.], Cayley [op. cit. (p. 139)] and G. Darboux; moreover, in [Bull. Sci. Math.
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Astron. 1 (1870), 348-358 (p. 354)], Darboux wrote about “les dix droits qui sont
arrétes des couples de plans du systeme”.

The Artin-Mumford quartic double solid Vj branched along Sj is not stably
rational because its desingularization V has nonzero 2-torsion in H3(V,Z). Artin
and Mumford’s proof was given in the 1970s; the use of 2-torsion looks historically
parallel to Cayley’s above-mentioned use of 2-torsion elements in elliptic quartics
100 years before the proof. For a comparison of approaches to the Artin-Mumford
example and double solids X with & < 7, it is necessary to note that for the
desingularization of such X, the cohomology torsion is trivial. Therefore, it was
necessary to invent new stable birational invariants and to develop a new techniques
of proofs. It is a bit paradoxical that the basis of the new techniques is taken
from the lowest level by a gradual descent from the cases of enormous infinite-
dimensional Chow groups CHy(-) of 0-cycles (D. Mumford, 1969; A. A. Roitman,
1971) to the cases of finite-dimensional (A. A. Roitman, 1972) or cyclic groups (S.
Bloch, V. Srinivas, J. Murre, 1983). The last case means that CHy(-) = Z, i.e.
CHy()o = 0. Like in mountaineering, a descent needs more attention and produces
many more impressions than an ascent. The most applicable to the problems of
stable (ir)rationality is the lower cyclic case, more precisely, an improvement and
perfection of zero triviality (it is possible indeed!); it is the case of triviality of
CHy(+)o by every field extension that is the so-called universal triviality. For the
latter condition, the triviality by the extension of the ground complex field to the
field of rational functions on the variety is sufficient. The universal triviality is
a necessary condition for rationality, but is not sufficient. For example, Enriques
surfaces (which appeared in 1896) have universally trivial CHy(-)o. According to
Theorem 3.10 in the article of Bloch and Srinivas [Amer. J. Math. 105 (1983), no. 5,
1235-1253; MR0714776], for a smooth projective variety Y such that CHy(Y ®c
C(Y))o = 0, the following equality in CHY(Y x Y) (d = Y) takes place: NAy =
7y + Za, where Ay C Y x Y is diagonal, N is a positive integer, Z1,Z, are
codimension d cycles in Y x Y with Supp Z; C Y x (point), SuppZ; C D X Y,
and D is a proper closed subset of Y. For a given Y, the minimal possible N in
the equality is an invariant of Y. So these universal nothings are parametrized by
natural numbers! The most useful N for the work under review is N = 1. If the
above presentation of the diagonal holds true with N = 1, then the author writes
about an integral Chow theoretic decomposition of the diagonal. If an analogous
equality with N = 1 exists in H?¢(Y x Y,Z), then she says that Y admits an
integral cohomological decomposition of the diagonal. Certainly, the cohomological
decomposition is weaker than the Chow theoretic one, but more convenient in
use. Both the properties are invariant with respect to stable birational equivalence
(Yl X P" ¢----» Y2 X PS)

A complete formulation of Theorem 1.1 mentioned at the beginning of this re-
view is as follows. Let X be the desingularization of a very general quartic double
solid with at most seven nodes. Then X does not admit an integral Chow theo-
retic decomposition of the diagonal, hence it is not stably rational. Moreover, the
first part of Theorem 1.9 asserts that these quartic solids do not admit an integral
cohomological decomposition of the diagonal. It is necessary to note that the inte-
gral cohomological decomposition of the diagonal has strong consequences. For any
smooth projective threefold X with such a decomposition, they are enumerated in
Theorem 1.7:
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HY(X,0x) =0 fori >0,
Torsion(H*(X,Z)) =0,
Heve"(X,Z) consists of classes of algebraic cycles,

J3(X) is the intermediate Jacobian of X.

The cycle Z is an analog (for codimension 2) of the Poincaré divisor. In some
of her previous talks and publications (e.g., pages 141-142 of [Chow rings, decom-
position of the diagonal, and the topology of families, Ann. of Math. Stud., 187,
Princeton Univ. Press, Princeton, NJ, 2014; MR3186044]), Voisin proposed two
questions with respect to the Abel-Jacobi map AJy.

Question 1. Let Y be a smooth projective variety such that this map from the
codimension 2 Chow classes CH?(Y )pom homologous to zero to the intermediate
Jacobian J3(Y) is an isomorphism. Is there a codimension 2 cycle Z on J3(Y) x
Y with Z, = Z|axy € CHz(Y)hom for any a € J3(Y) such that the morphism
Oy J3(Y) = J3Y) (Pz(a): = AJy(Z,)) is the identity?

Theorem 1.7 gives a sufficient condition for a positive answer. Properties (1)—(4)
taken together with property (5) are sufficient for the existence of an integral coho-
mological decomposition of the diagonal. The additional condition is the following.

(5) There is a 1-cycle z € CHY™*(J3(X)) (where J3(X) is principally polarized
with the help of © € H?(J3(X),Z), g = dimJ3(X)) whose cohomology class
[2] € H?972(J3(X), Z) coincides with ©9~1/((g—1)!). The last condition resembles
T. Matsusaka’s characterization (1958) of a Jacobian variety. The second part
of the above-mentioned Theorem 1.9 asserts that if X is the desingularization of
a very general quartic double solid with exactly seven nodes, then X does not
admit a universal codimension 2 cycle z. The author proves a strengthening of the
assertion. It is connected with the second question (an extension of Question 1)
from the above-mentioned book by Voisin.

Question 2. Let us consider the following property of a smooth threefold Y.
There exist a smooth projective variety B and a codimension 2 cycle Z on B x Y
with Z, € CHQ(Y)]OOH1 for any b € B, such that that morphism ®z: B — J(Y)
induced by the Abel-Jacobi map AJy (i.e. ®z(b) = AJy(Zp)) is surjective with
rationally connected general fiber. For which smooth threefolds Y is this property
satisfied?

Theorem 2.10 asserts that the double solid with k& = 7 does not possess the
property. The last (3rd) section of the work is devoted to the connections of pre-
ceding objects with the so-called unramified cohomology groups. The introduc-
tion of these new stable birational invariants was initiated by Bloch and A. Ogus
in 1974, then their treatment was essentially transformed and developed by J.-L.
Colliot-Thélene and M. Ojanguren beginning in 1988. We mention a part of The-
orem 1.10 (cf. Theorem 3.1): The degree 3 unramified cohomology with torsion
coefficients of smooth complex projective variety X (of arbitrary dimension) with
CHy(X)o = 0 is universally trivial if and only if there is a universal codimension
2 cycle Z € CH?*(J3(X) x X). Hence Corollary 1.11 (cf. Corollary 3.4): Such a
cohomology group for the natural desingularization of a very general quartic double
solid with 7 nodes is not universally trivial.

M. Kh. Gizatullin
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