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THE SHUFFLE CONJECTURE

STEPHANIE VAN WILLIGENBURG

On the occasion of Adriano Garsia’s 90th birthday

Abstract. Walks in the plane taking unit-length steps north and east from
(0, 0) to (n, n) never dropping below y = x and parking cars subject to pref-
erences are two intriguing ingredients in a formula conjectured in 2005, now
famously known as the shuffle conjecture.

Here we describe the combinatorial tools needed to state the conjecture.
We also give key parts and people in its history, including its eventual alge-
braic solution by Carlsson and Mellit, which was published in the Journal of
the American Mathematical Society in 2018. Finally, we conclude with some
remaining open problems.

They can see the topography. . .
the treetops, but we can see the
parakeets.

Adriano Garsia

Often, in order to delve deep into the structure of an abstract mathematical
construct (the treetops), we need to interpret it concretely with a combinatorial
visualization (the parakeets). The shuffle conjecture, as we will see, is one such
story. In this article we will integrate the motivation, history, and mathematics of
the shuffle conjecture as we proceed. Hence, we will begin by recalling necessary
concepts from combinatorics in Section 1 and from algebra in Section 2 in order
to state the shuffle conjecture in Theorem 3.3. This recently proved conjecture is,
in essence, a formula for encoding the graded dimensions of the symmetric group
representation in the character of a particular vector space on which the symmetric
group Sn acts. In Section 3 we also discuss some of the motivation and history of
the shuffle conjecture, including its refinement known as the compositional shuffle
conjecture whose algebraic resolution by Carlsson and Mellit, announced in 2015 [5]
and published in 2018 [6], excited the combinatorial community. We mention some
of their proof ingredients in Section 4, where we also conclude with some future
avenues.

1. The combinatorics of Dyck paths and parking functions

A crucial concept for the statement of the shuffle conjecture is that of parking
functions. Although originally studied by Pyke [27], they were introduced as a
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model for parking n cars subject to preferences by Konheim and Weiss who were
studying data storage [23, Section 6: A parking problem—the case of the capricious
wives]. Konheim and Weiss also proved that the number of parking functions
involving n cars is (n+1)(n−1). Since then these functions have arisen in a plethora
of places from hyperplane arrangements [33] to chip-firing [8]. More details on
parking functions can be found, for example, in the survey by Yan [36]. Rather
than using the original definition, given in terms of drivers parking cars, we will
instead use an equivalent definition introduced by Garsia, for example in his paper
with Haiman [11, p. 227]. However, before we do this, we need to define a Dyck
path.

Definition 1.1 (Dyck path). A Dyck path of order n is a path in the n× n lattice
from (0, 0) to (n, n) that consists of n unit-length north steps and n unit-length
east steps, which stays weakly above the line y = x.

Example 1.2. If we let N denote a unit-length north step and E denote a unit-
length east step, then the following path NNNEEENNENEENNEE from (0, 0)
in the bottom-left corner to (8, 8) in the top-right corner is a Dyck path of order 8.

Definition 1.3 (Parking function). A parking function of order n is a Dyck path
of order n such that each north step has a label, called a car, written in the square
to its immediate right. The cars are 1, 2, . . . , n, each occurring exactly once, and
cars in the same column increase from bottom to top. We denote the set of all
parking functions of order n by PFn.

Example 1.4. An example of a parking function, which we will use throughout
this article, is given in Figure 1.

We now define three statistics on parking functions that will be useful later, the
first of which is the area of a parking function, and it depends only on its Dyck
path.

Definition 1.5 (Area). If π is a parking function, then its area is the number of
complete squares between the Dyck path of π and y = x, denoted by area(π).

Example 1.6. If π is the parking function from Figure 1, then by counting the
number of complete squares in each row contributing to the area, from bottom to
top, we get

area(π) = 0 + 1 + 2 + 0 + 1 + 1 + 0 + 1 = 6.
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Figure 1. A parking function of order 8

The second statistic is slightly more intricate than the area.

Definition 1.7 (Dinv). Consider a parking function π and a pair of cars {c1, c2}
in it.

• If the cars c1, c2 are in the same diagonal (that is, their squares are the
same distance from y = x) with the larger car occurring farther right, then
{c1, c2} is a primary diagonal inversion. Let Dinvpri(π) be the set of all
such pairs.

• If the cars c1, c2 are in adjacent diagonals with the larger car occurring
in the higher diagonal (that is, its square is distance 1 farther from y = x
than that of the smaller car) and farther left, then {c1, c2} is a secondary
diagonal inversion. Let Dinvsec(π) be the set of all such pairs.

Then

dinv(π) = |Dinvpri(π)|+ |Dinvsec(π)|.

Example 1.8. If π is from Figure 1, then {3, 7} is a primary diagonal inversion,
but {5, 7} is not since the smaller car 5 occurs farther right. Likewise {5, 8} is a
secondary diagonal inversion, but {3, 4} is not, since the smaller car 3 occurs in
the higher diagonal and farther left. Note that {4, 8} is neither type of diagonal
inversion since the cars are not in the same or adjacent diagonals.

Hence,

Dinvpri(π) = {{2, 4}, {3, 6}, {3, 7}, {3, 5}, {6, 7}},
Dinvsec(π) = {{1, 3}, {1, 6}, {1, 7}, {6, 8}, {7, 8}, {5, 8}}

so

dinv(π) = |Dinvpri(π)|+ |Dinvsec(π)| = 5 + 6 = 11.

Our third statistic is a permutation associated to a parking function.

Definition 1.9 (Word). If π is a parking function, then its word is the permutation
in one-line notation obtained by reading cars from the diagonal farthest from y = x
to the diagonal y = x, and within a diagonal reading from right to left. We denote
this by word(π).
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Example 1.10. If π is from Figure 1, then

word(π) = 85763142.

With our three statistics now defined, we end this section by recalling the i-
descent set of a permutation, in our case specialized to the word of a parking
function.

Definition 1.11 (Ides). If π is a parking function, then its i-descent set is

ides(π) = {i | i+ 1 is left of i in word(π)}.
Example 1.12. If π is from Figure 1 with word(π) = 85763142 from Example 1.10,
then

ides(π) = {2, 4, 6, 7}.

2. The algebras of quasisymmetric and symmetric functions

We now start to turn our attention to the algebraic ingredients needed to state
the shuffle conjecture after first recalling the notions of compositions and partitions.

A composition α of n, denoted by α � n, is a list of positive integers α =

α1α2 · · ·α�(α) such that
∑�(α)

i=1 αi = n. We call the αi the parts of α, call n the size
of α, and call �(α) the length of α. If, furthermore, α1 ≥ α2 ≥ · · · ≥ α�(α), then we
say that α is a partition of n and denote this by α � n. For example, 332 is both a
composition and partition, with size 8 and length 3.

Now we focus on defining the algebra of quasisymmetric functions, before using
them to define the algebra of symmetric functions.

The algebra of quasisymmetric functions,QSym, is a subalgebra of C[[z1, z2, . . .]],
meaning that QSym is a vector space, over C, of formal power series in the variables
z1, z2, . . . , in which we can also multiply the elements together. A basis for QSym is
given by the set of all fundamental quasisymmetric functions that we now define in
the variables Z = {z1, z2, . . .}, indexed by n and subsets of [n−1] = {1, 2, . . . , n−1}.
Definition 2.1 (Fundamental quasisymmetric function). Let

S = {s1, s2, . . . , s|S|} ⊆ [n− 1].

Then the fundamental quasisymmetric function Fn,S is defined to be

Fn,S =
∑

zi1zi2 · · · zin ,

where the sum is over all n-tuples (i1, i2, . . . , in) satisfying

i1 ≤ i2 ≤ · · · ≤ in and ij < ij+1 if j ∈ S.

Example 2.2. We have that

F3,{1} = z1z
2
2 + z1z

2
3 + z2z

2
3 + · · ·+ z1z2z3 + z1z2z4 + · · · ,

whereas

F3,{2} = z21z2 + z21z3 + z22z3 + · · ·+ z1z2z3 + z1z2z4 + · · · .
In 1972 quasisymmetric functions were first mentioned implicitly with regard to

P -partitions in Stanley’s thesis [32], and then Gessel developed and published much
of the classical theory explicitly in 1984 [12]. Since then they have arisen in a variety
of areas, for example, from probability [20] to category theory [1]. However, our
interest lies in a special case of a result from Gessel’s original paper [12, Theorem
3]. For this we first need to define Young diagrams and Young tableaux.
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Given a partition λ = λ1λ2 · · ·λ�(λ) � n, we define its Young diagram, also
denoted by λ, to be the array of left-justified boxes with λi boxes in row i from
the top. Given the Young diagram, λ, a standard Young tableau (SYT) of shape λ,
T , is a filling of the n boxes of λ with 1, 2, . . . , n, each appearing exactly once such
that the entries in the rows increase when read from left to right, and the entries
in each column increase when read from top to bottom. We denote the set of all
SYTs of shape λ by SY T (λ).

Example 2.3. We have that T = 1 3 4 5

2 6 8

7

is an SYT of shape 431 � 8.

Given an SYT, T , of shape λ � n, we define its descent set to be

Des(T ) = {i | i+ 1 is in the same column or left of i} ⊆ [n− 1].

Example 2.4. If T is from Example 2.3, then

Des(T ) = {1, 5, 6} ⊆ [7].

We can now define the algebra of symmetric functions, Sym, which is a sub-
algebra of QSym. This algebra is so named because its elements are invariant
under any permutation of its variables, and a basis for Sym is the set of all Schur
functions that we now define as a special case of [12, Theorem 3].

Definition 2.5 (Schur function). Let λ � n. Then the Schur function sλ is defined
to be

sλ =
∑

T∈SY T (λ)

Fn,Des(T ).

Example 2.6. We have that s21 = F3,{1} + F3,{2} from the SYTs below.

1 3

2

1 2

3

The Schur functions are not the only basis of Sym. Another basis that will be
vital to our story is the basis consisting of all elementary symmetric functions: We
define the ith elementary symmetric function ei to be

ei = s1i ,

where 1i is the partition consisting of i parts equal to 1. Then if λ=λ1λ2 · · ·λ�(λ)�
n, we define the elementary symmetric function eλ to be

eλ = eλ1
eλ2

· · · eλ�(λ)
.

Symmetric functions date back to Girard [13] in 1629, although Schur functions
are much younger, dating to an 1815 paper by Cauchy [7]. The Schur functions
were named after Schur who proved in 1901 that they were characters of the irre-
ducible polynomial representations of the general linear group [29], while standard
Young tableaux were defined by Young in his 1928 publication [37, p. 258]. Sub-
stantial historical notes on this subject can be found in Stanley’s second volume
on enumerative combinatorics [34, Chapter 7], which is also an excellent resource
for symmetric functions and some related representation theory, as is the book by
Sagan [28].



82 STEPHANIE VAN WILLIGENBURG

3. The space of diagonal harmonics and the shuffle conjecture

With our essential combinatorial and algebraic notations now defined, we can
begin to work towards our statement of the shuffle conjecture, which is about the
vector space of diagonal harmonics. However, before we do that, let us define our
desired space.

Definition 3.1 (Space of diagonal harmonics). Let Xn = {x1, x2, . . . , xn} and
Yn = {y1, y2, . . . , yn}. Then the space of diagonal harmonics, DHn, is the vector
space of polynomials in these variables, f(Xn, Yn), which satisfy

(3.1) ∂a
x1
∂b
y1
f(Xn, Yn) + ∂a

x2
∂b
y2
f(Xn, Yn) + · · ·+ ∂a

xn
∂b
yn
f(Xn, Yn) = 0

for all a, b ≥ 0 and a+ b > 0. That is,

DHn = {f(Xn, Yn) ∈ C[Xn, Yn] |
n∑

i=1

∂a
xi
∂b
yi
f(Xn, Yn) = 0, ∀a, b ≥ 0, a+ b > 0}.

Example 3.2. DH2 consists of all polynomials f(X2, Y2) = f(x1, x2, y1, y2) such
that

a+ b = 1 gives ∂x1
f(X2, Y2) + ∂x2

f(X2, Y2) = 0 when a = 1 b = 0
∂y1

f(X2, Y2) + ∂y2
f(X2, Y2) = 0 a = 0 b = 1

a+ b = 2 gives ∂2
x1
f(X2, Y2) + ∂2

x2
f(X2, Y2) = 0 when a = 2 b = 0

∂x1
∂y1

f(X2, Y2) + ∂x2
∂y2

f(X2, Y2) = 0 a = 1 b = 1
∂2
y1
f(X2, Y2) + ∂2

y2
f(X2, Y2) = 0 a = 0 b = 2,

etc., and we can check that the solution set has basis {1, x1 − x2, y1 − y2}.

The symmetric group, Sn, acts naturally on DHn by the diagonal action that
permutes the Xn and Yn variables simultaneously. Namely, given σ ∈ Sn and
f(Xn, Yn) = f(x1, x2, . . . , xn, y1, y2, . . . , yn), we have that

σf(x1, x2, . . . , xn, y1, y2, . . . , yn) = f(xσ(1), xσ(2), . . . , xσ(n), yσ(1), yσ(2), . . . , yσ(n)).

By equation (3.1) we see that if f(Xn, Yn) ∈ DHn, then σf(Xn, Yn) ∈ DHn. Fur-
thermore, if we letDHc,d

n be the subspace ofDHn, whose elements have total degree
c in the variables x1, x2, . . . , xn and total degree d in the variables y1, y2, . . . , yn,
then if f(Xn, Yn) ∈ DHc,d

n , then σf(Xn, Yn) ∈ DHc,d
n . This enables us to define

the bigraded Frobenius characteristic of DHn to be

(3.2) DHn[Z; q, t] =
∑
c,d≥0

tcqd
∑
λ�n

sλ Mult(χλ,CharDHc,d
n ),

where, as before, sλ is a Schur function in the variables Z = {z1, z2, . . .} and
Mult(χλ,CharDHc,d

n ) is the multiplicity of the irreducible character of Sn, χ
λ, in

the character of DHc,d
n under the diagonal action of Sn, CharDHc,d

n .

3.1. The shuffle conjecture. The shuffle conjecture is a combinatorial formula for
computing DHn[Z; q, t] in equation (3.2), but before we give it and do an example,
we will briefly recount a skeletal history of what motivated it. More details on
this fascinating story can be found in the excellent state-of-the-art survey article
by Hicks [21] and in the illuminating texts by Bergeron [3] and Haglund [14].

In 1988 Kadell [22] looked for, and then Macdonald [26] found, a generalization
of Schur functions, with additional parameters q, t, Pλ[Z; q, t], where λ � n. This
generalization specialized to the Schur functions at q = t, and to other well-known
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functions such as the elementary symmetric functions and Hall–Littlewood func-
tions, which were likewise recovered by setting q and t to various values. These
functions were then transformed by Garsia and Haiman [11, p. 194], thus creat-

ing modified Macdonald polynomials H̃λ[Z; q, t], which they hoped to prove were
a positive linear combination of Schur functions. Proving this would imply the
Macdonald positivity conjecture dating from Macdonald’s original work in 1988,
which conjectured that Macdonald polynomials were a positive linear combina-
tion of Schur functions. In order to prove their conjecture, they defined vector
spaces Hλ [10], now known as Garsia–Haiman modules, and conjectured that the

bigraded Frobenius characteristic of Hλ was H̃λ[Z; q, t]. Moreover, they conjectured
in [10, Conjecture 1] that irrespective of λ, we have

dim(Hλ) = n!.

This conjecture became known as the n! conjecture, and both it and the Macdonald
positivity conjecture were eventually proved by Haiman [18, Theorem 3.2].

At the same time, Garsia and Haiman were studyingDHn, which contains all the
Hλ for λ � n as subspaces, and they conjectured a formula for DHn[Z; q, t] in terms

of the H̃λ[Z; q, t]. Bergeron and Garsia noted that this formula was almost identical

to the formula for the elementary symmetric functions en in terms of H̃λ[Z; q, t].

More precisely, if the coefficient of H̃λ[Z; q, t] in en was Cλ, then its conjectured
coefficient in DHn[Z; q, t] was

tn(λ)qn(λ
′)Cλ,

where if λ = λ1λ2 · · ·λ�(λ), then n(λ) =
∑�(λ)

i=1 λi(i − 1) and λ′ = λ′
1λ

′
2 · · ·λ′

�(λ′) is

the transpose of λ, which is the partition created from λ by setting

λ′
i = number of parts of λ that are ≥ i.

For example, if λ = 211, then λ′ = 31. This inspired Bergeron and Garsia to
officially define the nabla operator in the paper [4, Equation (4.11)] as

∇H̃λ[Z; q, t] = tn(λ)qn(λ
′)H̃λ[Z; q, t].

Hence, when Haiman, using algebraic geometry, proved the conjectured formula for
DHn[Z; q, t] [19, Theorem 3.2], this automatically yielded that [19, Proposition 3.5]

(3.3) DHn[Z; q, t] = ∇en,

since from above
en =

∑
λ�n

CλH̃λ[Z; q, t],

and now it was proved that

DHn[Z; q, t] =
∑
λ�n

tn(λ)qn(λ
′)CλH̃λ[Z; q, t].

Haiman had also proved [19, Proposition 3.6] that

dim(DHn) = (n+ 1)(n−1).

This supported the search for a collection of (n+1)(n−1) objects, such as all parking
functions of order n, along with statistics on them, in order to find a formula to
compute ∇en more easily. The shuffle conjecture of Haglund, Haiman, Loehr,
Remmel, and Ulyanov [15, Conjecture 3.1.2] proposed such a formula, which we
give now. This conjecture was proved recently by Carlsson and Mellit [6, Theorem
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7.5] as a consequence of proving a refinement of it called the compositional shuffle
conjecture. However, many still refer to it as the shuffle conjecture, and hence we
will too.

Theorem 3.3 (The shuffle conjecture).

∇en =
∑

π∈PFn

tarea(π)qdinv(π)Fn,ides(π).

Example 3.4. Let us compute n = 2. In order to compute ∇e2, we first need to
calculate the elements of PF2 that are as follows.

1

2

π(1)

2

1

π(2)

1

2

π(3)

They have

area(π(1)) = 1 dinv(π(1)) = 0

area(π(2)) = 0 dinv(π(2)) = 0
area(π(3)) = 0 dinv(π(3)) = 1

word(π(1)) = 21 ides(π(1)) = {1}
word(π(2)) = 12 ides(π(2)) = ∅
word(π(3)) = 21 ides(π(3)) = {1}

and hence

∇e2 = tF2,{1} + F2,∅ + qF2,{1} = F2,∅ + (q + t)F2,{1}.

By equation (3.3) and the definition of DHn[Z; q, t] in equation (3.2), we know
that ∇e2 can be written as a positive linear combination of Schur functions. Using
Definition 2.5, we have that

s2 = F2,∅ and s11 = F2,{1}

from the respective SYTs

1 2 and 1

2

and hence

∇e2 = s2 + (q + t)s11.

It is still an open problem to find a formula for ∇en that is a manifestly positive
linear combination of Schur functions.

We conclude this subsection with an indication of why the shuffle conjecture was

so named. The name arose because the coefficient of the monomial zλ1
1 zλ2

2 · · · zλ�(λ)

�(λ)

in ∇en is equal to [15, Corollary 3.3.1]∑
tarea(π)qdinv(π),

where the sum is over all π ∈ PFn such that word(π) is a shuffle of the lists

[1, 2, . . . , λ1], [λ1 + 1, λ1 + 2, . . . , λ1 + λ2], . . . , [m+ 1,m+ 2, . . . , n],
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where m =
∑�(λ)−1

i=1 λi; that is, within word(π) the numbers within each list appear
in order when word(π) is read from left to right.

Example 3.5. Given the lists [1 , 2 ] and [3,4], note that 1342 is a shuffle of the
lists, but 1432 is not since 3 and 4 are not in order.

3.2. The compositional shuffle conjecture. The conjecture that Carlsson and
Mellit proved was not the shuffle conjecture from the previous subsection, but rather
a refinement of it known as the compositional shuffle conjecture. This refinement
by Haglund, Morse, and Zabrocki [16, Conjecture 4.5] centred around further sym-
metric functions Cα, where α � n, that satisfy

en =
∑
α�n

Cα

so that

(3.4) ∇en =
∑
α�n

∇Cα,

and it involved a fourth statistic on parking functions, that of a touch composition.

Definition 3.6 (Touch). If π is a parking function of order n, then note the set of
row numbers from bottom to top where there is a car in a square on the diagonal
y = x

{i1 = 1, i2, . . . , ik}.
Then the touch composition is

touch(π) = (i2 − i1)(i3 − i2) · · · (n+ 1− ik).

Example 3.7. If π is from Figure 1, then the set of row numbers where there is a
car in a square on y = x is {1, 4, 7}, and hence

touch(π) = 332.

We can now state the compositional shuffle conjecture of Haglund, Morse, and
Zabrocki [16, Conjecture 4.5], which was proved by Carlsson and Mellit [6, Theorem
7.5].

Theorem 3.8 (The compositional shuffle conjecture). Let α � n.

∇Cα =
∑

π∈PFn
touch(π)=α

tarea(π)qdinv(π)Fn,ides(π).

Observe that proving this would immediately prove the shuffle conjecture since
if we sum over all α � n, then the left-hand side would yield ∇en by equation (3.4)
and the right-hand side would lose its touch composition restriction.

Example 3.9. Let us compute n = 2. From Example 3.4 we have that the elements
of PF2 are again as follows.

1

2

π(1)

2

1

π(2)

1

2

π(3)
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They have

touch(π(1)) = 2
touch(π(2)) = 11

touch(π(3)) = 11,

hence

∇C2 = tF2,{1}

∇C11 = F2,∅ + qF2,{1},

and from Example 3.4

∇e2 = tF2,{1} + F2,∅ + qF2,{1} = ∇C2 +∇C11.

4. The proof and further directions

On 25 August 2015 Carlsson and Mellit posted an article on the arXiv [5] titled
simply “A proof of the shuffle conjecture”, in which they proved the compositional
shuffle conjecture, which in turn proved the shuffle conjecture. In their proof they
refined the compositional shuffle conjecture yet further, and they proved this re-
finement.

They worked with the right-hand side of the compositional shuffle conjecture
under what is known as the ζ map, which takes a parking function π to a new Dyck
path with cars placed in the squares along y = x such that when the cars are read
from right to left we obtain word(π). This required them to develop an analogue of
touch that they called touch′. They also worked with the reverse ordering of cars, so
that, for example, in a parking function the cars in the same column decrease when
read from bottom to top. The list of other ingredients that they were required
to create is impressive and included a generalization of the double affine Hecke
algebra; partial Dyck paths; numerous operators including raising and lowering
operators involving Hecke algebra operators and plethysm, and a modification of
Demazure–Lusztig operators; and a recurrence that their refinement satisfied.

To give a further idea of the complexity of the proof, this proof was almost 30
pages in length. In order to make it more accessible to combinatorialists, at the
request of Garsia, in [17] Haglund, and Xin expanded the proof, and their resulting
article is 60 pages in length.

4.1. Further directions. Carlsson and Mellit’s proof of the shuffle conjecture was
published in the Journal of the American Mathematical Society in 2018 [6], but
there remain many related open problems, some of which we list below.

(1) A Schur-positive formula for ∇en. By equations (3.3) and (3.2) we
know that when we express ∇en as a linear combination of Schur functions,

∇en =
∑
c,d≥0

tcqd
∑
λ�n

Dλsλ,

we have that the coefficients Dλ must be nonnegative integers since they are
counting multiplicities. It remains an open problem to find a combinatorial
formula for the Dλ, namely a formula that would compute them directly
as nonnegative integers by counting a set of objects.
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(2) Nabla on other symmetric functions. While the search for a com-
binatorial formula for ∇en has now been concluded with the proof of the
shuffle conjecture, it remains to prove the formula of Loehr and Warrington
[25, Conjecture 2.1] for

∇sλ

as the formula would generalize the result for ∇en since en = s1n . However,
a conjecture of Loehr and Warrington [24, p. 667] for

∇pn,

where pn is the nth power sum symmetric function

pn = zn1 + zn2 + · · · ,

was recently proved by Sergel [30, Theorem 4.11] who has also conjectured
the existence of a formula [31, Conjecture 3.1] for

∇mλ,

where mλ is the monomial symmetric function

mλ =
∑

zλ1
i1
zλ2
i2

· · · zλ�(λ)

i�(λ)

for λ = λ1λ2 · · ·λ�(λ) � n and the indices and monomials are distinct.
(3) A formula for q, t-Kostka polynomials. The modified Macdonald poly-

nomials H̃λ, λ � n, can be expanded as a linear combination of Schur
functions

H̃λ =
∑
μ�n

K̃μλ(q, t)sμ,

where the K̃μλ(q, t) are known as q, t-Kostka polynomials. It is still an open
problem to find a combinatorial formula for them, although such formulas
have been found for λ = m1n−m by Stembridge [35, Theorem 2.1], and
also for λ = 2m1n−2m by Fishel [9, Theorem 1.1], and others. Assaf,
furthermore, has a theorem that enables the unification of these two cases
[2, Theorem 18].
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[7] A. Cauchy, Mémoire sur les fonctions qui ne peuvent obtenir que deux valeurs égales et de
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