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HAUSDORFF DIMENSION,

LAGRANGE AND MARKOV DYNAMICAL SPECTRA

FOR GEOMETRIC LORENZ ATTRACTORS

CARLOS GUSTAVO T. MOREIRA, MARIA JOSÉ PACIFICO,
AND SERGIO ROMAÑA IBARRA

Abstract. In this paper, we show that geometric Lorenz attractors have
Hausdorff dimension strictly greater than 2. We use this result to show that for
a “large” set of real functions, the Lagrange and Markov dynamical spectrum
associated to these attractors has persistently nonempty interior.

1. Introduction

In 1963 the meteorologist E. Lorenz published in the Journal of Atmospheric
Sciences [Lor63] an example of a parametrized polynomial system of differential
equations,

ẋ = a(y − x), a = 10,

ẏ = rx− y − xz, r = 28,(1)

ż = xy − bz, b = 8/3,

as a very simplified model for thermal fluid convection, motivated by an attempt
to understand the foundations of weather forecasting. Numerical simulations for
an open neighborhood of the chosen parameters suggested that almost all points
in phase space tend to a strange attractor, called the Lorenz attractor. However
Lorenz’s equations proved to be very resistant to rigorous mathematical analysis
and also presented very serious difficulties to rigorous numerical study.

A very successful approach was taken by Afraimovich, Bykov, and Shil’nikov
[ABS77] and by Guckenheimer and Williams [GW79] independently: they con-
structed the so-called geometric Lorenz models for the behavior observed by Lorenz
(see section 2 for a precise definition). These models are flows in three-dimensions
for which one can rigorously prove the coexistence of an equilibrium point accumu-
lated by regular orbits. Recall that a regular solution is an orbit where the flow does
not vanish. Most remarkably, this attractor is robust: it cannot be destroyed by
a small perturbation of the original flow. Taking into account that the divergence
of the vector field induced by system (1) is negative, it follows that the Lebesgue
measure of the Lorenz attractor is zero. Henceforth, it is natural to ask about
its Hausdorff dimension. Numerical experiments give that this value is approxi-
mately equal to 2.062 (cf. [Vis04]) and also, for some parameter, the dimension of
the physical invariant measure lies in the interval [1.24063, 1.24129] (cf. [GN16]).
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Figure 1. Lorenz attractor

In this paper we address the problem to prove that the Hausdorff dimension of a
geometric Lorenz attractor is strictly greater that 2. In [AP83] and [Ste00], this
dimension is characterized in terms of the pressure of the system and in terms of
the Lyapunov exponents and the entropy with respect to a good invariant measure
associated to the geometric model. But, in both cases, the authors prove that the
Hausdorff dimension is greater than or equal to 2, but it is not necessarily strictly
greater than 2. A first attempt to obtain the strict inequality was given in [ML08],
where the authors achieve this result in the particular case that both branches of
the unstable manifold of the equilibrium meet the stable manifold of the equilib-
rium. But this condition is quite strong and extremely unstable. One of our goals
in this paper is to prove the strict inequality for the Hausdorff dimension for any
geometric Lorenz attractor; see Figure 1. Thus, our first result is the following.

Theorem A. The Hausdorff dimension of a geometric Lorenz attractor is strictly
greater than 2.

To achieve this, since it is well known that the geometric Lorenz attractor is the
suspension of a skew product map with contracting invariant leaves, defined in a
cross-section, we start studying the one-dimensional map f induced in the space
of leaves. We are able to prove the existence of an increasing nested sequence of
fat (Hausdorff dimension almost 1) regular Cantor sets of the one-dimensional map
(Theorem 1). This fact implies that the maximal invariant set ΛP for the skew
product (or, to first return map P associated to the flow) has Hausdorff dimension
strictly greater than 1, and this, in its turn, implies that the Hausdorff dimension of
a geometric Lorenz attractor is strictly greater than 2. In another words, Theorem
A is a consequence of the following result.

Theorem 1. There is an increasing family of regular Cantor sets Ck for f such
that

HD(Ck) → 1 as k → +∞.
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The proof of this theorem, although nontrivial, is relatively elementary, and it
combines techniques of several subjects of mathematics, such as ergodic theory,
combinatorics, and dynamical systems (fractal geometry).

To announce the next goal of this paper, let us recall the classical notions of
Lagrange and Markov spectra (see [CF89] for further explanation and details).

The Lagrange spectrum L is a classical subset of the extended real line, related
to Diophantine approximation. Given an irrational number α, the first important
result about upper bounds for Diophantine approximation is Dirichlet’s approxi-
mation theorem, stating that for all α ∈ R \Q, |α− p

q | <
1
q2 has an infinite number

of solutions p
q ∈ Q.

Markov and Hurwitz improved this result by verifying that, for all irrational
α, the inequality |α − p/q| < 1√

5·q2 has an infinite number of rational solutions

p/q, and
√
5 is the best constant that works for all irrational numbers. Indeed,

for α = 1+
√
5

2 , the gold number, Markov and Hurwitz also proved that, for every

ε > 0, |α − p
q | <

1
(
√
5+ε).q2

has a finite number of solutions in Q. Searching for

better results for a fixed α ∈ R \Q we are lead to define

k(α) = sup{k > 0 : |α−p/q| < 1/(k q2) has infinitely many rational solutions p/q}.
Note that the results by Markov and Hurwitz imply that k(α) ≥

√
5 for all α ∈ R\Q,

and k( 1+
√
5

2 ) =
√
5. It can be proved that k(α) = ∞ for almost every α ∈ R \Q.

We are interested in α ∈ R \ Q such that k(α) < ∞ (which forms a set of
Hausdorff dimension 1).

Definition 1. The Lagrange spectrum L is the image of the map k:

L = {k(α), α ∈ R \Q and k(α) < ∞}.
In 1921, Perron gave an alternative expression for the map k, as below. Write α

in continued fractions: α = [a0, a1, a2, . . .]. For each n ∈ N, define

αn = [an, an+1, an+2, . . .], βn = [0, an−1, an−2, . . .].

Then

(2) k(α) = lim sup
n→∞

(αn + βn).

For a proof of equation (2) see, for instance, [CM, Proposition 21].
Markov proved ([Mar80]) that the initial part of the Lagrange spectrum is

discrete: L ∩ (−∞, 3) = {k1 =
√
5 < k2 = 2

√
2 < k3 =

√
221
5 < · · · } with

kn → 3, k2n ∈ Q, for all n.
In 1947, Hall proved ([Hal47]) that the regular Cantor set C(4) of the real num-

bers in [0, 1] in whose continued fraction only appear coefficients 1, 2, 3, 4 satisfies

C(4) + C(4) = [
√
2− 1, 4(

√
2− 1)]. Using expression (2) and this result by Hall it

follows that [6,∞) ⊂ L. That is, the Lagrange spectrum contains a whole half-line,
nowadays called a Hall’s ray.

Here we point out Λ = C(4) × C(4) is a horseshoe for a local diffeomorphism
related to the Gauss map, which has Hausdorff dimension HD(Λ) > 1. Hall’s
result says that its image f(Λ) = C(4)+C(4) under the projection f(x, y) = x+ y
contains an interval. This is a key point to get nonempty interior in L. In 1975,
Freiman proved ([Fre75]) some difficult results showing that the arithmetic sum of
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certain (regular) Cantor sets, related to continued fractions, contain intervals, and
he used them to determine the precise beginning of Hall’s ray (the biggest half-line
contained in L) which is

2221564096 + 283748
√
462

491993569
∼= 4, 52782956616 · · · .

Another interesting set related to Diophantine approximation is the classical
Markov spectrum defined by

M =

{(
inf

(x,y)∈Z2\(0,0)
|f(x, y)|

)−1

: f(x, y) = ax2 + bxy + cy2 with b2 − 4ac = 1

}
.

Notably, the Lagrange and Markov spectrum have a dynamical interpretation.
Indeed, the expression of the map k(α) in terms of the continued fraction expression
of α given in (2) allows one to characterize the Lagrange and Markov spectrum in
terms of a shift map in a proper space. Let Σ = (N∗)Z be the set of bi-infinite
sequences of integer numbers and consider the shift map σ : Σ → Σ, σ((an)n) =
(an+1)n, and define

f : Σ → R, f((an)n) = α0 + β0,

where α0 = [a0, a1, a2, . . .] and β0 = [0, a−1, a−2, . . .].
The Lagrange and the Markov spectra are characterized as (cf. [CF89] for more

details)

L = {lim sup
k

f(σk((an)n)), (an)n ∈ Σ}, M = {sup
k

f(σk((an)n)), (an)n ∈ Σ}.

These characterizations lead naturally to a natural extension of these concepts
to the context of dynamical systems.

For our purposes, let us consider a more general definition of the Lagrange and
Markov spectra. Let M be a smooth manifold, let T = Z or R, and let φ = (φt)t∈T

be a discrete-time (T = Z) or continuous-time (T = R) smooth dynamical system
onM ; that is, φt : M → M are smooth diffeomorphisms, φ0 = id, and φt◦φs = φt+s

for all t, s ∈ T .
Given a compact invariant subset Λ ⊂ M and a function f : M → R, we define

the dynamical Markov (resp., Lagrange) spectrum M(φ,Λ, f) (resp., L(φ,Λ, f)) as

M(φ,Λ, f) = {mφ,f (x) : x ∈ Λ}, resp., L(φ,Λ, f) = {�φ,f (x) : x ∈ Λ}
where

mφ,f (x) := sup
t∈T

f(φt(x)), resp., �φ,f (x) := lim sup
t→+∞

f(φt(x)).

It can be proved that L(φ,Λ, f) ⊂ M(φ,Λ, f) (cf. [RM17]). In the discrete case,
we refer to [RM17], where it was proved that for typical hyperbolic dynamics (with
Hausdorff dimension greater than 1), the Lagrange and Markov dynamical spectra
have nonempty interior for typical functions.

Moreira and Romaña also proved that Markov and Lagrange dynamical spectra
associated to generic Anosov flows (including generic geodesic flows of surfaces of
negative curvature) typically have nonempty interior (see [RM15] and [Rom16] for
more details).

Now we are ready to state our next result. Let X0 be the vector field that defines
a geometric Lorenz attractor Λ, and let U be an open neighborhood of Λ where X0

is defined.
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Theorem B. Let Λ be the geometric Lorenz attractor associated to Xt
0. Then

arbitrarily close to Xt
0, there are a flow Xt and a neighborhood W of Xt such that,

if ΛY denotes the geometric Lorenz attractor associated to Y ∈ W, there is an open
and dense set HY ⊂ C1(U,R) such that for all f ∈ HY , we have

int(L(Y,ΛY , f)) �= ∅, int(M(Y,ΛY , f)) �= ∅
where int (A) denotes the interior of A.

1.1. Organization of the text. This paper is organized as follows. In Section
2, we describe informally the construction of a geometric Lorenz attractor and
announce the main proprieties used in the text. In Section 3 we prove the first main
result in this paper, Theorem 1 and its consequences, Corollary C and Theorem A.
In Section 4 we proof our last result, Theorem B.

2. Preliminary results: geometrical Lorenz model

In this section we present informally the construction of the geometric Lorenz
attractor, following [GP10,AP10], where the interested reader can find a detailed
exposition of this construction.

Let (ẋ, ẏ, ż) = (λ1x, λ2y, λ3z) be a vector field in the cube [−1, 1]3, with a sin-
gularity at the origin (0, 0, 0). Suppose the eigenvalues λi, 1 ≤ i ≤ 3, satisfy the
relations

(3) 0 < −λ3 < λ1 < −λ2, 0 < α = −λ3

λ1
< 1 < β = −λ2

λ1
.

Consider S = {(x, y, 1) : |x| ≤ 1/2, |y| ≤ 1/2} and S− = {(x, y, 1) ∈ S : x < 0},
S+ = {(x, y, 1) ∈ S : x > 0}, and S� = S \ Γ, with Γ = {(x, y, 1) ∈ S : x = 0}.

Assume that S is a transverse section to the flow so that every trajectory even-
tually crosses S in the direction of the negative z axis as in Figure 2. Consider

also Σ̃± = {(x, y, z) : x = ±1} and put Σ := Σ̃− ∪ Σ̃+ = {(x, y, z) : |x| = 1}.
For each (x0, y0, 1) ∈ S� the time τ such that Xτ (x0, y0, 1) ∈ Σ is given by
τ (x0) = − 1

λ1
log(|x0|), which depends on x0 ∈ S� only and is such that τ (x0) → +∞

when x0 → 0. Hence we get (where sgn(x) = x
|x| for x �= 0)

Xτ (x0, y0, 1) = (sgn(x0), y0e
λ2τ(x0), eλ3τ(x0)) = (sgn(x0), y0|x0|−

λ2
λ1 , |x0|−

λ3
λ1 ).

Let L : S� → Σ be given by

(4) L(x, y, 1) = (sgn(x), yxβ, xα).

It is easy to see that L(S±) has the shape of a triangle without the vertex (±1, 0, 0),
which are cusps points of the boundary of each of these sets. From now on we
denote by Σ± the closure of L(S�). Note that each line segment S� ∩ {x = x0}
is taken to another line segment Σ ∩ {z = z0} as sketched in Figure 2. Outside
the cube, to imitate the random turns of a regular orbit around the origin and
obtain a butterfly shape for our flow, we let the flow return to the cross section S
through a flow described by a suitable composition of a rotation R±, an expansion
E±θ, and a translation T±. Note that these transformations take line segments
Σ± ∩ {z = z0} into line segments S ∩ {x = x1} as shown in Figure 2, and so does
the composition T± ◦E±θ ◦R±. This composition of linear maps describes a vector
field Y in a region outside [−1, 1]3, such that the time-one map of the associated
flow realizes T± ◦ E±θ ◦ R± as a map Σ± → S. We note that the flow on the
attractor we are constructing will pass though the region between Σ± and S in a
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Figure 2. Behavior near the origin

relatively small time with respect the linearized region. The above construction
enables us to describe, for t ∈ R+, the orbit Xt(x) for all x ∈ S: the orbit starts
following the linear flow L until Σ± and then it will follow Y coming back to S and
so on. Now observe that Γ = {(x, y, 1 ∈ S : x = 0} ⊂ W s((0, 0, 0)) and so the orbit
of all x ∈ Γ converges to (0, 0, 0). Let us denote by W = {Xt(x) : x ∈ S ; t ∈ R+}
the set where this flow acts. The geometric Lorenz flow is the couple (W,Xt) and
the geometric Lorenz attractor is the set

(5) Λ =
⋂
t≥0

Xt(ΛP ), where ΛP =
⋂
i≥1

P i(S�),

where P : S� → S is the Poincaré map.
Composing the expression in (4) with R±, E±θ, and T± and taking into account

that points in Γ are contained in W s((0, 0, 0)), we can write an explicit formula for
the Poincaré map P by

P (x, y) = (f(x), g(x, y)),

f(x) =

{
f0(x

α), if x > 0,
f1(x

α), if x < 0,
with fi = (−1)iθ · x+ bi i = 1, 2

and

g(x, y) =

{
g0(x

α, y · xβ), if x > 0,
g1(x

α, y · xβ), if x < 0,

where g1 : L1 × I → I and g0 : L2 × I → I are suitable affine maps, with L1 =
[−1/2, 0) and L2 = (0, 1/2]. Figure 3 displays the main features of f and P on
[−1/2, 1/2] and S, respectively.

2.1. Properties of the one-dimensional map f . Here we specify the properties
of the one-dimensional map f described in Figure 3:

(f1) f is discontinuous at x = 0 with lateral limits f(0−) = 1
2 and f(0+) = − 1

2 ;

(f2) f is differentiable on I \ {0} and f ′(x) >
√
2, where I = [−1/2, 1/2];

(f3) the lateral limits of f ′ at x = 0 are f ′(0−) = +∞ = and f ′(0+) = +∞.



HAUSDORFF DIMENSION OF LORENZ ATTRACTORS 275

0 +1/2−1/2
Γ

Figure 3. The one-dimensional Lorenz map f and the image P (S∗)

The properties (f1)–(f3) above imply another important feature for the map
f , as it is shown in Lemma 2.1 below. We will present the proof of R. Williams
(cf. [Wil79, Proposition 1]) for Lemma 2.1, which we will use to construct “almost
locally eventually onto” avoiding the singularity 0 of f (cf. Section 2.3).

Lemma 2.1. Put I = [− 1
2 ,

1
2 ]. If J ⊂ I is a subinterval, then there is an integer n

such that fn(J) = I. That is, f is locally eventually onto.

Proof. Let J0 = J , if 0 /∈ J ; otherwise let J0 be the bigger of the two intervals into
which 0 splits J . Similarly, for each i such that Ji is defined, set

Ji+1 =

{
f(Ji), if 0 /∈ f(Ji),

bigger of two parts 0 splits f(Ji) into, if 0 ∈ f(Ji).

Note that |f(Ji+1)| > η|Ji+1|, where η = inf |f ′| >
√
2 and | · | denotes length. Thus

unless 0 is in both f(Ji) and f(Ji+1), we have

|Ji+2| ≥
η2

2
|Ji|.

But as η2 > 2, this last cannot always hold, say

0 ∈ f(Jn−2) and 0 ∈ f(Jn−1).

Then f(Jn−1) contains 0 and one end point of I, so that Jn is one “half” of I. Note
that f(Jn) contains the other half, and finally f3(Jn) = I. �

The next lemma gives us the following ergodic property for f as above ([Via97,
Corollary 3.4]).

Lemma 2.2. Let f : [−1/2, 1/2] \ {0} → [−1/2, 1/2] be a C2-function, satisfying
properties (f1)–(f3) in Section 2.1. Then f has some absolutely continuous invari-
ant probability measure (with respect to Lebesgue measure m ). Moreover, if μ is
any such measure, then μ = ϕm where ϕ has bounded variation.
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2.2. Properties of the map g. By definition g is piecewise C2 and the following
bounds on its partial derivatives hold:

(a) For all (x, y) ∈ S� (x �= 0), we have |∂yg(x, y)| = |x|β. As β > 1 and
|x| ≤ 1/2 there is 0 < λ < 1 such that

|∂yg| < λ.

(b) For (x, y) ∈ S� (x �= 0), we have ∂xg(x, y) = β|x|β−α. Since β > α and
|x| ≤ 1/2, we get |∂xg| < ∞.

We note that from the first item above it follows the uniform contraction of the
foliation given by the lines S ∩ {x = constant}. The foliation is contracting in the
following sense: there is a constant C > 0 such that, for any given leaf γ of the
foliation and for y1, y2 ∈ γ, then

dist(Pn(y1), P
n(y2)) ≤ C λn dist(y1, y2) as n → ∞.

We notice that the geometric Lorenz attractor constructed above is robust, that
is, it persists for all nearby vector fields. More precisely, there exists a neighbor-
hood U in R3 containing the attracting set Λ, such that for all vector fields Y
which are C1-close to X, the maximal invariant subset in U , ΛY =

⋂
t≥0 Y

t(U), is
still a transitive Y -invariant set. This is a consequence of the domination of the
contraction along the y-direction over the expansion along the x-direction (see, e.g.,
[AP10, Session 3.3.4]). Moreover, for every Y that is C1-close to X, the associated
Poincaré map preserves a contracting foliation FY with C1 leaves. It can be shown
that the holonomies along the leaves are in fact Hölder-C1; see [AP10]. Moreover, if
we have a strong dissipative condition on the equilibrium O, that is, if β > α+k for
some k ∈ Z+ (see the definitions of α, β as functions of the eigenvalues of 0 in (3)),
it can be shown that FY is a Ck-smooth foliation [SV16], and so the holonomies
along the leaves of FY are Ck-maps. In particular, for strongly dissipative Lorenz
attractors with β > α + k, the one-dimensional quotient map is Ck-smooth away
from the singularity (cf. [SV16]).

We finish this section noting that putting together the observations above and
the results proved in [AP10, Section 3.3.4], we easily deduce the following result.

Proposition 1. There is a neighborhood U ⊃ X such that for all Y ∈ U , if fY
is the quotient map fY : S∗/FY → S/FY associated to the corresponding Poincaré
map PY , then the properties (f1)–(f3) from Section 2.1 are still valid. Moreover,
there are constants C,C1 > 1 uniformly on a C2-neighborhood of X such that if

α(Y ) = −λ3(Y )
λ1(Y ) is the continuation of α = −λ3

λ1
obtained for the initial flow Xt it

holds that

(6)
1

C
≤ DfY (x)

|x|α(Y )−1
≤ C and

|Df2
Y (x)|

|x|α(Y )−2
≤ C1.

Furthermore, condition (f3) ensures that fY has enough expansion to easily prove
that every fY is locally eventually onto for all Y close to X.

2.3. Almost locally eventually onto. In this section we shall use an argument
similar to the one given in Lemma 2.1, to achieve a property of f fundamental for
the construction of the family of Cantor sets in Theorem 1. Roughly speaking, we
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shall prove the existence of a number a arbitrarily close to one, depending only on
f , such that for any interval J ⊂ I, we have the following:

(1) an interval J ′ ⊂ J such that 0 /∈ J ′ and with size equal to a fixed proportion
of the size of J .

(2) a number n = n(J) such that the restriction fn|J ′, fn : J ′ → La
1 is a

diffeomorphism, where La
1 = [f(1 − a), 0). Moreover, we obtain a control

on the distortion at each step f j , for all 1 ≤ j ≤ n− 1.

To do that, we start with an auxiliary result.

Lemma 2.3. There is a constant κ > 0 such that for all interval J ⊂ I \ {0} such
that 0 ∈ f(J) and 0 ∈ f2(J), then

|J | ≥ κ.

Proof. We denote 01 ∈ [− 1
2 , 0] and 02 ∈ [0, 1

2 ] the preimage of 0 in each branch

of f , that is, f(0i) = 0, i ∈ {1, 2}. Consider also the two preimages of 0i, 01i ,
02i , i = 1, 2, in [− 1

2 , 0] and [0, 1
2 ], respectively. As 0 ∈ f(J) and 0 ∈ f2(I),

then 0, 0i ∈ f(J) for some i, and thus we get that some of the intervals J1 =
[011, 01], J2 = [01, 0

1
2], J3 = [021, 02], and J4 = [02, 0

2
2] is contained in J . Thus,

taking κ = min{|J1|, |J2|, |J3|, |J4|}, we finish the proof. �

Recall that η2 > 2. Now we consider a number 0 < a < 1 satisfying

(7) a2η2 > 2 and 1− a < κ.

For an interval J ⊂ I, we will use the number a satisfying equation (7) to define

an interval J̃ ⊂ J avoiding the singularity 0 and that is obtained by cutting a small
part of J with length (1− a)|J |. In this direction, we proceed as follows.

Given any interval J = (b, c) ⊂ I \ {0}, we denote by Ja the subinterval of J
cutting an interval of size (1− a)|J | on the closest side to zero, that is,

Ja =

{
(b, ac+ (1− a)b), if c < 0,

(ab+ (1− a)c, c), if b > 0.

Note that, if c = 0, then Ja = (b, (1 − a)b) and if b = 0, Ja = ((1 − a)c, c). It is
clear that |Ja| = a|J | and 0 /∈ Ja.

When an interval J = (b, 0) or J = (0, c) has size large enough (|J | > (1 − a)),
we define the subinterval aJ of J cutting an interval of size (1− a) of J in the side
of the point 0; in other words,

aJ = (b,−(1− a)) or aJ = ((1− a), c).

It is clear that both kinds of intervals, Ja and aJ , avoid the singularity.
Recall that 01 ∈ (− 1

2 , 0) and 02 ∈ (0, 12 ) are the preimages of 0, that is, f(0i) = 0,
i = 1, 2. For the next lemma assume that 01 ∈ J1 = (b, 0) and 02 ∈ J2 = (0, c).
So, for a sufficiently close to 1, we have that 01 ∈ aJ1 = (b, a− 1) and 02 ∈ aJ2 =
(1− a, c). Therefore 0 ∈ f(aJ1) and 0 ∈ f(aJ2). Denote f(aJ1)

+ and f(aJ2)
+ the

bigger of two parts into which 0 splits f(aJ1) and f(aJ2), respectively.
The next lemma says that if a is sufficiently close to 1, then it is easy to determine

f(aJ1)
+ and f(aJ2)

+ explicitly.
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Lemma 2.4. Keeping the notation of above, if a is close enough to 1, then

f(aJ1)
+ = f([01, a− 1]) and f(aJ2)

+ = f([1− a, 02]).

Proof. Since 01 ∈ aJ1 = (b, a− 1) and 02 ∈ aJ2 = (1− a, c), we need only to prove
that

|f([b, 01])| < |f([01, a− 1])| and |f([02, c])| < |f([1− a, 02])|,
for a sufficiently close to 1. Let us prove the left-hand inequality; the other
one is analogous. Note that f(− 1

2 ) �= − 1
2 , then by definition of f we have that

|f([− 1
2 , 01])| < |f([01, 0))|. In particular, for all b ∈ [− 1

2 , 01], it holds that

|f([b, 01])| < |f([01, 0))|. Now consider the number ψ := |f([01, 0))|−|f([− 1
2 , 01])| >

0, which only depends of f . So, we can taken a sufficiently close to 1 such that

|f([01, 0))| − |f([01, a− 1])| < ψ

2
,

and therefore we conclude that |f [b, 01]| < |f [01, a− 1]|, as we wished. �

From now on, we will denote La
1 := [f(1− a), 0).

To prove the next lemma, we use the same idea as in the proof of Lemma 2.1, to
get control on the number of iterations required to increase the size of any interval
avoiding the singularity in each step.

Lemma 2.5. If J ⊂ I is a subinterval, then there are a subinterval J ′ ⊂ J
and an integer n(J) such that fn(J) : J ′ → La

1 is a diffeomorphism such that
d(f i(J ′), {0}) > 0, i = 0, . . . , n(J)− 1, and

n(J) ≤ 3 +

log
1

2|J |

log
a2η2

2

.

Proof. Given J ⊂ I, let J0 := Ja if 0 /∈ J ; otherwise let J0 := J+
a , where J+ is

the biggest connected component of J \ {0}. Similarly, for each i such that Ji is
defined, set

(8) Ji+1 =

{
f(Ji)a, if 0 /∈ f(Ji),

f(Ji)
+
a , if 0 ∈ f(Ji).

Note that |f(Ji+1)| > η|Ji+1|, where η = inf |f ′| >
√
2. Thus, unless 0 is in both

f(Ji) and f(Ji+1), we have

|Ji+2| ≥
a2η2

2
|Ji|.

But as a2η2 > 2, this last inequality cannot always hold. Let n be the minimum
number such that

(9) 0 ∈ f(Jn−2) and 0 ∈ f(Jn−1).

Thus equation (9) implies that Jn−2 satisfies the hypothesis of Lemma 2.3. There-
fore, |Jn−2| ≥ κ, and as 1 − a < κ (see equation (7)), we define the interval

af(Jn−2)
+ := J̃n−1 ⊂ f(Jn−2)

+. To finish the proof of the lemma, we have to

consider two cases, depending on the relative position of J̃n−1 in the connected
components of I \ {0}.
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Case 1. Assume that J̃n−1 ⊂ (0, 12 ]. Thus by definition of af(Jn−2)
+ we have that

J̃n−1 = [1 − a, b] for some b > 0. Moreover, as 0 ∈ f(Jn−1), then 0 ∈ f2(Jn−2),

therefore as J̃n−1 ⊂ (0, 12 ], then arguing as in the proof of Lemma 2.3, we get

that [01, 0
1
2] ⊂ f(Jn−2) or [02, 0

2
2] ⊂ f(Jn−1), consequently since f(0i2) = 02, then

02 ∈ J̃n−1, which implies by Lemma 2.4 that |f((1 − a, 02))| > |f((02, b))| or
equivalently

f(J̃n−1)
+ = f([1− a, 02)) = [f(1− a), 0) = La

1 .

In this case, we define the following sequence of intervals In−2 = f−1[1 − a, 02] ⊂
Jn−2 and Ii = f−1(Ii+1) ⊂ Ji, 0 ≤ i ≤ n− 2. Hence, by construction, the interval
J ′ := I0 ⊂ J satisfies

f i(J ′) ⊂ Ji−1 =

{
f(Ji−2)a, if 0 /∈ f(Ji−2),

f(Ji−2)
+
a , if 0 ∈ f(Ji−2).

Therefore, we conclude that

d(f i(J ′), {0}) ≥

⎧⎪⎪⎨⎪⎪⎩
(1− a) · |f(Ji−2)| ≥ (1− a) · |Ji−2|, if 0 /∈ f(Ji−2),

(1− a) · |f(Ji−2)
+| ≥ 1− a

2
|Ji−2|, if 0 ∈ f(Ji−2).

So, taking n(J) = n, we have that fn(J) : J ′ → La
1 is a diffeomorphism and it is

easy to see that d(f i(J ′), {0}) > 0, i = 0, . . . , n(J)− 1. This concludes the proof of
Case 1.

Case 2. Assume that J̃n−1 ⊂ [− 1
2 , 0). Then, J̃n−1 = [c, a − 1]. Thus by the

same argument as in Case 1, we have that 01 ∈ J̃n−1, and by Lemma 2.4 we

have |f((01, a − 1))| > |f((c, 01))| or, equivalently, f(J̃n−1)
+ = f((01, a − 1]) =

(0, f(a− 1)], then, J̃n := af(J̃n−1)
+ = [1−a, f(a− 1)]. Note that for a sufficiently

close to 1, f(a − 1) > 02 and therefore 02 ∈ J̃n. To conclude our arguments, we
note that by Lemma 2.4

f(J̃n)
+ = [f(1− a), 0) = La

1 .

In this case, we define the following sequence of intervals In−1 = f−1[1 − a, 02] ⊂
J̃n−1 and Ii = f−1(Ii+1) ⊂ Ji. Then using a similar argument as in Case 1, we
have that the interval J ′ := I0 ⊂ J satisfies the condition d(f i(J ′), {0}) > 0,
i = 0, . . . , n(J)− 1, for n(J) = n+ 1. The proof of Case 2 is complete.

To finish the proof of lemma, it is only left to estimate n(J). For this, note

that in any case, by construction |Jn−2| ≥
(

a2η2

2

)n−2

|J | and since |Jn−2| ≤ 1
2 , the

estimate required for n(J) follows immediately. �

Remark 1. Note that we also proved the estimate

d(f i(J ′), {0}) ≥ (1− a)

2
|Ji−2|, i = 0, . . . , n(J)− 1,

where Ji−2 are given by (8) above.

The next corollary will be a fundamental tool for the proof of Theorem 1, more
specifically, see Claim 4 in the proof of Theorem 1.
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Corollary 1. Let mk ∈ N be a sequence such that limk→∞ mk = ∞. Then if
Jk ⊂ I with |Jk| ≥ 1

3m3
k
, we have the following.

(a) There is a constant D such that n(Jk) ≤ D logmk.
(b) There are constants E > 0 and ξ > 0 such that for each i = 0, 1, . . . ,

n(Jk)− 1 hold that supx∈fi(J′
k)
|f ′| = E ·mξ

k, where J ′
k is as in Lemma 2.5.

Proof.

(a) If |Jk| ≥
1

3m3
k

, Lemma 2.5 implies that

n(Jk) ≤
log 3− log 2 + 3 logmk + 3 log a2η2

2

log
a2η2

2

≤ D logmk,

where D = 5/ log a2η2

2 , and we finish the proof of item (a).
(b) Let J ′

k be the interval given by Lemma 2.5. Then Remark 1 provides

d(f i(J ′
k), {0}) ≥

1− a

2
|(Jk)i−2|,

where (Jk)i−2 are defined in (8). The construction of (Jk)i−2 gives
|(Jk)i−2| ≥ |Jk| ≥ 1

3m3
k
. Thus

(10) d(f i(J ′
k), {0}) ≥

1− a

2
· 1

3m3
k

.

The next step is to estimate the derivative of f : f i(J ′
k) → f i+1(J ′

k). For
this purpose, we use the inequalities (10) and (6) which provides that

sup
x∈fi(J′

k)

|f ′| ≤ C

(
1− a

6m3
k

)α−1

= C · (1− a)α−1 · 61−αm
3·(1−α)
k .

We take E = C · (1− a)α−1 · 61−α and ξ = 3 · (1− α). This concludes the
proof. �

3. Fat Cantor sets for f and the proof of Theorem 1

The main goal in this section is to prove Theorem 1, that is, that there are
infinitely many regular Cantor sets for the one-dimensional map associated to a
geometric Lorenz attractor, with Hausdorff dimension (HD) very close to 1.

Before we announce precisely this result, let us recall the definition of the Haus-
dorff dimension of a Cantor set and the notion of a regular Cantor set. We refer the
reader to the book [PT93, Chapter 4] for a nice exposition of the main properties
of these kinds of Cantor sets. We proceed as follows.

Let K ⊂ R be a Cantor set, and let U = {Ui}1≤i≤n be a finite covering of K by
open intervals in R. We define the diameter diam(U) as the maximum of �(Ui), 1 ≤
i ≤ n, where �i := �(Ui) denotes the length of Ui. Define Hα(U) =

∑
1≤i≤n �

α
i .

Then the Hausdorff α-measure of K is

mα(K) = lim
ε→0

⎛⎝ inf
U ⊃K,

diam(U)<ε

Hα(U)

⎞⎠ .



HAUSDORFF DIMENSION OF LORENZ ATTRACTORS 281

One can show that there is an unique real number, the Hausdorff dimension of
K, which we denote by HD(K), such that for α < HD(K), mα(K) = ∞ and for
α > HD(K), mα(K) = 0.

Definition 2. A dynamically defined (or regular) Cantor set is a Cantor setK ⊂ R,
together with the following:

(i) disjoint compact intervals I1, I2, . . . , Ir such that K ⊂ I1 ∪ I2 ∪ · · · ∪ Ir and
the boundary of each Ij is contained in K;

(ii) there is a C1+α expanding map ψ defined in a neighborhood of I1∪I2∪· · ·∪Ir
such that, for each j, ψ(Ij) is the convex hull of a finite union of some of
these intervals Is; moreover, ψ satisfies

• for each 1 ≤ j ≤ r and n sufficiently big, ψn(K ∩ Ij) = K;
• K =

⋂
ψ−n(I1 ∪ I2 ∪ · · · ∪ Ir).

We say that {I1, I2, . . . , Ir} is a Markov partition for K and that K is defined by
ψ.

A classical example of regular Cantor set in R is the ternary Cantor set K 1
3
of

the elements of [0, 1] which can be written in base 3 using only digits 0 and 2. The
set K 1

3
is a regular Cantor set, defined by the map ψ : [0, 1

3 ] ∪ [ 23 , 1] → R given by

ψ(x) =

{
3x, if x ∈ [0, 1

3 ],

−3x+ 3, if x ∈ [ 23 , 1].

There is a class of examples of regular Cantor sets, given by a nontrivial basic set Λ
associated to a C2-diffeomorphism ϕ : M → M of a 2-manifold M , which appear in
the proof of Corollary A. Recall that a basic set is a compact hyperbolic invariant
transitive set of ϕ which coincides with the maximal invariant set in a neighborhood
of it. “Nontrivial” means that it does not consist of finitely many periodic orbits.
These types of regular Cantor sets, roughly speaking, are given by the intersections
W s(x) ∩ Λ and Wu(x) ∩ Λ, where W s(x) and Wu(x) are the stable and unstable
manifolds of x ∈ Λ, respectively. We denote by Ks := W s(x)∩Λ the stable Cantor
set and by Ku := Wu(x) ∩ Λ the unstable Cantor set (cf. [PT93, chap. 4] or
[RM15, Appendix]).

If Λ is a basic set associated to a C2-diffeomorphism defined in a surface, then it
is locally the product of two regular Cantor sets Ks and Ku (cf. [PT93, Appendix
2]). We shall use the following properties of a regular Cantor set, whose proofs can
be found in [PT93]:

Proposition 2 ([PT93, Proposition 4]). The Hausdorff dimension of a basic set
Λ satisfies

HD(Λ) = HD(Ks ×Ku) = HD(Ks) +HD(Ku).

Proposition 3 ([PT93, Proposition 7]). If K is a regular Cantor set, then

0 < HD(K) < 1.

Proof of Theorem 1. We construct the Cantor sets inductively. Denote L1 =
[−1/2, 0) and L2 = (0, 1/2], and pick any interval I1 ⊂ L1. Lemma 2.1 implies

that there is an iterate fn1

of f such that fn1

: I1 → L1 is a diffeomorphism. Let
{J1

1 , J
1
2} be the complementary intervals in L1 of I1. Again Lemma 2.1 implies that

there are I11 ⊂ J1
1 , I

1
2 ⊂ J1

2 , n
1
1, and n1

2 such that fn1
i : I1i → L1 is a diffeomorphism.
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Let {J11
1 , J12

1 } be the complementary intervals of I11 in J1
1 , and let {J11

2 , J12
2 } be

the complementary intervals I12 in J1
2 .

Continuing with this process, in the kth step, we obtain rk = 2k − 1 intervals
I1, . . . , Irk such that, for each i ∈ {1, . . . , k}, there is ni so that fni : Iri → L1 is a
diffeomorphism.

Now let {J (k)
1 , . . . , J

(k)
rk+1} be the complementary intervals of

⋃rk
i=1 Ii in L1, and

let μ be an the invariant measure given by Lemma 2.2, which is absolutely contin-
uous w.r.t. Lebesgue, and thus there is a constant c such that

(11) μ(I) ≤ cm(I) = c |I|

for any interval I. Take εk = 1
c mini{μ(J (k)

i )} ≤ mini{|J (k)
i |}, and put mk = � 1

εk
�

the integer part of 1
εk
, that is, mk ≤ 1

εk
< mk + 1.

Next, split each interval J
(k)
i in 2mk intervals {J (k)

i,j : j = 1, . . . , 2mk} that are
pairwise disjoint of equal μ-size. Then, for j = 1, . . . , 2mk , we have

(12)
1

2mk
≥ |J (k)

i |
2mk

= |J (k)
i,j | ≥

1

c
μ(J

(k)
i,j ) =

1

c

μ(J
(k)
i )

2mk
≥ εk

2mk
>

1

2mk(mk + 1)
.

Consider the interval
(
− 1

m3
k
, 1
m3

k

)
. Since μ is f -invariant, inequality (11) implies

that

μ

⎛⎝4mk⋃
j=1

f−j

(
− 1

m3
k

,
1

m3
k

)⎞⎠ ≤
4mk∑
j=0

μ

(
f−j

(
− 1

m3
k

,
1

m3
k

))
=

4mk∑
j=0

μ

(
− 1

m3
k

,
1

m3
k

)

≤ 2 c

4mk∑
j=0

1

m3
k

= 2c

(
4mk + 1

m3
k

)
.(13)

In what follows, given A ⊂ R, #A denotes the cardinality of A.

Claim 1. For any k and any 1 ≤ i ≤ rk + 1 there is a set Ri ⊂ {1, . . . , 2mk} with

#Ri = 2mk−1, such that for each r ∈ Ri there is a point x ∈ J
(k)
i,r such that

x /∈
4mk⋃
j=1

f−j

(
− 1

m3
k

,
1

m3
k

)
.

Proof. The idea of the proof is to count the number of intervals that does not satisfy
this property. To do that, consider the set

RC
i :=

⎧⎨⎩j : J
(k)
i,j ⊂

4mk⋃
j=0

f−j

(
− 1

m3
k

,
1

m3
k

)⎫⎬⎭ .

We want show that #RC
i < 2mk−1. For this we proceed as follows. Put #RC

i =
2mk−nk + Nk with 0 ≤ Nk < 2mk−nk , and let j ∈ {1, . . . , 2mk}. Then, by the

definition of J
(k)
i,j , we obtain μ(J

(k)
i,j ) = μ(J

(k)
i,j ) for all j ∈ RC

i . Hence, equations

(12) and (13) imply that

1

2mk(mk + 1)
(2mk−nk +Nk) < μ(J

(k)
i,j ) ·#RC

i ≤ μ

⎛⎝ ⋃
j∈RC

i

J
(k)
i,j

⎞⎠ ≤ 2c

(
4mk + 1

m3
k

)
.
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Hence we have

1

2nk
≤ 1

2nk
+

Nk

2mk
≤ 2c · (4mk + 1)(mk + 1)

m3
k

≤ 20c

mk
,

which implies that if mk is large enough (mk > 40c), then nk should be bigger than
1, i.e., nk > 1.

Now Nk < 2mk−nk implies that Nk

2mk
< 1

2nk
, and as nk > 1, we get

1

2nk
+

Nk

2mk
<

2

2nk
≤ 1

2
.

Thus #RC
i = 2mk−nk +Nk < 2mk−1, and this concludes the proof of Claim 1. �

Claim 2. Consider the set R+
i = {r ∈ Ri : |J (k)

i,r | ≥ 1
3m3

k
}. Then #R+

i < 2mk−2.

Proof. As the intervals J
(k)
i,j are pairwise disjoint, if #R+

i ≥ 2mk−2, then

1 ≥ |
⋃

j∈R+
i

J
(k)
i,j | ≥

2mk−1

3m3
k

,

which implies a contradiction for mk large enough. �

The above claim ensures that the set R̃i := Ri \ R+
i has cardinality #R̃i ≥

2mk−2.

Claim 3. For all r ∈ R̃i there is j(i, r)∈ {1, . . . , 4mk} minimal, such that

(14) |f j(i,r)(J
(k)
i,r )| >

1

3m3
k

.

Proof. Let r ∈ R̃i, then if |fs(J
(k)
i,r )| ≥ 1

m3
k
> 1

3m3
k
for some s ∈ j = 1, . . . , 4mk, we

are done. Otherwise, assume that there is s ∈ {1, . . . , 4mk} such that |f t(J
(k)
i,r )| <

1
m3

k
for all 1 ≤ t ≤ s. If 0 ∈ f t0(J

(k)
i,r ) for some 1 ≤ t0 ≤ s, Claim 1 implies that

there is xr ∈ J
(k)
i,r such that xr /∈ f−j

(
− 1

m3
k
, 1
m3

k

)
for j = 1, . . . , 4mk, and so we get

|f t0(J
(k)
i,r )| > 1

m3
k
, contradicting our hypothesis. Thus 0 /∈ f t(J

(k)
i,r ) for all 1 ≤ t ≤ s.

Since fs acts as a diffeomorphism on J
(k)
i,r with derivative |(fs)′| > ηs > 2s/2 and

equation (12) holds, we obtain

1

m3
k

≥ |fs(J
(k)
i,j )| ≥

ηs

2mk(mk + 1)
≥ 2s/2

2mk(mk + 1)

=
2s/2−mk

mk + 1
=⇒ s/2−mk < 0 =⇒ s < 2mk.

If |fs+1(J
(k)
i,r )| > 1

3m3
k
, then we are done. Otherwise, if |fs+1(J

(k)
i,r )| ≤ 1

3m3
k
< 1

m3
k
,

reasoning as before, we get that 0 /∈ fs+1(J
(k)
i,r ). Since 0 /∈ fs+1(J

(k)
i,r ), then f acts as

a diffeomorphism on fs(J
(k)
i,r ) with derivative |f ′| > η, which allows us to state that

|fs+1(J
(k)
i,r )| > η|fs(J

(k)
i,r )|. Again, if |fs+2(J

(k)
i,r )| > 1

3m3
k
, we are done. Otherwise,

if |fs+2(J
(k)
i,r )| ≤ 1

3m3
k
< 1

m3
k
and, reasoning as before, we get that 0 /∈ fs+2(J

(k)
i,r ),

then
|fs+2(J

(k)
i,r )| > η|fs+1(J

(k)
i,r )| > η2|fs(J

(k)
i,r )|.
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Using this argument recursively, if |fs+2mk−1(J
(k)
i,r )| ≤ 1

3m3
k

< 1
m3

k
, then 0 /∈

fs+2mk−1(J
(k)
i,r ) and it holds that

|fs+2mk(J
(k)
i,r )| > η|fs+2mk−1(J

(k)
i,r )| > · · · > η2mk |fs(J

(k)
i,r )|

and
|fs(J

(k)
i,r )| > ηs|J (k)

i,r |.

Thanks to inequality (12) we conclude that

|fs+2mk(J
(k)
i,r )| >

2mkηs

2mk(mk + 1)
=

ηs

mk + 1
>

1

3m3
k

,

finishing the proof of Claim 3. �

Now consider the sequence of intervals f j(i,r)(J
(k)
i,r ) given by Claim 3. Since

|f j(i,r)(J
(k)
i,r )| > 1

3m3
k
for all r ∈ R̃i, we can apply Lemma 2.5 and Corollary 1 to get

the following.

Claim 4. For all r ∈ R̃i, there is an interval I
(k)
i,r ⊂ f j(i,r)(J

(k)
i,r ) and an integer

m
(k)
i,r such that fmk

i,r : I
(k)
i,r → La

1 is a diffeomorphism, 0 /∈ fs(I
(k)
i,r ) for s = 0, 1, . . . ,

m
(k)
i,r − 1, m

(k)
i,r ≤ D logmk, and sup

x∈fs(I
(k)
i,r )

|f ′| = E ·mξ
k.

Claim 5. Let Ĩ
(k)
i,r ⊂ J

(k)
i,r with f j(i,r)(Ĩ

(k)
i,r ) = I

(k)
i,r , where I

(k)
i,r is as in Claim 4.

Then, there is a constant H > 0, depending only of f , such that

(15) |Ĩki,r| ≥ H|Ii,r||J (k)
i,r |.

Proof. First note that the mean value theorem implies

(16)
|Ĩ(k)i,r |
|J (k)

i,r |
=

|(f j(i,r))′(y)|
|(f j(i,r))′(x)| ·

|Ii,r|
|f j(i,r)(J

(k)
i,r )|

for some x ∈ Ĩ
(k)
i,r ; y ∈ J

(k)
i,r .

It is enough to bound
|(f j(i,r))′(y)|
|(f j(i,r))′(x)| , since equality (16) implies that inequality

(15) holds. For this reason, we proceed as follows. As j(i, r) is minimal satisfying
(14), we get

(17) |fs(J
(k)
i,r )| <

1

3m3
k

for s = 0, . . . , j(i, r)− 1.

This implies, reasoning as in the proof of Claim 3, that 0 /∈ fs(J
(k)
i,r ) for s =

0, . . . , j(i, r)− 1 and hence fs|
J

(k)
i,r

is a diffeomorphism for s = 0, . . . , j(i, r)− 1.

Observe that by Claim 1, for each s ∈ {0, . . . , j(i, r)− 1}, there is xs ∈ J
(k)
i,r such

that fs(xs) /∈ (− 1
m3

k
, 1
m3

k
), and so, if d(·, ·) is the distance between sets, by equation

(17), we conclude that

(18) inf
x∈J

(k)
i,r

|fs(x)| =: d(fs(J
(k)
i,r ), {0}) >

1

2m3
k

.
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Now we have∣∣∣∣∣ log (f j(i,r))′(y)

(f j(i,r))′(x)

∣∣∣∣∣
=

∣∣∣∣∣
j(i,r)−1∑

s=0

log(f ′(fs(y))− log(f ′(fs(x))

∣∣∣∣∣
≤

j(i,r)−1∑
s=0

| log(f ′(fs(y))− log(f ′(fs(x))|

≤by MV T

j(i,r)−1∑
s=0

|f ′′(fs(zs)|
|f ′(fs(zs))|

|fs(y)− fs(x)|

for some zs ∈ J
(k)
i,r

≤by (6)

j(i,r)−1∑
s=0

C · C1 ·
1

|fs(zs)|
· |fs(J

(k)
i,r )|

where C,C1 depend only on f

≤by (18)

j(i,r)−1∑
s=0

C · C1 · 2m3
k · |fs(J

(k)
i,r )|.

(19)

Recall that equation (6) implies that |f ′′(x)|
|f ′(x)| ≤ C·C1

|x| , with C1, C depending only

of f . Thus, since fs|
J

(k)
i,r

is a diffeomorphism for each s ∈ {0, . . . , j(i, r) − 1}, and
satisfies property (f2) (see Section 2.1), we get

|f j(i,r)−1(J
(k)
i,r )| ≥

√
2|f j(i,r)−2(J

(k)
i,r )|

≥
√
2
2|f j(i,r)−3(J

(k)
i,r )| ≥ · · · >

√
2
s|f j(i,r)−(s+1)(J

(k)
i,r )|.

Making the change of variable t = j(i, r)− (s+ 1), the last inequality provides

(20) |f j(i,r)−1(J
(k)
i,r )| ≥ (

√
2)j(i,r)−t−1|f t(J

(k)
i,r )|.

Using the inequality (20) together with (17) and replacing in the last term of equa-
tion (19), we get that
(21)∣∣∣∣∣ log (f j(i,r))′(y)

(f j(i,r))′(x)

∣∣∣∣∣ ≤ C ·C1

j(i,r)−1∑
t=0

2m3
k ·

1

3m3
k

(
1√
2

)j(i,r)−t−1

<
2

3
·C ·C1 ·

√
2(
√
2+1).

Setting H := e−
2
3 ·C·C1·

√
2·(

√
2+1), we bound

|(f j(i,r))′(y)|
|(f j(i,r))′(x)| , and inequality (16) fol-

lows, implying that inequality (15) holds. The proof of Claim 5 is finished. �

The next step is to construct the regular Cantor with Hausdorff dimension close
to 1. For this sake, we consider the collection of surjective maps

{gi,r = fm
(k)
i,r ◦ f j(i,r) : Ĩ

(k)
i,r → La

1 | r ∈ R̃i}.
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Let gki : Li
k =

⋃
r∈ ˜Ri

Ĩ
(k)
i,r → La

1 be defined by gki = gi,r|Ĩ(k)
i,r

, and let Ci
k be the

regular Cantor set defined by the intervals Ĩ
(k)
i,r and gi,r, i.e.,

Ci
k =

⋂
n≥1

g−n
ki (Li

k).

The final step is to show that HD(Ci
k) → 1 as k → +∞. For this, we use the same

strategy given in [PT93, Theorem 3]. In fact, consider the number

Λ
1,Ĩ

(k)
i,r

= sup
x∈Ĩ

(k)
i,r

|g′i,r|,

and define d1 ∈ [0, 1] by

(22)
∑
r∈ ˜Ri

(Λ
1,Ĩ

(k)
i,r

)−d1 = 1.

It is shown in [PT93, pp. 69–70] that d1 ≤ HD(Ci
k). Therefore, we can estimate

HD(Ci
k) by computing d1. To do that, note that gi,r = fm

(k)
i,r ◦ f j(i,r), and to

simplify notation, denote h1 = fm
(k)
i,r and h2 = f j(i,r). Then

Λ
1,Ĩ

(k)
i,r

≤ sup
I
(k)
i,r

|h′
1| · sup

Ĩ
(k)
i,r

|h′
2|.

Corollary 1 gives that sup
I
(k)
i,r

|h′
1| ≤ ED logmk · mF logmk

k , where F = D · ξ. To

estimate the the supremum of |h′
2|, sup |h′

2|, in Ĩi,r, we note that by the proof of
Claim 5 the function h2|Ĩ(k)

i,r

has bounded distortion. Thus

sup
Ĩ
(k)
i,r

|h′
2| ≤ H−1 inf

Ĩ
(k)
i,r

|h′
2|,

where H := e−
2
3 ·C·C1·

√
2·(

√
2+1) (see equation (21)). Since h2(Ĩ

(k)
i,r ) = I

(k)
i,r , the mean

value theorem implies

inf
Ĩ
(k)
i,r

|h′
2| ≤

|I(k)i,r |
|Ĩ(k)i,r |

by (15)
≤ H−1

|J (k)
i,r |

by (12)
≤ H−12mk(mk + 1).

The last two inequalities imply that

(23) Λ
1,Ĩ

(k)
i,r

≤ H−2 · ED logmk ·mF logmk

k · 2mk(mk + 1) = 2(1+o(1))mk ,

since

lim
k→∞

logH−2+D logmk ·logE+F · (logmk)
2+mk log 2+log(mk+1)

mk
= log 2.

Therefore, since #R̃i ≥ 2mk−2, inequalities (22) and (23) imply that

2mk−2 ·
(

1

2(1+o(1))mk

)d1

≤ 1 =
∑
r∈ ˜Ri

(Λ
1,Ĩ

(k)
i,r

)−d1 .



HAUSDORFF DIMENSION OF LORENZ ATTRACTORS 287

Hence

(mk − 2) log 2 ≤ (1 + o(1)) ·mk · d1 · log 2

=⇒ 1− o(1) =
mk − 2

mk
≤ (1 + o(1)) · d1

=⇒ 1− o(1) ≤ (1 + o(1)) · d1.

Thus, 1− o(1) ≤ d1 ≤ 1. Now we define Ck :=
⋃

i C
i
k which satisfies the condition

of the theorem, finishing the proof of Theorem 1. �

As an immediate consequence of Theorem 1, we have the following.

Corollary C. The Hausdorff dimension of the bidimensional attractor for the
Poincaré map P , ΛP , is strictly greater than 1.

Proof. For this, let Γ = {(x, y, 1) : x = 0}, and let

ΛP =
⋂
i≥1

P i(S \ Γ)

be as in equation (5). For each k > 0, let Ck be the regular Cantor set given by
Theorem 1 and define

(24) Λk
P = {(x, y) ∈ ΛP : x ∈ Ck}.

Notice that by construction, each Ck is a regular Cantor set (see comments after

Definition 2) and so, for each k, Λk
P is a basic set for P . Moreover, Λk

P ⊂ Λk+1
P ,

and by Proposition 2

HD(Λk
P ) = HD(uK

k
P ) +HD(sK

k
P ) = HD(Ck) +HD(sK

k
P ),

where sK
k
P and uK

k
P = Ck are the stable and unstable Cantor sets associated to

the basic set Λk
P . As sK

k
P is a regular Cantor set, by Proposition 3, there is ξ > 0

such that HD(sK
1
P ) > ξ. Hence

HD(Λk
P ) = HD(Ck) +HD(sK

k
P ) ≥ HD(Ck) +HD(sK

1
P ) > HD(Ck) + ξ.

Thus, Theorem 1 implies that H(Λk
P ) > 1 for k large enough. Since Λk

P ⊂ ΛP , this
finishes the proof of Corollary C. �

Proof of Theorem A. Note that the geometric Lorenz attractor Λ satisfies

Λ =

(⋃
t∈R

Xt(ΛP )

)
∪O, where O is the singularity.

Thus,

HD(Λ) ≥ 1 +HD(ΛP ) > 2.

The proof of Theorem A is complete. �

We finish this section by announcing a corollary of the proof of Theorem 1 that
might be of interest to the reader.

Corollary D. If f is a C2-function that satisfies the properties (f1)−(f3) described
in Section 2.1 with f(− 1

2 ) �= − 1
2 , f( 12 ) �= 1

2 and also satisfies equation (6), then
there is an increasing family of regular Cantor sets Ck for f such that

HD(Ck) → 1 as k → +∞.
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4. Lagrange and Markov spectra: proof of Theorem B

In this section we prove Theorem B. For this, we first prove that small pertur-
bations of the Poincaré map P restricted to Λk

P , with Λk
P defined at (24), can be

realized as Poincaré maps of small perturbations of the initial geometric Lorenz
flow Xt (Lemma 4.1). Then, taking k such that HD(Λk

P ) > 1, we recover the
properties described in [RM17] needed to apply [RM17, Main Theorem], obtaining
nonempty interior in the Lagrange and Markov spectrum.

We start by giving the main theorem from [RM17], which is a fundamental tool
for obtaining Theorem B. Given A ⊂ M , int(A) denotes the interior of A.

Theorem (Main Theorem at [RM17]). Let Λ be a horseshoe associated to a C2-
diffeomorphism ϕ such that HD(Λ) > 1. Then there is, arbitrarily close to ϕ, a
diffeomorphism ϕ0 and a C2-neighborhood W of ϕ0 such that, if Λψ denotes the
continuation of Λ associated to ψ ∈ W, there is an open and dense set H1(ψ,Λψ) ⊂
C1(M,R) such that for all f ∈ H1(ψ,Λψ), we have

int( L(ψ,Λψ, f)) �= ∅ and int(M(ψ,Λψ, f)) �= ∅.

The set H1(ψ,Λψ) is described by

Hψ =
{
f ∈ C1(M,R) : #Mf (Λψ) = 1, z ∈ Mf (Λψ), Dψz(e

s,u
z ) �= 0

}
,

where Mf (Λψ) := {z ∈ Δ : f(z) ≥ f(x) for allx ∈ Λψ} is the set of maximum
points of f in Λψ and es,uz are unit vectors in Es,u(z), respectively.

4.1. Perturbations of the Poincaré map. Fix k with HD(Λk
P ) > 1. By con-

struction, there is ε > 0 small so that d(Λk
P ,Γ) > 2ε, where Γ = {(x, y, 1) : x = 0}.

Let UP be a C2-neighborhood of P such that, if P̃ ∈ UP and Λk
P̃

is the hyperbolic

continuation of Λk
P , then d(Λk

P̃
,Γ) > ε.

The next lemma states that in a neighborhood of Λk
P̃
, we can recover P̃ ∈ UP as

a Poincaré map associated to a geometric Lorenz flow X̃t, C2-close to Xt.

Lemma 4.1. Given P̃ ∈ UP , there is a geometric Lorenz flow X̃t, C2-close to Xt,
such that the restriction to Λk

P̃
of the Poincaré map associated to X̃t coincides with

the restriction of P̃ to Λk
P̃
.

Proof. For the proof we construct explicitly a flow X̃t, with the desired properties.
For this, we proceed as follows. Let R̃ = R1 ∪R2 ∪ · · · ∪Rm be a Markov partition
of Λk

P̃
, and let Ui ⊂ S be an open set with Ri ⊂ Ui, d(Ui,Γ) >

ε
2 for all i, and such

that if P̃ (x, y) ∈ Ri, then P (x, y) ∈ Ui. The tubular flow theorem applied to X
gives local charts ψi : Ui × [−1, 1] → R3 for i ∈ {1, . . . ,m} satisfying

(25) ψi(Ui × {0}) ⊂ S and D(ψi)(x,y,t)(0, 0, 1) = X(ψi(x, y, t)).

Put Wi := ψi(Ui × (−1, 1)). Without loss of generality, we can assume that

Wi ∩Wj = ∅ if i �= j.

We denote by P̃i and Pi the maps P̃ and P , respectively, in these coordinates.
Let ϕ : R → R be a C∞-bump function such that ϕ(t) = 0 for t ≤ −1 and

ϕ(t) = 1 for t ≥ 1. Define the following flow on Ui × [−1, 1]:

φt
i(x, y, 0) = (Pi(x, y) + ϕ(3t+ 1)(P̃i(x, y)− P (x, y)), t).
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Note that

(26) φt
i(x, y, 0) =

{
(Pi(x, y), t), if t ≤ − 2

3 ,

(P̃i(x, y), t), if t ≥ 0.

Consider the vector field on Ui × [−1, 1] given by

(27) Zi(φ
t
i(x, y, 0)) =

∂

∂t
φt
i(x, y, 0) = (3ϕ′(3t+ 1)(P̃i(x, y)− P (x, y)), 1).

By equation (26), this vector field satisfies

(28) Zi(φ
t
i(x, y, 0)) =

{
(0, 0, 1), if t ≤ − 2

3 ,
(0, 0, 1), if t ≥ 0.

Let Yi be the vector field on Wi = ψi(Ui × (−1, 1)) defined by

Yi(ψi(x, y, t)) = D(ψi)(x,y,t)(Zi(φ
t
i(x, y, 0))).

By equations (25) and (28) we get that

(29) Yi(ψi(x, y, t)) = X(ψi(x, y, t)) for t ≤ −2

3
and t ≥ 0.

Let W be the open set W =
⋃m

i=1 ψi(Ui × (−1, 1)) =
⋃m

i=1 Wi, and consider the

vector field Y : W → R3 given by Y = Yi|Wi
. Finally, define the vector field X̃ by

X̃ :=

{
Y, on W ,
X, outside of W .

Since P̃ ∈ UP , equation (27) implies that X̃ is C2-close to X. If X̃t is the flow

associated to the vector field X̃, equations (26) and (29) imply that the Poincaré

map associated to Ỹ t restricted to Λk
P̃
is equal to P̃ restricted to Λk

P̃
. To finish the

proof, note that d(Ui,Γ) >
ε
2 for all i, and thus, X̃t is a geometric Lorenz flow, as

desired. �

4.2. Regaining the spectrum. Recall that we are interested in studying the
spectrum over a geometric Lorenz attractor Λ, that is not a hyperbolic set, as
well as Λ ∩ S. Thus, we cannot directly apply the techniques developed in the
hyperbolic setting to analyze the spectrum in this case. So, the strategy we adopt
is to profit from the fact that Λ ∩ S contains hyperbolic sets Λk

P for the Poincaré
map P with Hausdorff dimension bigger than 1. Then we use similar arguments
developed in [RM17] to show that the Lagrange and Markov dynamical spectrum
has nonempty interior for a set of C1-real functions over the cross-section S and
with these functions regaining the spectrum over Λ. In this direction, we proceed
as follows.

The dynamical Lagrange and Markov spectra of Λ and Λk
P are related in the

following way. Given a function F ∈ Cs(U,R), s ≥ 1, let us denote by f =
maxFφ : DP → R the function

maxFφ(x) := max
0≤t≤t+(x)

F (φt(x)),

where DP is the domain of P and t+(x) is such that P (x) = Xt+(x)(x) and U is a
neighborhood of Λ as in Theorem B.

Remark 2. The map f = maxFφ might be not C1 in general.
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For all x ∈ Λk
P , we have

lim sup
n→+∞

f(Pn(x)) = lim sup
t→+∞

F (Xt(x)) and sup
n∈Z

f(Pn(x)) = sup
t∈R

F (Xt(x)).

In particular, if Λk =
⋃

t∈R
Xt(Λk

P ) ⊂ Λ, we get

L(X,Λk, F ) = L(P,Λk
P , f) and M(X,Λk, F ) = M(P,Λk

P , f).

Remark 3. It is worth noting that, given a vector field Y close to X, the flow of
Y still defines a Poincaré map PY defined in the same cross-sections where P is
defined.

Thus, the last equality reduces Theorem B to the following statement:

Theorem 4.1. In the setting of Theorem B arbitrarily close to X, there is an
open set W of C2-vector fields defined on U such that for every Y ∈ W there is a
C2-open and dense subset HY,Λ ⊂ C2(U,R), such that

int M(PY ,Λ
k
PY

,maxFY ) �= ∅ and int L(PY ,Λ
k
PY

,maxFY ) �= ∅

whenever F ∈ HY,Λ. Here Λk
PY

denotes the hyperbolic continuation of Λk
P .

4.2.1. Description of HY,Λ. Given a compact hyperbolic set Δ for P and a Markov
partition R of Δ, we define the set
(30)

H1(P,Δ) =
{
f ∈ C1(S ∩R,R) : #Mf (Δ) = 1, z ∈ Mf (Δ), DPz(e

s,u
z ) �= 0

}
,

where S is the cross-section, as in the Section 2, Mf (Δ) := {z ∈ Δ : f(z) ≥
f(x) for all x ∈ Δ}, the set of maximum points of f in Δ, and es,uz are unit vectors
in Es,u(z), respectively (cf. [RM17, section 3]).

Definition 3. We say that F ∈ HY,Λ ⊂ C2(U,R) if there is a neighborhood RF of
Λk
PY

such that

(i) maxFY |S∩RF
∈ C1(S ∩RF ,R).

(ii) maxFY ∈ H1(PY ,Λ
k
PY

) ⊂ C1(S ∩RF ,R).

With arguments similar to [RM15, section 4], we prove the following result.

Lemma 4.2. The set HY,Λ is a dense C2-open set.

Remark 4. If Y is C2-close enough to X, then HD(Λk
PY

) > 1 (cf. [PT93, sec. 4.3]).

Proof of Theorem 4.1. As Λk
P > 1, by the main theorem of [RM17], arbitrarily

close to P there exists a C2-open set W̃, such that for P̃ ∈ W̃ it holds that

intM(P̃ ,Λk
P̃
, f) �= ∅ and intM(P̃ ,Λk

P̃
, f) �= ∅,

whenever f ∈ H1(P̃ ,ΛP̃
k). Note also that Lemma 4.1 provides a neighborhood W ,

C2-close to X, such that for any P̃ ∈ W̃ there is Y ∈ W such that PY = P̃ in a
neighborhood of Λk

P̃
. Thus, for Y ∈ W and F ∈ HY,P it holds that

intM(PY ,Λ
k
PY

,maxFY |S∩RF
) �= ∅ and intL(PY ,Λ

k
PY

,maxFY |S∩RF
) �= ∅,

since maxFY |S∩RF
∈ H1(PY ,Λ

k
PY

). This finishes the proof of Theorem 4.1, thus
concluding the proof of Theorem B. �



HAUSDORFF DIMENSION OF LORENZ ATTRACTORS 291

About the authors

Carlos Gustavo Moreira finished his PhD at the Instituto de Mathemática Pura
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