BOOK REVIEWS

BULLETIN (New Series) OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 57, Number 2, April 2020, Pages 317-324
https://doi.org/10.1090/bull/1661

Article electronically published on December 3, 2018

Geometry and complezity theory, by J. M. Landsberg, Cambridge Studies in Ad-
vanced Mathematics, Vol. 169, Cambridge University Press, Cambridge, 2017,
xi4+339 pp., ISBN 978-1-107-19923-1, US$64.99

Can algebra be applied to prove nonexistence of certain algorithms? Can geom-
etry be used to provide nonconstructive solutions to complexity problems? Lands-
berg’s book provides positive answers to these questions, focusing on two central,
famous open problems: determine if P is equal to NP, and what is the complexity
of matrix multiplication.

1. INTRODUCTION

The development of computational sciences has influenced every single branch of
mathematics. The use of computers has led to solutions of central problems—such
as the 4-colour problem [3l[4]. However, perhaps even more importantly, it shifted
mathematicians’ attention, inspiring them with many challenges. The most famous
one, which is in fact one of the Millennium Problems, is P vs. NP. Informally one
asks the following:

If a solution of a given algorithmic problem can be verified in poly-
nomial time, must the problem be solvable in polynomial time?

In other words; could it be that verifying and finding solutions are always of com-
parable difficulty?

While all students of mathematics and computer science heard about P vs. NP,
there are many other great challenges in complexity theory. One of them is to
determine the complexity of matrix multiplication. The problem is given two n x n
matrices, how does one efficiently compute the product?

We all know one solution—the classical algorithm which performs n3 — n? ad-
ditions and n? multiplications. But is this the optimal way? Half a century ago
Strassen set out to prove that the standard algorithm was optimal. He failed to do
this and provided a most surprising answer: there exist faster algorithms!

Classically, to prove that a given problem has complexity O(f(n)), one provides
an algorithm which solves the problem and proves that it performs at most C'- f(n)
steps, for some constant C. What else could one do? Could one prove that the
algorithm we found is (close to) optimal? In Geometry and Complexity Theory,
Landsberg shows how to answer such questions using algebraic geometry (i.e. the
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interplay between polynomials and their solution sets) and representation theory
(i.e. group actions on vector spaces). A central notion is that of a tensor. Tensors
generalise both matrices and homogeneous polynomials. There are many equivalent
definitions of a complex tensor of a given format k; X kg - - X kg for k; € Z>:

e a d-linear map C* x ... x CFe — C;

e a d-dimensional table of size ky X - - - X kg filled with complex numbers;
e a (d— 1)-linear map CF x - .. x Cka-1 — Cha;

e an element of the vector space CF1 @ - - @ Cke.

We want to stress the analogy to matrices. One can regard matrices as two-
dimensional tables filled with numbers, or linear maps or elements of the tensor
product of two spaces.

The very general idea of relating tensors to complexity theory is as follows:

(1) identify a task to be performed with a tensor;
(2) consider the locus L of tensors that correspond to tasks of low complexity;
(3) decide if our original task/tensor belongs to L.

At first, one can be surprised that a lot of algorithmic problems may be encoded
as tensors. As we will see below, this is in fact the easiest part. The geometric
approach comes into play by examining the features of L. It turns out that in
many cases L has a very nice description. By far the hardest is the third point:
tensor spaces are usually very large, and deciding if a point belongs to L may be
extremely hard. The algebraic approach is as follows. One tries to find a polynomial
that vanishes at all points of L and evaluate it at the point corresponding to the
initial problem. If the value we obtain is nonzero, we have proved that our point
does not belong to L.

Before we proceed, let us present a few basic facts about tensors. A tensor
T is of rank one if it is a tensor product of vectors: T = v ® --- ® vgq, where
v; € CF. Equivalently, this means that in the table representation of 7' the entry
labelled by i1, ...,1q equals H?Zl(vj)ij, where (vj);; is the i;-th coordinate of the
vector v;. Deciding if a tensor has rank one is easy. We know how to test it using
polynomials: precisely the 2 x 2 subdeterminants of the representation of T as a
table must vanish. It is also equivalent to the/&xct that all of the d presentatio/n\s
of a tensor as a multilinear map C*t x ... x Cki x ... x CFa-1 — Cki (where Ck:
denotes the missing factor) have a one-dimensional image. Further, tensors of rank
one, together with zero, form a closed set.

We define the rank of T by:

tkT :=min{r: T =Ty + - -+ 4+ T, where T;’s have rank one}.

Note that for matrices this gives the well-known definition of a rank of a matrix.
Rank is the basic complezity measure of a tensor. What is surprising is that for
tensors, many methods from linear algebra turn into open problems, for example:

e determining the rank of a tensor is hard—precisely NP-hard [19];
e tensors of rank at most r do not have to form a closed set.

The latter means that if we consider all polynomials that vanish at tensors of rank
at most r, they also vanish on some other tensors of higher rank. For this reason
one defines the border rank of a tensor:

brk 7" := min{r : in any neighbourhood of T" there exists a tensor of rank r}.
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Clearly, brk T < rk T, however, this inequality may be strict:
brk(€1®61®€2+€1®62®€1+62®61®€1)
=2<3=r1k(e; Re1Reste1®eaRe; +ea®e; Vey).

2. FAST MATRIX MULTIPLICATION

Let Mat,, ~ C™ be the space of complex nxn matrices. What is matrix multipli-
cation? It is a map Mat,, x Mat,, — Mat,,. Further, it is a bilinear map. According
to one of our definitions of a tensor as a multilinear map, matriz multiplication is
a tensor. Precisely, we denote it by M, and regard it as an element of the space
Mat;, ® Mat;, ® Mat,,. Explicitly, fixing the basis of Mat}, and Mat,, to be ¢* and
eij, respectively, we have

n
(1) M, = Z e’ @ el* @ ey
i,5,k=1
We have thus accomplished our first task: identifying the computational problem
with a tensor. The analogy goes further—the presentation () is in fact an algo-
rithm. We can read it as follows.

e To compute matrix multiplication, one needs to add n> partial results la-
belled by 1, j, k from 1 to n.

e In the i, j, k-th step one multiplies the (7, j)-th entry of the first matrix with
the (4, k)-th entry of the second and puts the result in the (k,4)-th entry of
the result.

This is the well-known algorithm to multiply matrices! What if we present M,, in
a different way? In particular, is rk M, = n3? The surprising answer by Strassen
is no, even when n = 2 [37]. We have

My = (2 + ) @ e @ (eg1 — e2) + (€' + €22) ® (el + €2)
® (€11 + ea2) @ et @ (e'? — €??) @ (e12 + e2) + €22 @ (€2 — e!t)
® (en1 + ea1) + (€ +2) @ €2 ® (e19 — e11) + (€2 — e11)

@ (e +e?) @ eg + (€% — €2) @ (2! + 2) @ ey

This again may be interpreted as an algorithm that represents multiplication of
2 x 2 matrices as a sum of seven partial results. For example the first partial result
is:

e the product of the sum of (2,1) and (2,2) entries of the first matrix times
the (1,1) entry of the second matrix put with plus in (2,1) and minus in
(2,2) entries of the resulting matrix.

A reader may question the usefulness of such a presentation: although we only have
seven partial results, each one involving one multiplication, there are many more
additions.

The punchline is that we want to multiply large matrices. Let us consider two
1000 x 1000 matrices. We may regard them as 2 x 2 block matrices, each block
being 500 x 500 matrix. We may now apply Strassen’s algorithm! We will only
have to perform seven multiplications of 500 x 500 matrices (at the cost of slightly
more additions of such matrices) instead of eight. This is indeed a gain—Strassen’s
algorithm is implemented and used in practice to multiply very large matrices
(especially if they do not have any special structure).
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In general, the complexity of the optimal algorithm for matrix multiplication is
governed by the constant w:

w = inf{7 : the complexity of multiplication of two n X n matrices is O(n")}
= inf{7 : rank of M,, = O(n")} = inf{7 : border rank of M,, = O(n")}.

The equalities above are in fact nontrivial theorems [6,0,23[24], which tell us that
the rank and border rank of M, are indeed the correct measures of the complexity
of matrix multiplication. Clearly, 2 < w < 3.

A breakthrough result of Strassen, based on the algorithm for 2 x 2 matrices,
proves that in fact w < log, 7. The estimation of w remains a very hard open
problem, with the current world record 2 < w < 2.38 [15,B30,40]. We would like to
stress that all the best estimates for w use the notion of border rank either explicitly
or implicitly. The central conjecture in this field is the following.

Conjecture 1. The constant w is equal to two.

The conjecture would imply that it is not much harder to multiply very large
matrices than to add them (or even output the result)! The rank and border rank
of My have been determined—with quite a lot of effort [1820L22]41]—and both
equal seven. At the same time we know neither the rank nor the border rank of Ms5.
It is expected that rk M3 # brk M3, however at this point one cannot prove this
conjecture. Special current explicit best estimates can be found in [7,21L26H28/[36].

The most successful method to bound (border) rank of M,, from above is known
as the Strassen laser method. 1t relies on a small tensor T', preferably of low
border rank, which can be used, in a nonconstructive way, to obtain a bound on
border rank of M, for large n. The technique is based on degeneration. What is
amagzing is that the best tensor T used in the last quarter-century basically has not
changed—it is known as the Coppersmith-Winograd tensor. While the bounds on
w have been (slightly) improved, it is known that this method, starting with the
Coppersmith-Winograd tensor, cannot provide a proof of Conjecture [T [2].

Landsberg outlines a plan to overcome this problem using symmetry. Indeed,
the Coppersmith-Winograd tensor exhibits a lot of symmetries [25]. Could one find
other candidates for T based on the property of having a large stabilizer group? A
search for potential candidates has already begun [33]. Another suggested path is
known as the Cohn—Umans program [11,[12]. It seeks for tensors T' coming from
(semi-)groups. This technique led to a lot of nice results and conjectures [IL[13],
though not to a breakthrough regarding Conjecture [I1

What about lower bounds on border rank of M,? As it is often the case in
complexity theory, lower bounds are very hard to come by. One of the big challenges
is that although a general tensor has high rank and border rank—e.g., for T €
C™ @ C™ @ C™ both the maximal rank and border rank are proportional to m?—
we cannot explicitly provide tensors with superlinear rank or border rank. Here
explicit is defined rigorously, as generated in polynomial time in m, with integer
entries by a Turing machine. There exist many explicit tensors, like M,, for m = n?;
however so far we cannot prove that any of them has border rank greater than 2m or
has rank greater than 3m. This poses great challenges for the lower bounds on the
complexity of optimal algorithms for matrix multiplication. To prove that w > 2,
we need to show that the rank or border rank of M,, is superlinear in n?—the size
of the matrix—while currently no one can break the above mentioned barriers for
any tensor, not only matrix multiplication.
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Note that, in particular, this means we do not even know a single polynomial
that vanishes on tensors of rank 2m belonging to C"™ ® C™ @ C™. There exists a
nice geometric explanation why finding such polynomials is so hard [§]; however,
this is beyond the scope of this review. Let us mention, that the higher the rank
of tensors, the higher the (minimal) degree of polynomials that may vanish on
them—this explains a part of the problem. There is a beautiful, existential theory
on bounds on degrees of polynomials that define symmetric, skew-symmetric, or
general tensors of a given rank, when the dimension of the tensor changes [16,29,[32].
However, applying it to explicit examples is currently impossible.

3. ALGEBRAIC P vs. NP

One of the main approaches to P vs. NP is to characterise NP-complete prob-
lems. One can solve any NP-complete problem in polynomial time if and only if
P = NP. It is widely believed that the only way to solve P vs. NP is to develop
a method for lower complexity bounds. However, as Arora and Barak point out in
their classical book [0, so far this is “complexity theory’s Waterloo”. One hopes
that the methods of modern algebraic geometry can turn around the fate of this
battle.

In 1979, Valiant proposed an algebraic version of P vs. NP [39]. The idea is to
introduce two classes of (sequences of) polynomials. Polynomials in the class VP
are easy to evaluate and for polynomials in VNP one can easily write down their
coeflicients. A prototypical example of an element in

e VP is the n x n determinant det,, = Y, g (sgno) [T;L; #is(;) of a matrix
with n? distinct variables;
e VNP is the nxn permanent per,, = > ¢ [T io(s) of the same matrix.

It turns out per,, is in fact complete for the class VNP, i.e., per,, € VP if and only
if VP = VNP.

A very natural question arises: Can we compute the permanent using the deter-
minant? Precisely, can we find an n x n matrix A with linear forms in m? variables
x;; and an additional variable y, such that det A = y™~™ per,,. This is possible
when n is of exponential size with respect to m [I7], but how do we prove this is not
possible when n depends polynomially on m? This is again a geometric problem!
Indeed, det,, is a point in the space S ((C”Z) of (homogeneous) polynomials of de-
gree n in n? variables. The locus L of all polynomials that are n x n determinants
of linear forms is End((C”Z) -det,,. Identifying m? + 1 variables x; ;, y with some of
the n? variables, our question turns into, Does y”~™ per,, belong to L?

We note that the type of the question is very much the same as for matrix
multiplication. One big difference is that before we worked in a tensor space of
dimension (n?)3. Now we have to deal with a much larger space of polynomials
of dimension ("+’:l2_1). In a similar way, we could ask for a polynomial P that
vanishes on L, but does not vanish on y” ™ per,,. Here P is a polynomial on
the space of polynomials. This may sound confusing, until we realise we know
similar objects from primary school! Indeed, consider the three-dimensional space
of (inhomogeneous) degree two polynomials az? + bx + ¢ in one variable. The
discriminant A = b? — 4ac is a polynomial that vanishes on special polynomials,
precisely those that have a double root. Of course finding nontrivial polynomials
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that vanish on L is much harder. It is one of the central problems in Geometric
Complezity Theory, pioneered in the work of Mulmuley and Sohoni [31].

4. FINAL REMARKS

The area of interplay of algebraic geometry, complexity theory and tensors is
currently very active. Let us mention three extremely interesting recent results.
The first two are due to Yaroslav Shitov [34,[35]. He provided counterexamples to
the following two central conjectures in the field.

o Strassen’s direct sum conjecture [38]. Consider two tensors T € V1@VL® Vs,
T, € V/ ® V§ ® V§. By adding these two tensors we obtain T3 ® Ty €
eV (VaaVy) e (Vs Vy). Is it true that rtk(Ty @ Te) =tk T +1k 157

e Comon’s conjecture [14]. Suppose T is a symmetric tensor of rank r. Do
there exist r rank one symmetric tensors that add up to T'7

Negative answers to both questions show how different the world of tensors is, when
compared to matrices. The failure of Strassen’s conjecture has also the following
striking consequence in complexity theory. If one wants to compute two multilinear
maps, even if they have completely different domains, it may be more beneficial to
compute them simultaneously then separately.

The last observation we present is based on [I0]. It turns out that the con-
stant w may be defined simply using polynomials. Consider a cubic sM, :=
Zlii,j.kzl TijTjkThi N n? variables z;j. One can ask for a representation of this
cubic in terms of powers of linear forms /;, namely sM,, = >_._, [?. The minimal r
is known as the Waring rank of sM,,. We have

w = inf{7 : Waring rank of sM,, = O(n")}.

This observation opens even more possibilities for applications of methods of com-
mutative algebra in complexity theory.

We greatly encourage mathematicians interested in these subjects (algebraic ge-
ometers in particular, but not only!) to find many, many more interesting results
in the Geometry and Complezity Theory by J. M. Landsberg.
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