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What is discrete harmonic analysis? The book under review, by Tullio Cecche-
rini-Silberstein, Fabio Scarabotti, and Filippo Tolli, gives a comprehensive answer.
It is a continuation of a series of wonderful books by the same authors, includ-
ing Harmonic analysis on finite groups: Representation theory, Gelfand pairs and
Markov chains [13] and Representation theory and harmonic analysis of wreath
products of finite groups [14] (both published by Cambridge University Press),
which witness the power of harmonic analysis on finite groups both in theory and
in applications.

The study of mathematical models involving infinite objects, via their approx-
imation by finite counterparts and leading to a discretization of these models, is
one of the features of modern mathematics. This also reflects a “competition” and
interaction between pure and applied mathematics. The title of the famous article
of Louis Auslander and Richard Tolimieri that appeared in 1979 in the Bulletin of
the AMS [6] asks, “Is computing with the finite Fourier transform pure or applied
mathematics?” The book of Ceccherini-Silberstein, Scarabotti, and Tolli gives an
exposition and a clarification of many questions raised by Auslander and Tolimieri,
and much more.

In order to confirm the importance and popularity of discretization, let us recall a
couple of examples. The statistical models on Z

d, d ≥ 2 (including the Ising model),
are studied by means of their approximations in finite “subdomains” [−n, n]d and
by passing to the limit for n → ∞ (the van Hove limit). The spectral properties of
the Laplacian on an infinite graph Γ can be retrieved from the spectral properties
of a sequence (Γn)n∈N of finite graphs approximating Γ. Similarly, the L2-Betti
numbers of an infinite residually finite group G can be computed via a sequence
(Gn)n∈N of finite groups approximating G (the Lück approximation), and the Gibbs
measures on such a group G are limits of Gibbs measures of the Gn’s [34]. Finally,
the classical Fourier transform on Z or on the unit circle S

1 can be approximated
by the discrete Fourier transform (DFT for short) on the finite cyclic groups Zn.
An additional advantage of this approach is the fact that the groups Zn are not
only finite but self-dual (in the sense of Pontryagin), in contrast with Z and S1 that
are mutually dual.

Jean-Baptiste Joseph Fourier [27], at the turn of the nineteenth century, showed
that representing a function as a sum of trigonometric functions (the exponentials
e2iπnx), namely its Fourier series, greatly simplifies the study of the heat transfer.
The study of the decomposition process of a function into these trigonometric func-
tions is called Fourier analysis, while the operation of building back the function
from these pieces is known as Fourier synthesis. In parallel, the original concept of
Fourier analysis has been extended to apply to more and more abstract and general
situations: the general field is often known as abstract harmonic analysis.
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A generalization along these lines was started at the end of the nineteenth century
with the fundamental work of Georg Frobenius, Issai Schur, and William Burnside,
giving birth to the representation theory of (finite) groups. Later, with the in-
fluential works by Lev Pontryagin (1939), Topological groups [59] (leading to the
Pontryagin duality theory for locally compact Abelian groups), and by André Weil
(1940), L’intégration dans les groupes topologiques et ses applications [72] (with a
comprehensive treatment of the Haar measure), the domain moved beyond the clas-
sical real world to the more general and abstract framework of topological groups
(including the Lie groups). Books by Loomis, An introduction to abstract harmonic
analysis [43], by E. Hewitt and K.A. Ross, Abstract harmonic analysis [38], and
by J. Wolf, Harmonic analysis on commutative spaces [75], further develop this
direction and witness the growing importance of these generalizations. In the lat-
ter book, the domains are the so-called commutative spaces, that is, homogeneous
spaces G/K with G a locally compact group, equipped with a Haar measure, and K
a compact subgroup of G such that the Banach algebra L1(K\G/K) of summable
bi-K-invariant functions on G is commutative with respect to convolution. Gelfand
pairs are one of the byproducts of this model and will be discussed later.

Topics not touched in the present book, but which are related to abstract har-
monic analysis, include the theory of invariant means on groups, which deals with
the class of amenable groups introduced by J. von Neumann [55], A. Tarski [68,69],
and N. Bogolyubov [8], and groups with Kazhdan’s property (T). The theory of
invariant means is presented, for instance, in the classical book of F. Greenleaf, In-
variant means on topological groups and their applications [31] (the book by Hewitt
and Ross also contains a lot of material on this topic). The comprehensive discus-
sion of the Banach–Tarski paradox that led von Neumann to the discovery of the
class of amenable groups, the Tarski characterization of amenability, and detailed
information about the structure of the class of amenable groups are presented in the
book by G. Tomkowicz and S. Wagon, The Banach–Tarski paradox [70] (see also
[12]). The contribution of Bogolyubov is explained in [33]. A wonderful exposition
of the theory of groups with property (T) with a very accessible introduction to the
theory of unitary representations of groups can be found in the book by B. Bekka,
P. de la Harpe, and A. Valette, Kazhdan’s Property (T ) [7]. The notion of expander
graphs, whose discussion constitutes a big part of the book under review, can be
considered as a nonamenability property for an infinite family of finite graphs. We
mention that the first explicit construction of expanders was exclusively based on
the use of infinite groups with property (T) [50].

Nowadays, the development of computers and technologies based on digital data
has revealed the importance of discrete mathematics and combinatorics (includ-
ing graph theory and number theory). The domain here is a finite (possibly very
large), thus discrete, set (often equipped with the action of a finite group of sym-
metries) and the corresponding Fourier analysis is then called discrete harmonic
analysis, briefly DHA. The book by Persi Diaconis, Group representations in prob-
ability and statistics (1988) [22], and the more recent book [13] by the authors of
the monograph under review, present an exposition of the methods, developed by
Diaconis and his collaborators, which use the representation theory of finite groups,
especially of the symmetric groups, to estimate the rate of convergence to the sta-
tionary distribution of several diffusion processes (such as the Ehrenfest model,
the Bernoulli–Laplace model, and the random matchings). The setting is again a
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homogeneous space G/K with G a finite group and K ≤ G a subgroup, and the re-
quirement is that the algebra of bi-K-invariant functions on G is commutative with
respect to convolution. This is, in turn, equivalent to the permutation represen-
tation λG/K (also called quasi-regular representation) associated with the action
of G on the homogeneous space G/K being multiplicity-free, that is, decompos-
ing into irreducible pairwise inequivalent subrepresentations. One then says that
(G,K) constitutes a Gelfand pair. Diaconis observed that given a finite Markov
chain (e.g., a random walk) invariant under the action of a finite group G, the as-
sociated transition operator (Markov operator) can be expressed as a convolution
operator whose kernel can be written, at least in theory, as a “Fourier series” where
the classical exponentials e2iπnx are replaced by the irreducible representations of
the group G. This would, in theory, lead to the analysis of the convolution powers
of the kernel, and therefore of the powers of the transition operator, in order to
determine its asymptotic behavior. This program, however, is not easy to imple-
ment in general, because on the one hand, the irreducible representations of a given
finite group, although known in theory, most often are, in practice, not suitable
for concrete calculations, and, on the other hand, since the representations are not
necessarily one dimensional, one cannot determine a complete diagonalization (in
particular a spectral analysis) of the transition operator, but just a block decom-
position of it. Fortunately, in the case of Gelfand pairs, this can be reduced to an
essentially commutative analysis, even if the involved representations, the so-called
spherical representations, still remain of higher dimension, and therefore leads to
a complete spectral analysis yielding the aforementioned estimates for the asymp-
totic behavior of the given Markov process. One of the striking outcomes of this
analysis is the discovery, by Diaconis, of the so-called cut-off phenomenon (for the
Ehrenfest and Bernoulli–Laplace models): the total variation distance between the
distribution of the system at time t and the stationary distribution remains close
to 1 (that is, essentially remains maximal) for a long time, then it drops down to a
small value quite suddenly and decreases to 0 exponentially fast. In other words,
the transition from order to chaos is concentrated in a small neighborhood of the
critical time t = 1

4n log n, where n denotes the number of particles of the system.
As a side remark, it is interesting to mention that the averages of characters of
spherical representations alluded to above, give rise to interesting special functions,
such as the Krawtchouk and Hahn polynomials.

One often refers to DHA as to a collection of ancillary mathematical tools, meth-
ods, and results: for example, Winnie Li in Number theory with applications (1996)
[42] uses DHA methods to treat Deligne’s solution to Weil’s conjectures in num-
ber theory as well as an explicit construction of Ramanujan graphs [21, 73], and
M. Nathanson in Elementary methods in number theory (2000) [54] presents ele-
mentary methods à la Erdős to prove the prime number theorem. Several other
applications, besides number theory, are in numerical analysis and combinatorics.
However, DHA should deserve a more pure math theoretical recognition, and the
book under review indeed offers such a possibility.

Finite cyclic groups constitute the domain of the discrete Fourier transform,
briefly DFT. In practice, DFT converts a finite sequence of equally spaced samples
of a function into a same-length sequence of equally spaced samples of the discrete-
time Fourier transform, which is a complex-valued function of frequency. It has
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fundamental applications to digital signal processing, image processing, and solving
PDEs.

Formally, the DFT is a linear transformation Fn : C
n → C

n that transforms a

vector f = (f(0), . . . , f(n − 1)) ∈ C
n to its Fourier transform f̂ = Fn(f). It is

represented by the n × n matrix whose (k, �)-entry is equal to e2πik�/n. The �th

component of f̂ is given by

f̂(�) =
n−1∑
k=0

f(k)e2πik�/n.

The theoretical background for the DFT is the spectral analysis on the finite
cyclic group Zn (this goes back to Schur; see also [47]). Surprisingly, such an
elementary approach led to several great achievements such as the celebrated Gauss
reciprocity law in number theory. Recall that it states that for odd prime numbers
p and q (

p

q

) (
q

p

)
=

tr(Fpq)

tr(Fp) tr(Fq)
,

where ( pq ) denotes the Legendre symbol. Another example showing the power of

this approach is the formula for the quadratic Gauss sums which is discussed in
detail in the book under review.

Let us mention that Gauss, while involved in astronomical studies and, more
precisely, in calculations of asteroid orbits from a finite set of equally spaced ob-
servations, was led to the computation of the Fourier coefficients ak and bk of a
function f represented by a standard Fourier series of bandwidth n,

f(x) =
m∑

k=0

ak cos(2πkx) +
m∑

k=1

bk sin(2πkx),

where m = n/2 for n even and m = (n − 1)/2 for n odd. Gauss first observed
that the coefficients ak and bk can be computed by a DFT of length n using the
values of f(x) at equispaced sample points. He then showed that if n = n1n2,
then this computation can be realized by first computing n1 DFTs of length n2

and then computing these shorter DFTs. This is the basic idea of the fast Fourier
transform, briefly FFT, an algorithm that, when n is a composite integer, allows

us to substantially decrease the number of operations in the computation of f̂ . For
instance, when n is of the form n = mk, with m ≥ 2 fixed, the number of such
operations decreases from n2 to O(n logn) (for k → ∞). It was implemented later
by various researchers in different forms. We mention, in particular the paper by
Danielson and Lanczos in the early 1940s [18] (see also [41] and [16]) who devised
a practical scheme intended to reduce the computational complexity of the Fourier
transform with applications to X-ray scattering from liquids.

In the spirit of the title of the Auslander and Tolimieri paper, the authors revis-
ited the DFT and one of the most important algorithms for computing it, namely
the Cooley–Tukey algorithm [17] (which often is used as a synonym of FFT; see
[16,71] as well as the nice survey by Maslen and Rockmore [52]), by establishing a
relation with the representation theory of the finite Heisenberg groups (see also [9]).
The original methods for FFT (which, as was already mentioned, in fact goes back
to Gauss) have been generalized by several authors (e.g., Good [29], Rader [60],
Rose [62], and Winograd [74]) yielding a matrix and tensor product approach of a
purely algebraic flavor. A big part of the book under review deals with the tensor
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product stuff and helps the reader understand what was done in those papers and
more.

Also, a generalization of the DFT to any finite Abelian group is possible, yielding
to the discrete versions of the classical Poisson formula and the uncertainty prin-
ciple. The uncertainty principle is a classical result of harmonic analysis asserting
that given a nonzero function f on a finite Abelian group A, then f or its Fourier

transform f̂ have a large support.
This fact is similar to the well-known phenomenon, discovered by Werner Heisen-

berg in the context of quantum mechanics, that establishes a limit to the precision
with which certain pairs of physical properties of a particle, such as position x and
momentum p, can be determined.

There are two versions of this uncertainty principle: multiplicative and additive.
The multiplicative version states that for a function f on finite Abelian group A

one has the inequality

| supp(f)| · | supp(f̂)| ≥ |A|,
where supp(·) denotes the support.

The additive uncertainty principle is established for the cyclic groups Zp of prime
order,

| supp(f)|+ | supp(f̂)| ≥ |Zp|+ 1 = p+ 1.

This lower bound was observed first by Roy Meshulam (unpublished) [53] who
realized that it was equivalent to nonsingularity of all square submatrices of the
Fourier matrix over Zp, the latter being a famous theorem of Chebotarëv. This
version of the uncertainty principle was independently (re)discovered by T. Tao [66],
whose proof, together with his new proof of Chebotarëv’s theorem, are presented
in the book. This result constitutes a small piece of the fascinating theory called
additive combinatorics that Tao and other researchers developed during the last
two decades (see [67]). There is a hope that this and other results in this direction
could help to solve the long-standing problem concerning the existence of “good”
cyclic codes. A recent paper of S. Evra, A. Lubotzky, and E. Kowalski [26] is a step
in that direction (see also the paper by Goldstein, Guralnick, and Isaacs [28]).

It was already known to Euclid that the prime numbers are infinitely many, and
the ancient proof is accessible to a high school student. There are several other in-
teresting proofs (including the topological one by Hillel Furstenberg in Proofs from
The Book (1998) by Martin Aigner and Günther Ziegler [1]). Euler improved on
this result by showing that the series of reciprocals of prime numbers diverges (see
again, the book by Aigner and Ziegler, where Erdős’s proof [25] is reproduced).
The celebrated Dirichlet theorem on primes in arithmetic progressions [64] con-
stitutes yet another improvement: every arithmetic progression (a + bk)k∈N with
a and b coprime (integers) contains infinitely many primes. Its proof is a classi-
cal and beautiful application of the character theory of finite Abelian groups (see,
for instance, the book Fourier analysis: An introduction by Elias Stein and Rami
Shakarchi [64]). We mention that one of the most important results recently es-
tablished in number theory is the Green–Tao theorem [30] stating that the prime
numbers contain arbitrarily long arithmetic progressions: this can be seen as a sort
of “reciprocal” of the Dirichlet theorem.

Finite fields, also called Galois fields, possess interesting character theory for ad-
ditive and (removing the zero) multiplicative structures viewed as Abelian groups.
The Hasse–Davenport identity [19], relating Gauss sums (analogues of the gamma
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function) over a finite field and a finite extension, can be reformulated and proved
in this context. This in turn leads to the Hua–Vandiver–Weil theorem [39, 73] es-
tablishing a bound for the number of solutions of a polynomial equation over a
finite field, and to another important result such as the Weil conjectures on the
zeta function. (Rationality was proved by Bernard Dwork (1960) [24], the func-
tional equation by Alexander Grothendieck (1965) [37], and the analogue of the
Riemann hypothesis by Pierre Deligne (1974) [21].)

Kloosterman sums, named after the Dutch mathematician Henrik Kloosterman
who introduced them in 1926, are a particular kind of exponential sums, a finite
ring analogue of the Bessel functions. Let Fq (where q = pn for some prime p and
n ∈ N) denote the Galois field with q elements. A multiplicative character ν of the
extension Fq2 (that is, a homomorphism ν : F∗

q2 → T) is said to be decomposable

provided there exists a multiplicative character ψ of Fq such that ν(α) = ψ(αα) for
all α ∈ Fq2 (note that αα ∈ Fq). Then, with a pair (χ, ν) consisting of a nontrivial
additive character χ of Fq and an indecomposable multiplicative character ν of Fq2 ,
one associates the so-called generalized Kloosterman sum j = jχ,ν : F

∗
q → C, which

is defined by setting

j(x) =
1

q

∑
w∈F

∗
q2
:

ww̄=x

χ(w + w̄)ν(w)

for all x ∈ F∗
q . Such objects play a crucial role in the Piatetski-Schapiro treatment of

the representation theory of the group G = GL(2,Fq) [57], the general linear group
over Fq. In [57] all irreducible representations of G are explicitly described and di-
vided into two types, namely, the parabolic and the cuspidal representations. The
former are obtained by inducing the irreducible characters χ of the Borel subgroup
B consisting of all upper-triangular matrices. Such characters χ are uniquely deter-
mined by pairs (ψ1, ψ2) of multiplicative characters of the ground field Fq. Then,

if ψ1 �= ψ2, the corresponding induced representation IndGB χ is irreducible (and, in
fact, independent of the ordering of the pair (ψ1, ψ2)), whereas if ψ1 = ψ2, then

IndGB χ decomposes into the sum of two irreducible representations. The represen-
tations obtained in this way are pairwise nonequivalent and are called parabolic.
The outstanding irreducible representations of G, all higher dimensional, are called
cuspidal and can be determined as follows. Consider the subgroup U ≤ G of unipo-
tent matrices (which is isomorphic to the additive group of Fq). If χ is a fixed

nontrivial character of U , then the induced representation IndGU χ is multiplicity
free and contains all higher-dimensional irreducible representations (those which
are not parabolic are the cuspidal). Piatetski-Schapiro [57], using the Kloosterman
sums, gave an explicit description of these cuspidal representations.

Expanders are families of finite “sparse” graphs of uniformly bounded degree
(e.g., regular) and have strong connectivity properties. Their initial motivation is
revealed in telecommunications: they serve as practical models for economical ro-
bust networks. Other significant applications have been found nowadays in several
branches of computer science and technology, including designing algorithms, er-
ror correcting codes, extractors, pseudo-random generators, sorting networks, and
cryptography. From a more theoretical viewpoint, expanders have been used in re-
lation with several important results in computational complexity theory. Thus, it
is not surprising that their idea was implemented mathematically rigorously at the
Institute of Transmission of Information (ITI) (Moscow, 1960s). The first precise
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definition was given by M. Pinsker in 1973 [58] but, in implicit form, expanders
already appeared in a 1967 paper of Barzdin and Kolmogorov [40]. M. Gromov
and L. Guth [36] give the following characterization of the main result from [40]:

This result and its proof contain several interesting geometric ideas.
The most important idea is the discovery of expanders. Kolmogorov
and Barzdin essentially observed that a random graph is an ex-
pander.

Now, to be more specific, a family of expanders is a sequence (Γn)n∈N of finite, con-
nected, undirected graphs Γn = (Vn, En) (possibly with loops and multiple edges)
of uniformly bounded degree (e.g., d-regular for a fixed integer d (not depending
on n)) such that |Vn| → ∞, and in which every subset A ⊂ Vn of the vertices
that is not “too large” (|A| ≤ |Vn|/2) has a “large” boundary. The latter may be
expressed as follows: given a nonempty subset A ⊂ V of vertices of a connected
graph Γ = (V,E), we denote by ∂A := {e = {a, v} ∈ E : a ∈ A, v ∈ V \ A} the
boundary of A and call the positive number

h(Γ) = min
A⊂V

0<|A|≤|V |/2

|∂A|
|A|

the isoperimetric constant of Γ (also called the Cheeger constant). The expanding
property is then h(Γn) ≥ h for all n ∈ N, where h > 0 is a fixed (desirably large)
constant. For d-regular connected graphs, there is an equivalent reformulation of
the expanding property in terms of the spectrum of the adjacency matrix M(Γ) of
a graph Γ: if μ0(Γ) = d and μ1(Γ) denote the first and the second eigenvalues of
M(Γ), their difference δ(Γ) := μ0(Γ)− μ1(Γ) is called the spectral gap of Γ. Then
a sequence (Γn)n∈N of finite graphs (with |Vn| → ∞) is expanding if and only if
δ(Γn) ≥ δ for all n ∈ N, where δ > 0 is a fixed (desirably large) constant. For
d-regular graphs, the link between these two viewpoints is offered by the Alon–
Milman [3] inequality

d− μ1(Γ)

2
≤ h(Γ)

and the Dodziuk [23] inequality

h(Γ) ≤
√
2d(d− μ1(Γ))

(these are the discrete analogues of the Cheeger–Buser inequalities for Riemannian
manifolds [10,11,15]). Moreover, an upper-bound for the spectral gap of any family
of finite d-regular graphs d ≥ 2, as above, is provided by the celebrated Alon–
Boppana inequality [2, 56, 63]:

lim inf
n→∞

μ1(Γn) ≥ 2
√
d− 1.

In [35] Andrzej Żuk and the author of this review considered the compact met-
ric space of all rooted, connected graphs with uniformly bounded vertex degrees.
Given any such graph Γ, the adjacency operator M(Γ) on the Hilbert space of all
complex-valued functions on the vertex set (where the inner product is weighted
with the vertex degrees) is self-adjoint. We proved that the spectral measure (spec-
tral resolution) of M(Γ) depends continuously on Γ. This provided various useful
applications, including among others a generalization of the Alon–Boppana theo-
rem.
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Given a finite, connected, d-regular graph Γ = (V,E), let d = μ0 ≥ μ1 ≥ · · · ≥
μ|V |−1 denote the elements in the spectrum of MΓ and set

μ(Γ) = max{|μi| : |μi| �= d, i = 1, 2, . . . , |V | − 1}.

Then one says that Γ is a Ramanujan graph provided that μ(Γ) ≤ 2
√
d− 1. In view

of the Alon–Boppana inequality, a family (Γn)n∈N of Ramanujan d-regular graphs
with |Vn| → ∞ constitutes a family of expanders which is optimal from a spectral
viewpoint. Toshikazu Sunada [65] observed that a regular graph is Ramanujan if
and only if its Ihara zeta function satisfies an analogue of the Riemann hypothesis.

As it was already mentioned, existence of families of expanders can be deduced
using the probabilistic method (in addition to [40] see, e.g., [5,44]), while an explicit
construction is much more involved: it was Gregory Margulis in the early 1970s
who, using Kazhdan property (T), provided such a construction [50]. More recently,
the zig-zag product, introduced by Reingold, Vadhan, and Wigderson in 2000 [61]
resulted in a useful method, purely graph theoretical, to build families of expanders
as iterated zig-zag products.

On the other hand, an explicit construction of Ramanujan graphs was obtained
by Lubotzky, Phillips, and Sarnak [46] and, independently, by Margulis [51] in
1988 who constructed, for every fixed d = p + 1 with p a prime, an infinite fam-
ily of d-regular Ramanujan graphs. We refer to the book by Davidoff, Sarnak,
and Valette [20] for a comprehensive and elementary introduction to this topic
based, among other things, on methods of representation theory, and to the book
of A. Lubotzky [45]. We emphasize that, although the construction of general ex-
pander families is, nowadays, achieved by rather elementary methods, the proof
of the Ramanujan property still requires sophisticated methods from number the-
ory (such as Deligne’s work on the Weil conjectures) and representation theory
(in particular of PSL(2,Fq)). Recently, Marcus, Spielman, and Srivastava [48, 49],
combining the probabilistic method with new techniques, managed to show that,
for every integer d ≥ 3, there are infinitely many Ramanujan d-regular graphs.

Now, the classical Ramanujan graphs are finite graphs, but one may be interested
in d-regular Ramanujan graphs without the finiteness condition. In this case, the
spectrum of the adjacency matrix is contained in the interval [−2

√
d− 1, 2

√
d− 1]

which represents the spectrum of the d-regular tree, and moreover, in the case of
d = 2k is even, it represents the spectrum of the Cayley graph of a free group
Fk of rank k with respect to a free basis (which is a 2k-regular tree). Any 2k-
regular graph Γ can be realized as a Schreier graph Γ(Fk, H, S), where H ≤ Fk

is a subgroup, S ⊂ Fk is a free basis, whose vertex set is G/H = {gH : g ∈ G},
the set of left cosets, and the edges are the pairs (gH, sgH) with g ∈ Fk and s ∈
S ∪ S−1. The value αH = lim supn→∞

n
√
hn, where hn = |{g ∈ H : dS(g, 1G) ≤ n}|

denotes the cardinality of the relative H-ball of radius n (with respect to geodesic
distance) centered at the identity element, is called the cogrowth (or relative growth)
of H and ranges in the interval [1, 2k − 1]. The main result of [32] says that the
graph Γ(Fk, H, S) (or, equivalently, the quotient group Fk/H if H is normal) is
amenable if and only if αH = 2k − 1, while, under the assumption that the graph
is infinite, Γ(Fk, H, S) is Ramanujan if and only if αH ≤

√
2k − 1. This yields an

easy combinatorial way to construct infinite Ramanujan graphs.
The book under review is a very good introduction to the above-mentioned

topics. In a self-contained way (it requires just elementary undergraduate rudiments
of algebra and analysis and some mathematical maturity) it leads the reader to
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cutting-edge research. It begins with an elementary but quite complete treatment
of finite Abelian groups, including their automorphism group. Then character
theory of these groups is used in order to establish the basic properties of the DFT,
including Tao’s uncertainty principle. In Chapter 3 a proof of the Dirichlet theorem
on arithmetic progressions is given. Chapter 4 is based on the paper of Auslander
and Tolimieri [6]: a complete spectral analysis of the DFT is given and it is used
to establish Gauss’s law of quadratic reciprocity. This is not the shortest path to
Gauss’s result, but it is a quite natural application of the spectral theory of the DFT
(the authors suggest another proof in an exercise in the chapter on finite fields).
Chapter 5 examines the FFT algorithm from a quite abstract algebraic point of
view. In particular, it contains a systematic study of the connections between the
Kronecker product of matrices and the stride permutations. Chapter 6 begins the
examination of finite fields: their structure, their automorphisms, the properties
of the norm and the trace, as well as quadratic extensions, are described in an
elementary manner in full detail. These notions are repeatedly used in most of the
subsequent sections. Chapter 7 contains an exposition on character theory of finite
fields: in this setting, both additive and multiplicative characters arise, and the
study of their interactions leads to some of the deepest results in number theory,
e.g., the Weil conjectures, just to mention the most famous example. Chapter 8 is an
introduction to graph theory, with emphasis on various notions of products. Again,
the authors begin from scratch but then lead the reader to modern aspects of the
theory, such as the zig-zag product introduced by Reingold, Vadhan, and Wigderson
[61]. In Chapter 9, the notion of a family of expanders is discussed, giving various
constructions (due to Margulis [50, 51]; Reingold, Vadhan, and Wigderson [61];
and Alon, Schwartz, and Schapira [4]). The harmonic analysis on finite Abelian
groups and finite fields plays a fundamental role in these constructions. Also, the
notion of a Ramanujan graph is discussed and two proofs of the Alon–Boppana–
Serre inequalities are given. Chapters 10 and 11 constitute a standard but quite
detailed introduction to the representation theory of finite groups, from the point
of view of harmonic analysis. Chapter 12 discusses two families of examples: the
Heisenberg groups and the affine groups over either finite fields or integers mod
n. Following again the paper by Auslander and Tolimieri [6], the authors discuss
the deep relationships between representation theory of the Heisenberg group, the
DFT, and the FFT. Chapter 13 is an original description of the commutant (Hecke

algebra) of IndGK χ, where χ is a one-dimensional representation of a subgroup K ≤
G. The authors analyze the commutative case, giving a new generalization of the
theory of Gelfand pairs and their spherical functions. Chapter 14 is an exposition
of the paper by Piatetski-Schapiro on the representation theory of GL(2,Fq). The
authors have done a good job using the theory developed in Chapter 13, which
clarifies many points and shed light on the original approach in [57].
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matics, vol. 125, Birkhäuser Verlag, Basel, 1994. With an appendix by Jonathan D. Rogawski.
MR1308046

[45] A. Lubotzky, Expander graphs in pure and applied mathematics, Bull. Amer. Math. Soc.
(N.S.) 49 (2012), no. 1, 113–162, DOI 10.1090/S0273-0979-2011-01359-3. MR2869010

[46] A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988), no. 3,
261–277, DOI 10.1007/BF02126799. MR963118

[47] J. H. McClellan and T. W. Parks, Eigenvalue and eigenvector decomposition of the dis-
crete Fourier transform, IEEE Trans. Audio Electroacoust. AU-20 (1972), no. 1, 66–74.

MR0399751
[48] A. W. Marcus, D. A. Spielman, and N. Srivastava, Interlacing families I: Bipartite Ramanu-

jan graphs of all degrees, Ann. of Math. (2) 182 (2015), no. 1, 307–325, DOI 10.4007/an-
nals.2015.182.1.7. MR3374962

https://www.ams.org/mathscinet-getitem?mr=3852174
https://www.ams.org/mathscinet-getitem?mr=1414430
https://www.ams.org/mathscinet-getitem?mr=2159698
https://www.ams.org/mathscinet-getitem?mr=0102888
https://www.ams.org/mathscinet-getitem?mr=2415379
https://www.ams.org/mathscinet-getitem?mr=0251549
https://www.ams.org/mathscinet-getitem?mr=599539
https://www.ams.org/mathscinet-getitem?mr=3644011
https://www.ams.org/mathscinet-getitem?mr=749922
https://www.ams.org/mathscinet-getitem?mr=1802431
https://www.ams.org/mathscinet-getitem?mr=2988903
https://www.ams.org/mathscinet-getitem?mr=1608788
https://www.ams.org/mathscinet-getitem?mr=551496
https://www.ams.org/mathscinet-getitem?mr=0028895
https://www.ams.org/mathscinet-getitem?mr=0084175
https://www.ams.org/mathscinet-getitem?mr=1390759
https://www.ams.org/mathscinet-getitem?mr=0054173
https://www.ams.org/mathscinet-getitem?mr=1308046
https://www.ams.org/mathscinet-getitem?mr=2869010
https://www.ams.org/mathscinet-getitem?mr=963118
https://www.ams.org/mathscinet-getitem?mr=0399751
https://www.ams.org/mathscinet-getitem?mr=3374962


336 BOOK REVIEWS

[49] A. W. Marcus, D. A. Spielman, and N. Srivastava, Interlacing families IV: Bipartite Ra-
manujan graphs of all sizes, 2015 IEEE 56th Annual Symposium on Foundations of Com-
puter Science—FOCS 2015, IEEE Computer Soc., Los Alamitos, CA, 2015, pp. 1358–1377.
MR3473375

[50] G. A. Margulis, Explicit constructions of expanders (Russian), Problemy Peredači Informacii
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