
BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 57, Number 2, April 2020, Pages 347–352
https://doi.org/10.1090/bull/1686

Article electronically published on November 19, 2019
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1. Two definitions—one space

It is safe to say that the Hardy space H2 has been, and continues to be, the
most influential Hilbert space of analytic functions. The structure theorems for the
Hardy space are so complete, so elegant, and so connected to a diversity of problems
in complex analysis and operator theory that much of the work on other Hilbert
spaces of analytic functions, such as the Dirichlet and Bergman spaces, tries to
imitate what happens with H2 [1, 3, 6]. The same goes for the beautiful theorems
of Smirnov and Beurling that classify the invariant subspaces for the shift operator
f(z) �→ zf(z) on H2. In fact, one could argue that H2 has had an oversized
influence on function theory.

The primary reason for this success is that the Hardy space has two equivalent
definitions and thus two powerful sets of tools at a researcher’s disposal. In one
sense, the Hardy space is defined as H2(m), the subspace of L2(m) (m is normalized
Lebesgue measure on the unit circle T), whose negative Fourier coefficients

f̂(n) =

∫
T

f(ξ)ξ
n
dm(ξ), n < 0,

vanish. In another sense, the Hardy space is defined as H2(D), the analytic func-
tions f on the open unit disk D whose integral means∫

T

|f(rξ)|2dm(ξ)

are uniformly bounded in r ∈ (0, 1). Parseval’s theorem and a 1906 harmonic
analysis result of Fatou show that when f ∈ H2(D), the radial limit function

f(ξ) := lim
r→1−

f(rξ)

exists for m-almost every ξ ∈ T and belongs to H2(m). On the other hand, a
computation with power series shows that when f ∈ H2(m), its Cauchy integral∫

T

f(ξ)

1− ξz
dm(ξ)

defines an analytic function on D belonging to H2(D). This identification of H2(m)
with H2(D) becomes even more salient when one realizes that the Fourier coeffi-
cients of f ∈ H2(m) turn out to be the Taylor coefficients of f ∈ H2(D). So the
success that H2 has enjoyed since its initial discovery by Hardy in 1915 lies in the
fact that one has the powerful tools of Lebesgue theory, when regarding H2 as a
subspace of L2(m), and the equally powerful tools of harmonic and complex analy-
sis, when regarding H2 as a set of analytic functions with bounded integral means.
As it turns out, one can talk about Hardy spaces (notice the plural) since one can
replace the parameter 2 in the above discussion with a p ∈ [1,∞) and the same
theory goes through mutatis mutandis.
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Nikoläı Nikolski (University of Bordeaux) has written an excellent text containing
a selection of topics that explore how the two definitions of H2 connect to a variety
of analysis problems. Since H2 has blossomed into a vast and influential subject
with an impressive literature, Nikolski needed to make some choices as to where
to put his efforts. Though he certainly covers the basic structure theorems for H2,
the old favorites many of us who work in the subject know well, the book places
a special emphasis on the connections Hardy spaces make with operator theory,
complex analysis, and applied mathematics. Nikolski wisely resists the urge to
write the definitive book on Hp and even cites the poet Robert Browning’s phrase
“Less is more” as his guiding principle. We will survey four representative topics
from Nikolski’s book that demonstrate both the theory of Hardy spaces themselves
and also the diversity of connections they make.

2. Invariant subspaces

The shift operator plays an important representational role in operator theory.
Starting with the spectral theorem, many linear transformations (operators) on
Hilbert spaces are unitarily equivalent to a shift operator f(z) �→ zf(z) on either
an L2 space (certain normal operators) or on a Hilbert space of analytic functions
(certain subnormal operators). Furthermore, compressions of the shift to certain
Hilbert spaces of analytic functions are used to model a wide class of contraction
operators [11]. An early type of shift operator to be studied is (Mξf)(ξ) = ξf(ξ) on
L2(m). This operator is called the shift as one can see by the following “shifting”
action on Fourier series:

Mξ

( ∑
n∈Z

f̂(n)ξn
)
=

∑
n∈Z

f̂(n)ξn+1.

Notice how the sequence of Fourier coefficients are shifted one space to the right.
Of particular interest with the shift operator, or any operator, is the description

of its invariant subspaces. With the shift Mξ on L2(m), the invariant subspaces
come in two basic types. A 1932 result of Wiener, connecting to stationary filters,
says that if E is a closed subspace of L2(m) with MξE = E , then there is a mea-
surable set A ⊂ T such that E = χAL

2(m) (the functions in L2(m) which vanish
m-almost everywhere on T \A). Such subspaces E = χAL

2(m) are called reducing
subspaces for Mξ since they are invariant for both Mξ and its adjoint M∗

ξ . The

nonreducing Mξ-invariant subspaces (i.e., those for which MξE �= E) were char-
acterized in 1964 by Helson as E = qH2(m), where q ∈ L∞(m) with |q(ξ)| = 1
for almost every ξ ∈ T. Notice the appearance of the Hardy space as part of the
solution to this L2(m) operator theory problem.

When E ⊂ H2(m), it is automatically nonreducing and it turns out that E =
qH2(m), where q ∈ H2(m) with unimodular values on T. Such q, which are not
merely unimodular on T but also belong to H2(m), are called inner functions and
can be alternatively characterized by the orthogonality condition q ⊥ Mn

ξ q, n ≥ 1.

Since q ∈ H2(m), it can, via Fourier series, be regarded as an analytic function on
D. We will discuss a beautiful formula for such functions in a moment.

This invariant subspace result, along with its generalization to classifying theMξ-
invariant subspaces of H2(μ), where μ is a positive measure on T and H2(μ) is the
closure of the analytic polynomials in L2(μ), are covered, as are all of the proofs in
Nikolski’s book, with both mathematical efficiency and pedagogical care. Included
in his discussion of H2(μ), he also covers the 1916 gem of the Riesz brothers, which
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classifies the complex measures σ on T for which σ̂(n) = 0, n < 0, as dσ = fdm
for some f ∈ H1(m). This seemingly innocent technical result turns out to be very
useful when discussing more advanced topics.

3. Factorization

Beurling and Smirnov were giants in the development of Hardy spaces and es-
pecially the finer points of the Mξ-invariant subspaces of H2(m). One of their
important explorations was the space E(f) :=

∨
{Mn

ξ f : n ≥ 0}, the Mξ-invariant

subspace generated by an f ∈ H2(m). The description of E(f) depends on the im-
portant fact, proved by Smirnov in 1928, that any f ∈ H2(m)\{0} can be factored
as f = fIfO, where fI ∈ H2(m) is an inner function and fO ∈ H2(m) is outer (i.e.,
E(fO) = H2). The summary result of Beurling and Smirnov is

E(f) = fIH
2.

Nikolski pauses at the end of this chapter to give some “bare handed” examples
of inner functions (e.g., f = (z − a)/(1 − az), a ∈ D) and outer functions (e.g.,
f = 1 + g, g analytic on D and g(D) ⊂ D). These examples give the reader
an enhanced appreciation for the next chapter where Nikolski surveys the work
of Riesz, Szegő, Herglotz, and Smirnov which uses the bounded integral means
definition of H2 to give concrete formulas for the inner and outer parts of f . These
beautiful formulas say that any f ∈ H2(m) \ {0} can be written uniquely as

f(z) = ξ
∏
n≥1

|zn|
zn

zn − z

1− znz
exp

(
−

∫
T

ξ + z

ξ − z
dμ(ξ)

)
exp

(∫
T

ξ + z

ξ − z
log |f(ξ)|dm(ξ)

)
,

where ξ ∈ T, zn ∈ D and satisfy
∑

n≥1(1− |zn|) < ∞, and μ is a positive measure
on T with μ ⊥ m. The last factor above is the outer factor fO of f while the
other factors form the inner factor fI of f . The fact that log |f | ∈ L1(m), needed
for the convergence of the integral describing fO, is also an important part of the
result and can be used to specify the modulus of an outer function on T. Notice
how this also says something about the boundary zeros of an f ∈ H2(m): the
set {ξ ∈ T : f(ξ) = 0} must have measure zero. Finally, the convergence of∑

n≥1(1− |zn|), called the Blaschke condition, characterizes the zeros (in D) of H2

functions.
One cannot underestimate the usefulness and ubiquity of the factorization for-

mula f = fIfO. It not only drove the stunning success of Hardy spaces but also
influenced the direction of the general theory of Hilbert spaces of analytic functions,
for example the Bergman and Dirichlet spaces. Much of this work attempted to
reproduce versions of this factorization formula, along with their own notions of
inner (f ⊥ znf for all n ≥ 1) and outer (f is a cyclic vector for the shift), and
the valiant attempts at a version of the Beurling/Smirnov theorem (a description
of the shift invariant subspaces). Continued efforts to imitate these Hardy space
results remain an active area of research.

The analytic continuation properties of the inner part of an H2(m) function,
along with alternate characterizations of outer functions, are carefully covered
in Nikolski’s book and play an important role when discussing model spaces
H2(m)
 qH2(m). This is a vast field in itself with applications to contractions on
Hilbert spaces [4, 8–10].
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It is worth mentioning here as it is covered in Nikolski’s book, that most of
the theorems about H2(m) (invariant subspaces, boundary values, factorization)
have analogues for the Hp(m) classes, together with their important cousins, the
Nevanlinna and Smirnov classes.

4. The past and future

Hardy spaces make a connection to discrete time stationary processes. A se-
quence {xn}n∈Z in a Hilbert H is stationary if

∨
{xn : n ∈ Z} = H and the

correlation matrix (〈xn,xk〉)n,k∈Z depends only on n− k. A representative exam-
ple of a stationary process is when the Hilbert space is L2(μ), where μ is a positive
measure on T, and the vectors xn are the functions ξn, z ∈ Z. To see this, observe
that

〈xn,xk〉L2(μ) =

∫
T

ξn−kdμ(ξ)

depends only on n−k. A 1939 theorem of Kolmogorov says that this representative
example is, via the spectral theorem, canonical. The problem of optimal prediction
is to compute

inf
{
‖xn − x‖ : x ∈

∨
{xk : k < n}

}
,

which measures the dependence of the future on the past. By Kolmogorov’s theorem
and the fact that the correlation matrix depends only on n − k, one can compute
the optimal prediction by computing what is known as the Szegő infimum,

inf{‖1− zg‖L2(μ) : g ∈ H2(μ)}.
A conglomeration of theorems developed over a period of time by Szegő (1920),
Verblunski (1936), and Kolmogorov (1941), show that if μ = w dm + μs is the
Radon–Nikodym decomposition of μ into its absolutely continuous and singular
parts (with respect to m), then either there is no f ∈ H2(m) \ {0} for which
w = |f |2, in which case the Szegő infimum is zero, or there is a unique outer
function f ∈ H2(m) satisfying w = |f |2, in which case the Szegő infimum is equal
to |f(0)| > 0. The summary version of the theorem is thus the formula

inf{‖1− zg‖L2(μ) : g ∈ H2(μ)} = exp
( ∫

T

logw dm
)
.

5. Connection to the Riemann hypothesis

There is also a fascinating connection that Hardy spaces make to the Riemann
hypothesis, and Nikolski uses this an opportunity to bring in the Hardy spaces of
the upper half-plane into his book. Just like the Hardy spaces of the disk, which
can be defined as the L2(m) functions whose negative Fourier coefficients vanish,
the Paley–Wiener theorem can be used to define H2(C+), where C+ is the upper
half-plane, as the L2(R) functions whose Fourier transform vanishes on (−∞, 0).

As with the disk case, there is an alternate definition of H2(C+) involving uni-
form boundedness of integral means. There is also a version of the Wiener–Helson–
Beurling theorem for H2(C+). Indeed, the shift operator (multiplication by the
independent variable) is not defined on L2(R). However, the family of operators
{f(x) �→ eisxf(x) : s ∈ R} is defined, and one can consider the closed subspaces
E of L2(R) which remain invariant under this family. If E is a closed subspace
of L2(R) with eisxE ⊂ E for all s ∈ R, then E = χAL

2(R) for some measurable
A ⊂ R. If eisxE ⊂ E for all s ≥ 0 and there is an s0 > 0 with eis0xE �= E, then
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E = QH2(C) for some Q ∈ L∞(R) with |Q(x)| = 1 for almost every x ∈ R. If
{0} �= E ⊂ H2(C+) and eisxE ⊂ E for all s ≥ 0, then E = QH2(C+) where Q is
an inner function on C+.

Certainly, H2(C+) is an important Hilbert space of analytic functions and plays a
role in a variety of problems such as determining the span of a family of exponential
functions in L2(R). The space H2(C+) also connects to the Riemann hypothesis
via an approximation problem of Nyman and Báez-Duarte. Here one defines the
function

ϕ(x) :=
1

x
− � 1

x
�, x > 0,

where �a� is the integer part of a real number. Using Hardy space theory, along
with the Paley–Wiener theory and the Mellin transform, one has the following
equivalent statements:

• the Riemann hypothesis is true (the zeros of the Riemann zeta function that
lie in the critical strip {0 < �z < 1} lie in the critical line {�z = 1/2});

• χ(0,1) belongs to the closed linear span in L2(0,∞) of the family of dilations
{ϕ(tx) : t > 1};

• χ(0,1) belongs to the closed linear span in L2(0,∞) of {ϕ(nx) : n ∈ N}.
The last two equivalent conditions are known as dilation completeness problems.

Though the Hardy space of the polydisk Dn is briefly mentioned, Nikolski spends
considerable time in establishing a relationship between the Hardy space of the
Hilbert multidisk D∞

2 and the Riemann hypothesis. The above dilation complete-
ness problems are related to the problem of determining the f ∈ H2(D) for which
the closed linear span of {f(zn) : n ≥ 1} is H2(D). Moreover, the onto isometry

U : zH2(D) → H2(D∞
2 ), U

( ∑
n≥1

f̂(n)zn
)
=

∑
n≥1

f̂(n)ζα(n), ζ ∈ D
∞
2 ,

where α(n) = (α1, α2, α3, . . . , αs, 0, 0, 0, . . .), n = pα1
1 pα2

2 · · · pαs
s is the prime factor-

ization of n, and ζα(n) = ζα1
1 ζα2

2 ζα3
3 · · · ζαs

s , connects these completeness problems
with the cyclic vectors for Mζ on H2(D∞

2 ). Nikolski documents the contributions
to this circle of ideas from Neuwirth, Ginsberg, Newman, and Wintner.

6. Comments

Though Niokolski’s book places special emphasis on the connections H2 makes
with Hilbert space problems, there are connections to Banach spaces. For example,
along with a discussion of Hp, there is a treatment of bases in Banach spaces.

A critic of this book might argue that some of the “old favorites” such as growth
rates for Hp functions and their derivatives, extremal functions, the Hausdorff–
Young inequalities, the corona theorem, maximal functions, interpolating sequences,
maximal ideal spaces for H∞, duality in Hp(m), and bounded and vanishing mean
oscillation are not covered in the main body of the text. This reviewer is not one
of them. These favorites are readily available in popular texts on Hardy spaces
[2,5,7,9,10], some of them by Nikolski himself. In this book, Nikolski has given us
a wonderful survey of some different topics to consider. Some of the auxiliary top-
ics appear but are part of Nikolski’s detailed and very scholarly notes (to original
sources) and exercises (with solutions).

Nikolski often puts the reader in medias res and, despite his “Less is more”
precept, one will still have a healthy amount of material put in front of them.
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Function-theoretic operator theory is a large field, and there is little time to dilly-
dally. Get up to speed quickly, constantly learn unfamiliar things, and do a little
digging in the literature to learn more. To help the reader through this material,
Nikolski is both an experienced educator and writer and knows how to present the
material, efficiently, though quickly at times, so the student can learn as well as
appreciate the subject.

Nikolski also gives us plenty of historical vignettes of the main figures in the
development of Hardy spaces and, especially for the student, gives several appen-
dices for those needing some gentle reminders of measure theory, complex analysis,
Hilbert spaces, Banach spaces, and operator theory.
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[11] Béla Sz.-Nagy, Ciprian Foias, Hari Bercovici, and László Kérchy, Harmonic analysis of oper-
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