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GROUP ACTIONS, DIVISORS, AND PLANE CURVES

ARACELI BONIFANT AND JOHN MILNOR

Abstract. After a general discussion of group actions, orbifolds, and weak
orbifolds, this note will provide elementary introductions to two basic moduli
spaces over the real or complex numbers: first the moduli space of effective
divisors with finite stabilizer on the projective space P1, modulo the group of
projective transformations of P1; and then the moduli space of curves (or more
generally effective algebraic 1-cycles) with finite stabilizer in P2, modulo the
group of projective transformations of P2. It also discusses automorphisms of
curves and the topological classification of smooth real curves in P2.
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1. Introduction

A basic objective of this paper is to provide an elementary introduction to the
moduli space of curves of degree n in the real or complex projective plane, modulo
the action of the group of projective transformations. However, in order to prepare
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for this, we first give an exposition of the general theory of smooth group actions
and orbifolds. As a further introduction, we describe the theory of effective divisors
on the real or complex projective line modulo projective transformations. We also
discuss a number of related topics, including automorphism groups of curves and
the topology of smooth curves in the real projective plane. The different sections
are largely independent of each other.

§2. Group actions and orbifolds. We consider smooth actions of Lie groups on
smooth Hausdorff manifolds. Since these actions are not always proper, we intro-
duce the concepts of locally proper action , and weakly locally proper action .
We introduce the usual concept of orbifold,1 as well the concept of weak orbifold
for quotient spaces which have only some of the standard orbifold properties, and
we prove the following:

For a proper/locally proper/ or weakly proper action the quotient
space is a Hausdorff orbifold/locally Hausdorff orbifold/ or locally
Hausdorff weak orbifold, respectively.

§3. Divisors on P1 and the moduli space Mn. Working either over the real or
complex numbers, the space Mn of effective divisors of degree n with finite stabilizer
on the projective line P1, modulo projective transformations, is a T1 space for every
n, but it is a Hausdorff orbifold only for n ≤ 4. In the complex case the space M4(C)
is homeomorphic to P1(C), but in the real case M4(R) is homeomorphic to a closed
line segment in P1(R). In both the real and complex cases, there is just one point
of M4 which is “improper” in the sense that the action of the group of projective
transformation at corresponding divisors is not proper. On the other hand, for
n > 4, there is a unique maximal open subset MHaus

n ⊂ Mn which is a Hausdorff
orbifold, but Mn is not even locally Hausdorff at points outside of MHaus

n . This
subset MHaus

n is compact for n odd, but not for n even.
The proofs make use of a Distortion Lemma for automorphisms of P1 which

describes the way in which an automorphism that lies outside a large compact sub-
set of PGL2 must distort the geometry. The proofs also make use of two familiar
projective invariants associated with a 4-tuple of points in P1. The cross-ratio de-
pends on the ordering of the four points, while the shape invariant J = J(x, y, z, w)
(the classical j-invariant times a convenient constant) is invariant under permuta-
tions of the four points.

In the complex case, a close relative of our Mn(C) is the classical moduli space
M0,n consisting of closed Riemann surfaces of genus zero provided with an ordered
list of n ≥ 3 distinct points, where two such marked Riemann surfaces are identified
if there is a conformal isomorphism taking one to the other. We also discuss the
compactification M0,n(C), a beautiful object introduced by Knudsen, based on
ideas of Grothendieck, Deligne, and Mumford. (See also Keel [Ke] and Etingof,
Henriques, Kamnitzer, and Rains [EHKR] for the analogous space M0,n(R).) In

both the real and complex cases, there are

(
n

p

)
associated embeddings

M0, p+1 ×M0, q+1 ↪→ M0, n,

1Most authors require orbifolds to be Hausdorff spaces, however we will allow orbifolds which
are only locally Hausdorff .
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where p + q = n. As an example, in the real case for p = 2 and q = 3, there
are ten essentially different embeddings of the circle M0, 3 ×M0, 4 into the surface

M0, 5, cutting it up into 12 hyperbolic pentagons, and thus presenting it as a hy-

perbolic analogue of the dodecahedron. The space M0, 6(R) is a 3-manifold which
has a Jaco-Shalen-Johanssen decomposition, showing that it has some combination
of hyperbolic and flat geometry. More explicitly, if we remove the ten tori corre-
sponding to the embeddings of M0, 4 × M0, 4 into M0, 6, then the remainder can
be given the structure of a complete hyperbolic 3-manifold with 20 infinite cusps.

§4. Curves (or 1-cycles) in P2 and their moduli space. The space of all
curves of degree n in P2 can be conveniently considered as a dense open subset
of a projective space of dimension n(n + 3)/2 whose elements are formal linear
combinations of curves in P2. These are called effective (algebraic) 1-cycles .
For n ≥ 3, we study the moduli space Mn consisting of all projective equivalence
classes of effective 1-cycles C of degree n with finite stabilizer. (For n < 3, there
are no curves with finite stabilizer.) This moduli space has been studied by many
authors. (See for example Mumford’s discussion of hypersurfaces [Mu, p. 79], which
includes not only curves in P2 but also divisors in P1.) However, our presentation
is more elementary, and is addressed to nonspecialists.

§5. Cubic curves. The space M3(C) is homeomorphic to the topological 2-sphere
consisting of all ratios (a3 : b2) ∈ P1(C), corresponding to curves y2 = x3 + ax + b.
It is isomorphic as an orbifold to the moduli space M4(C) for divisors of degree
four on P1(C). In the real case, the space M3(R) is diffeomorphic to the unit circle.
We describe the resulting circle of real cubic curves in several different ways, not
only in terms of the normal form y2 = x3 + ax + b with a2 + b2 = 1, but also in
terms of the Hesse normal form x3 + y3 + z3 = 3kxyz, with k ∈ R ∪ {∞}, and in
terms of a convenient flex-slope normal form, parametrized by the slope s at a flex
point.

§6. Degree at least four. When n ≥ 5, we prove that the moduli space Mn(C) is
not a Hausdorff space. On the other hand, we provide two different procedures for
describing large open subsets of Mn(C) which are Hausdorff orbifolds. One of them
is based on studying the distribution of virtual flex points, that is points which are
either flex points or which yield flex points under perturbation. The other will be
discussed in §7.

The open subset Msm
n ⊂ Mn(C) corresponding to smooth curves in P2(C)

is a Hausdorff space, which maps naturally into the classical moduli space Mg(n)

consisting of all isomorphism classes of compact Riemann surfaces of genus g(n) =(
n−1
2

)
. This map is injective for all n ≥ 3 (compare Chang [Ch]), but is an isomor-

phism only for n = 3.

§7. Singularity genus and proper action. This section provides a different
proof that large subsets of Mn(C) are Hausdorff orbifolds, based on the genus
invariant for singular points. Both proofs make use of a Distortion Lemma for
automorphisms of P2 which lie outside a large compact set of group elements. These
arguments apply only to points of moduli space which correspond to (possibly
singular) curves, but there is a brief discussion of extending the proof to more
general 1-cycles.
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§8. Infinite automorphism groups. Although we are primarily concerned with
curves which have finite stabilizer, this section studies the opposite case of curves
with infinitely many automorphisms. Following Klein and Lie, we call these W-
curves. We provide an explicit catalog of all such curves. (Compare Aluffi and
Faber [AF1].)

§9. Finite automorphism groups. The study of finite automorphism groups of
curves is closely related to the study of the moduli space Mn, since any curve with
extra automorphisms gives rise to a singular point in moduli space, or at least to
a ramified point. For each degree d and prime p, we provide an explicit criterion
for deciding whether there exists a smooth curve of degree d with a projective
automorphism of period p, and we compare this with a corresponding statement for
automorphisms of arbitrary compact Riemann surfaces. We show that an arbitrary
finite subgroup of PGL3(C) is the full projective automorphism group for some
smooth curve in P2(C), but show (following Chang [Ch]) that a generic2 curve of
degree four has no nontrivial projective automorphism.

§10. Real curves: The Harnack-Hilbert problem. In the real case, the most
studied question about smooth curves in P2(R) is the Hilbert-Harnack problem
concerning the number and topological arrangement of the connected components,
each of which is a topological circle. We provide a report about this problem, as
well as a suggested reformulation. The paper concludes with a brief Appendix
describing some of the literature on the moduli spaces that we consider.

2. Group actions and orbifolds

This section will provide a general introduction to quotient spaces under a
smooth group action. In the best case, with a proper action, the quotient space
is Hausdorff, with an orbifold structure. Since the group actions that we consider
are not always proper, we also introduce a modified requirement of weakly proper
action, which suffices to prove that the quotient is locally Hausdorff, with a weak
orbifold structure which includes only some of the usual orbifold properties. The
section will conclude by discussing the special case of the projective general linear
group and its action on projective space.

First consider the complex case. Let X be a metrizable complex manifold, and let
G be a complex Lie group3 which acts on the left by a holomorphic map G×X → X,

(g, x) 	→ g(x),

where g1

(
g2(x)

)
= (g1g2)(x). (A manifold is metrizable if and only if it is para-

compact and Hausdorff.) We will always assume that the action is effective in the
sense that

g(x) = x for all x ⇐⇒ g is the identity element e ∈ G .

The quotient space (or orbit space) in which x is identified with x′ if and only if
x′ = g(x) for some g will be denoted4 by X/G.

2We say that a statement is true for a generic curve if it is true for all curves in some set
which is dense and open in the Zariski topology. (Some authors prefer the term “general curve”,
since the word “generic” has a more technical meaning in the theory of schemes.)

3Although our Lie groups are always positive dimensional, the discussion would apply equally
well to the case of a discrete group, which we might think of as a zero-dimensional Lie group.

4Since G acts on the left, many authors would use the notation G\X.
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In the real case, the definitions are completely analogous, although we could
equally well work in either the C∞ category or in the real analytic category. To fix
ideas, let us choose the real analytic category. Thus in the real case, we will assume
that G is a real Lie group, that X is a metrizable real analytic manifold, and that
G × X → X is a real analytic map. It will often be convenient to use the word
analytic, by itself, to mean “real analytic” in the real case, or “complex analytic”
in the complex case.

Definition 2.1. For each x ∈ X the set ((x)) consisting of all images g(x) with
g ∈ G is called the G-orbit of x. We will also use the notation

((x)) = F = Fx

if we are thinking of ((x)) as a fiber of the projection map π : X → Y = X/G.

Remark 2.2. In other words, each fiber is an equivalence class, where two points of
X are equivalent if and only if they belong to the same orbit under the action of G.
More generally, given any equivalence relation ∼ on X, we can form the quotient
space Y = X/∼. Such a quotient space Y always has a well-defined quotient
topology , defined by the condition that a set U ⊂ Y is open if and only if the
preimage π−1(U) is open as a subset of X. (We will always assume that X is a
Hausdorff space, but it does not necessarily follow that Y is Hausdorff.)

Remark 2.3 (Closed orbits and the T1 condition). By definition, a topological space
Y is a T1-space if every point of Y is closed as a subset of Y. Evidently, a quotient
space X/G (or more generally X/∼) is a T1-space if and only if each orbit (or each
equivalence class) is closed as a subset of X.

Orbifolds and weak orbifolds. The concept and basic properties of orbifolds
are due to I. Satake, who called them V-manifolds (see [Sa1,Sa2]). They were later
studied by W. Thurston (see [Th]), who introduced the term “orbifold”.

Let F stand for either the real or the complex numbers.

Definition 2.4. By a d-dimensional F-orbifold chart around a point y of a
topological space Y we will mean the following:

(1) a finite group R ⊂ GLd(F) acting linearly on Fd;
(2) an R-invariant open neighborhood W of the point 0 ∈ Fd; and
(3) a homeomorphism h from the quotient space W/R onto an open neighbor-

hood U of y in Y such that the zero vector in W maps to y.

The group R will be called the ramification group at y, and its order ry ≥ 1
will be called the ramification index . A point y′ is ramified if ry′ > 1 and
unramified if ry′ = 1.

The space Y together with an integer valued function y 	→ ry ≥ 1 will be called a
d-dimensional weak orbifold over F if there exists such an orbifold chart W/R ∼= U
around every point y ∈ Y, such that the associated ramification function from U
to the positive integers coincides with the specified function y′ 	→ ry′ restricted to
U .

Lemma 2.5. Every weak orbifold is a locally Hausdorff space; and the function
y 	→ ry ≥ 1 from Y to the set of positive integers is always upper semicontinuous,
taking the value ry = 1 on a dense open set. More precisely, for any orbifold chart

W/R
∼=−→ U = Uy, we have ry′ ≤ ry for every y′ ∈ U , with ry′ = 1 on a dense

open subset of U .
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Of course in good cases Y will be a Hausdorff space; but even a locally Hausdorff
space can be quite useful.5

Proof of Lemma 2.5. For any chart W/R
∼=−→ U around y and any nonidentity

element g ∈ R, the set of elements of Fd fixed by g must be a linear subspace of Fd

of dimension at most d−1. The complement of this finite union of linear subspaces
within W is a dense open subset W0 ⊂ W . If U0

∼= W0/R is its image, then the
associated mapping W0 → U0 is locally bijective, and it is precisely ry-to-one. Since
this map is one-to-one in a small neighborhood of any point of W0, it follows that
all points of U0 are unramified. Each R-orbit in U is compact and nonempty, so
we can use the Hausdorff metric for compact subsets of Fd to make U ∼= W/R into
a metric space. In particular, it follows that Y is locally Hausdorff. �

Definition 2.6. An orbifold chart W/R ∼= U around y gives rise to a smaller
orbifold chart around any point y′ ∈ U which is called the restriction of this
chart to a neighborhood of y′. In fact, choosing a representative point w′ ∈ W
over y′, let Rw′ be the stabilizer, consisting of all g ∈ R for which g(w′) = w′.
Evidently Rw′ acts linearly on W , fixing the point w′. Choose an Rw′ -invariant
neighborhood W ′ of w′ which is small enough so that the various images g(W ′) with
g ∈ R�Rw′ are all disjoint from W ′. Then the projection from W ′ to W ′/Rw′ ⊂ U
is the required restriction to an orbifold chart around y′.

Definition 2.7. An orbifold atlas on Y is a collection of orbifold chart homeo-
morphisms

hj : Wj/Rj

∼=−→ Uj ⊂ Y,

where the Uj are open sets covering Y , which satisfy the following.

Compatibility condition. For each point z in an overlap Ui∩Uj

and each sufficiently small neighborhood U ′ of z, the restriction
of the ith and jth orbifold charts to U ′ are isomorphic in the
following sense. Let

h′
i : W ′

i/Ri,wi

∼=−→ U ′ and h′
j : W ′

j/Rj,wj

∼=−→ U ′

be the two restrictions. Then we require that there should be an

analytic isomorphism ψ : W ′
i

∼=−→ W ′
j so that h′

i = h′
j ◦ ψ. (Com-

pare Figure 1.) Furthermore, there should be a group isomorphism

φ : Ri,wi

∼=−→ Rj,wj
so that

ψ
(
g(w)

)
= φ(g)

(
ψ(w)

)
for every g ∈ Ri,wi

and every w ∈ W ′
i .

5Perhaps the most startling application of locally Hausdorff spaces in science would be to the
“Many Worlds” interpretation of quantum mechanics, in which the space-time universe continually
splits into two or more alternate universes. (See, for example, [Bec].) The resulting object is
possibly best described as a space which is locally Hausdorff, but wildly non-Hausdorff. It can
be constructed mathematically out of infinitely many copies of the Minkowski space R3,1 by
gluing together corresponding open subsets. (Of course it does not make any objective sense
to ask whether these alternate universes “really exist”. The only legitimate question is whether
a mathematical model including such alternate universes can provide a convenient and testable
model for the observable universe.)
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Figure 1. Compatibility for two orbifold charts

Two such atlases are equivalent if their union also satisfies this compatibility
condition. The space Y together with an equivalence class of such atlases is called
an orbifold .6 (Compare [Th], [BMP].)

There may well be examples of weak orbifolds which are not compatible with
any orbifold structure, but we do not know any such examples.

Example 2.8. On any Riemann surface, we can choose any function y 	→ ry ≥ 1
which takes the value ry = 1 except at finitely many points. A corresponding
collection of complex orbifold charts is easily constructed, and the compatibility
condition is easily verified.

Here is a pair of more interesting examples.

Example 2.9. Let X ⊂ R3 be the plane consisting of all (x, y, z) with x+y+z = 0,
and let G3 be the group of permutations of the three coordinates. Then under
the action of G3, each point of X can be put into a unique normal form with
x ≤ y ≤ z. If we set u = y − x ≥ 0 and v = z − y ≥ 0, then we can solve easily
for x, y, z as linear functions of u, v. Thus the quotient space Y = X/G3 can be
identified with the positive quadrant in the (u, v)-plane. The ramification index
is r(u, v) = 1 throughout the interior of the quadrant, with r(u, 0) = r(0, v) = 2
along the two edges, and with r(0, 0) = 6 at the origin. Note that the compatibility
is automatically satisfied, since we have specified only one coordinate chart.

The analogous example with (x, y, z) ∈ C3 looks quite different. In this case,
the quotient space is best described as the complex (σ2, σ3)-plane, where

σ2 = xy + yz + zx and σ3 = xyz

are elementary symmetric functions, with σ1 = x+y+z = 0. Again the ramification
index of a point in the quotient space is r = 1 if x, y, z are all distinct, r = 2 if
only two are equal to each other, and r = 6 if x = y = z = 0. Any triple with r = 2
takes the form (x, x, −2x), up to permutation of the coordinates, with σ2 = −3x2

and σ3 = −2x3. Thus r = 1 if the expression7 4σ3
2 + 27σ2

3 is nonzero; with r = 2
for most points where this expression is zero; but with r = 6 if σ2 = σ3 = 0.

6Caution. Most authors require orbifolds to be Hausdorff spaces, but as noted in the Intro-
duction, we will allow orbifolds which are only locally Hausdorff.

7Up to sign, this expression is just the discriminant of the polynomial t3 + σ2t − σ3 =
(t− x)(t− y)(t− z).
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The main object of this section will be to describe conditions on the group action
which guarantee that the quotient will be an orbifold or weak orbifold.

Proper and weakly proper actions.

Definition 2.10. A continuous action of G on a locally compact space X is called
proper if the associated map

(g, x) 	→
(
g(x), x

)
from (G×X) to (X×X) is a proper map (in the usual sense that the preimage of
any compact set is compact). A completely equivalent requirement is the following.

For any pair of compact subsets K, K ′ ⊂ X the set of all g with
g(K) ∩ K ′ �= ∅ is compact.

Here is another completely equivalent condition.

For every pair of points x and x′ in X, there exist neighborhoods
U of x and U ′ of x′ which are small enough so that the set of all
g ∈ G with g(U) ∩ U ′ �= ∅ has compact closure.

The proof that these three forms of the definition are equivalent is straightforward
and will be left to the reader.8

The action is locally proper at x if this condition is satisfied for the special
case where x = x′. It then follows that the action is proper throughout some G-
invariant open neighborhood of x. In fact, if each g which maps some point of U
into U is contained in a compact set K ⊂ G, then it follows that each g which maps
a point of g1(U) to a point of g2(U) is contained in the compact set g2Kg−1

1 ⊂ G.
The action will be called weakly proper at x if the following still weaker local

condition is satisfied:

There should be a neighborhood U of x and a compact set K ⊂ G
such that, whenever two points x1 and x2 of U belong to the same
G-orbit, there exists at least one element g ∈ K with g(x1) = x2.

It will be convenient to call a point in X/G either proper or improper according
as the action of G on corresponding points of X is or is not locally proper. Similarly,
an improper point in X/G will be called weakly proper if the action of G on
corresponding points of X is weakly proper. (Caution. Even when a point is
improper, the quotient space may have a perfectly good orbifold structure.)

Definition 2.11. Given an action of G on X, the stabilizer Gx of a point x ∈ X
is the closed subgroup of G consisting of all g ∈ G for which g(x) = x. Note that
points on the same fiber have isomorphic stabilizers, since

Gg(x) = gGxg
−1.

If the stabilizer Gx is finite, then it follows easily that the fiber F through x
(consisting of all images g(x) with g ∈ G) is a smoothly embedded submanifold
which is locally diffeomorphic to G.

Under the hypothesis that all stabilizers are finite, we will prove the following in
Theorem 2.18 together with Lemma 2.13 and Corollary 2.28:

• For a proper action the quotient space is a Hausdorff orbifold.
• For a locally proper action the quotient is a locally Hausdorff orbifold.
• For a weakly proper action the quotient is a locally Hausdorff weak orbifold.

8In the special case of a discrete group, such an action is called properly discontinuous. (For
more about proper actions, see the discussion beginning with Lemma 2.25.)
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Figure 2. Example: The additive group of real numbers acts on
the punctured (x, y)-plane R2�{(0, 0)} by an action (x, y) 	→
gt(x, y) for t ∈ R which satisfies the differential equation

dgt(x, y)/dt =
(√

x2 + y2, 0
)
.

Since
√

x2 + y2 is strictly positive throughout the punctured plane,
it follows that gt moves every point to the right for t > 0; although
no orbit can reach the origin. (Note that gt acts on the real axis
by gt(x, 0) = (etx, 0) when x > 0, but gt(x, 0) = (e−tx, 0) when
x < 0.) The action is locally proper but not proper, and the quo-
tient space is locally Hausdorff but not Hausdorff. In fact, within
every neighborhood of a point on the negative real axis and every
neighborhood of a point on the positive real axis (as illustrated
by circles in the figure), we can choose points which belong to the
same orbit under the action.

(See Figure 2 for an example of a smooth locally proper action with trivial stabilizers
where the quotient is not a Hausdorff space.)

Remark 2.12. Although there are examples which are weakly proper but not locally
proper, they seem to be hard to find. Lemma 3.11 will show that divisors of degree
four with only three distinct points give rise to such examples; and the proof of
Lemma 5.4 will show that curves of degree three with a simple double point provide
closely related examples. However, these are the only examples we know.

The following is well known.

Lemma 2.13. If the action is proper, then the quotient X/G is a Hausdorff space.

It follows as an immediate corollary that a locally proper action yields a quotient
space which is locally Hausdorff. However the quotient under a locally proper action
need not be Hausdorff. (Compare Figure 2.) If stabilizers are finite, then we will
see in Theorem 2.18 that even a weakly proper action yields a quotient space which
is locally Hausdorff.

Remark 2.14. Note that every locally Hausdorff space is T1. In fact if one point p
belongs to the closure of a different point q, then no neighborhood of p is Hausdorff.

Proof of Lemma 2.13. It will be convenient to choose a metric on X. Given x and
x′ there are two possibilities. If we can choose neighborhoods U and U ′ so that
no translate g(U) intersects U ′, then the images π(U) and π(U ′) in the quotient
space are disjoint open sets.

On the other hand, taking Uj and U ′
j to be a sequence of neighborhoods of x

and x′, respectively, of radius 1/j, if we can choose a group element gj for each j
with gj(Uj) ∩ U ′

j �= ∅, then by compactness we can pass to an infinite subsequence
so that the gj converge to a limit g. It follows easily that g(x) = x′, so that x and
x′ map to the same point in the quotient space. �
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Remark 2.15. The converse to Lemma 2.13 is false: A quotient space may be
Hausdorff even when the action is not proper. Compare the discussions of M4(C)
and M4(R) in Lemmas 3.4, 3.5, and 3.11, and of the quotient spaces M3(C) and
M3(R) in Section 5. These quotients are Hausdorff orbifolds, even though the
associated group action fails to be proper everywhere. (See Example 2.8, as well as
Lemma 5.4.) However, for larger n we will have to deal with moduli spaces which
are definitely not Hausdorff. (See Theorem 3.2 for Mn and Theorem 6.1 for Mn.)

Weak orbifold structures. The passage from weakly proper actions to weak
orbifold structures will be based on the following. Given any fiber F, and given any
point x ∈ F, we will refer to the quotient of tangent vector spaces

Vx = TxX/TxF

as the transverse vector space to F at x. (If X is provided with a Riemannian
metric, then Vx can be identified with the normal vector space at x.)

In order to describe a weak orbifold structure on the quotient, we must first
construct the associated ramification groups. Note that the stabilizer Gx acts lin-
early on both TxX and TxF, and hence acts linearly on the d-dimensional quotient
space Vx, where d is the codimension of F in X. In practice, we will always assume
that the stabilizer is finite, so that d is equal to the difference dim(X) − dim(G).
However, this action is not always effective: the group Gx may act nontrivially on
TxF, while leaving the transverse vector space pointwise fixed.

Definition 2.16. Let Hx be the normal subgroup of Gx consisting of all group
elements which act as the identity map on Vx (that is, all h ∈ Gx such that
h(v) = v for all v ∈ Vx). The quotient group

Rx = Gx/Hx

will be called the ramification group at x. Note that by its very definition, Rx

comes with a linear action on the vector space Vx, which is isomorphic to Rd or Cd.
It is not hard to check that different points on the same fiber F have isomorphic
ramification groups. Let y be the image of the fiber F in Y. As in Definition 2.4, the
order of this finite group Rx will be called the ramification index r = r(y) ≥ 1,
and y will be called unramified if r(y) = 1.

We will need the following.

Lemma 2.17 (Invariant metrics). In the real case, given any finite subgroup Γ ⊂ G
there exists a smooth Γ-invariant Riemannian metric on the space X . Similarly, in
the complex case X has a smooth Γ-invariant Hermitian metric.

Proof. Starting with an arbitrary smooth Riemannian or Hermitian metric, average
over its transforms9 by elements of Γ. Then each element of Γ will represent an
isometry for the averaged metric. �

9A Riemannian metric can be described as a smooth function μ which assigns to each x ∈ X
a symmetric positive definite inner product μx(v,w) on the vector space TxX of tangent vectors
at x. Given any diffeomorphism f : X → X′, and given a Riemannian metric μ on X′, we can use

the first derivative map f∗ : TxX
∼=−→ Tf(x)X

′ to pull back the metric, setting

(f∗μ)x(v,w) = μf(x)

(
f∗(v), f∗(w)

)
∈ R.

In particular, given any finite group Γ consisting of r diffeomorphisms from X to itself, we can form
the average μ̂ = 1

r

∑
g∈Γ g∗μ. The construction in the complex case is similar, using Hermitian

inner products.
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Now let F be any fiber with finite stabilizers, and let x0 ∈ F be an arbi-
trary base point. Since the stabilizer Gx0

is a finite group acting on X, we can
choose a Gx0

-invariant metric on X. Using this metric, the transverse vector space
Vx0

= Tx0
X/Tx0

F can be identified with the normal vector space consisting of all
tangent vectors to X at x0 which are orthogonal to the fiber at x0. Given ε > 0,
we can consider geodesics of length ε starting at x0 which are orthogonal to F at
x0. If ε is small enough, these geodesics will sweep out a smooth d-dimensional
disk Dε which meets F transversally, where d is the codimension of F in X. Since
the transverse disk Dε is canonically diffeomorphic to the ε-disk in Vx0

by this
construction, it follows that the group Rx0

acts effectively on Dε.
We will prove the following.

Theorem 2.18 (Weak orbifold theorem). If the action of G on X is weakly proper,
with finite stabilizers, then the quotient space Y is a weak orbifold. More explicitly,
given x ∈ X, let y = π(x) be its image in the quotient space Y = X/G. Then
Y is locally homeomorphic at y to the quotient of the d-dimensional transverse
vector space Vx by the action of the finite group Rx, which acts linearly on Vx. In
particular, Y is locally Hausdorff and metrizable near y and is also locally compact.
Furthermore, the projection map from a small transverse disk Dε to Y is r-to-one
throughout a dense open subset of Dε (or over a dense open subset of Y ), where r

is the order of Rx.

Corollary 2.19. Given an action of a Lie group G on a manifold X, with finite
stabilizers, there are three well-defined open subsets:

ULP ⊂ UWP ⊂ ULHaus ⊂ X/G.

Here ULP is the set of locally proper points, UWP is the set of weakly proper points,
and ULHaus is the set of all locally Hausdorff points.

Corollary 2.19 follows easily from Theorem 2.18 and the discussion above. The
proof of Theorem 2.18 will depend on the following.

F

Dε

Figure 3. A transversal Dε to the fiber F and several nearby
fibers. In this example, a neighborhood of F within X is a Möbius
band.
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Lemma 2.20 (Local product structure). Using the Gx-invariant metric on x, let
Dε be the open disk swept out by normal geodesics of length less than ε at x. Then
any translated disk g(Dε) is determined uniquely by its center point x′ = g(x). For
x′ near x in F, two such translated disks are disjoint, unless they have the same
center point. It follows that some neighborhood of x in X is diffeomorphic to the
product of Dε with a neighborhood of the identity element in G.

Proof (compare Figure 3). If g1(x) = g2(x), then evidently g−1
1 g2 ∈ Gx. Since

elements of Gx map Dε to itself, it follows that g1(Dε) = g2(Dε). Finally, if W is
a small neighborhood of the identity in G, and if ε is small enough, then since the
tangent space to X at x is the direct sum of the tangent space to F and the space
of normal vectors at x, it follows from the Inverse Function Theorem that the map
(g, δ) 	→ g(δ) sends W × Dε diffeomorphically onto an open subset of X. �

Proof of Theorem 2.18. Note first that elements of Gx carry geodesics to geodesics,
mapping a small disk Dε onto itself, and mapping each fiber onto itself. We must
first show that two points of a sufficiently small disk Dε will belong to the same fiber
only if some element of Gx maps one to the other. (Compare Figure 4.) Suppose,
for arbitrarily large j > 0, that there exist points xj and xj

′ in D1/j which belong
to the same fiber, so that xj

′ = gj(xj) for some gj ∈ G, but so that xj and xj
′ are

not in the same orbit under Gx. Since the action is weakly proper, we can choose
these group elements gj within a compact subset K ⊂ G. After passing to an
infinite subsequence, we can assume that these elements gj tend to a limit g ∈ K.
Since gj(xj) = xj

′ with both xj and xj
′ tending to x, it follows by continuity that

g(x) = x. Therefore, gj(x) tends to x as j → ∞ within the subsequence. Thus,
by Lemma 2.20, each image gj(Dε) is either equal to or disjoint from Dε. Since
gj(xj) = xj

′ ∈ Dε, it follows that gj ∈ Gx whenever j is sufficiently large, as
required.

This shows that the quotient Dε/G maps bijectively to its image in X/G. If
ε is small enough, the same will be true for the compact disk Dε. It is easy
to see that the quotient of any compact metric space by a finite group action is
compact, with an induced metric. In fact, we can use the Hausdorff metric on the
space of all nonempty compact subsets, and each G-orbit is such a compact subset.
Therefore, under the hypothesis of Theorem 2.18 it follows that the quotient space

F

gx
xj

xj́

Fj Fj

Dε

Figure 4. In the weakly proper case, two points of Dε belong to
the same fiber only if there is an element g ∈ Gx carrying one to
the other.



GROUP ACTIONS, DIVISORS, AND PLANE CURVES 183

is locally compact, metric, and hence Hausdorff, near y. Since the action of Rx on
the transverse vector space Vx is linear and effective, it follows, for each nontrivial
cyclic subgroup of Rx, that the action is free except on some proper linear subspace
of Vx. Therefore, the projection map from Dε to Y is r-to-one except on a finite
union of linear subspaces. �

After a few pages of discussion, we will return to the construction of a full orbifold
structure, beginning with Lemma 2.25 below.

Miscellaneous Remarks and Examples.

Remark 2.21. In the unramified case, of course the quotient Y = X/G inherits the
structure of a real or complex analytic manifold from X. However, in general Y
need not be even a topological manifold. Perhaps the simplest nonmanifold example
is the quotient of the Euclidean space R3 by the two element group {±1} acting
by g(x) = ±x. In this case, the quotient is not locally orientable near the origin.
Similarly, the quotient of C2 by the corresponding group is not a manifold, since a
small neighborhood of the origin in the quotient space, with the origin removed, is
not simply connected.

Remark 2.22 (Rational Homology Manifolds). We will show that:

Any complex weak orbifold or any locally orientable real weak orb-
ifold is a rational homology manifold, in the sense that any
point of such an orbifold has a neighborhood homeomorphic to the
cone over a space with the rational homology of a sphere.

Here the local orientability condition in the real case means that the space Y
must be locally of the form Dε/Γ, where the action of the finite group Γ preserves
orientation. In other words Γ must be contained in the rotation group SO(d), rather
than the full orthogonal group O(d).

The statement then follows from the following more general principle:

Lemma 2.23. If a finite group Γ acts on a finite cell complex K, then the rational
homology H∗(K/Γ; Q) is isomorphic to the subgroup

H∗(K; Q)Γ ⊂ H∗(K; Q)

consisting of all elements which are fixed under the induced action of Γ.

Proof. After passing to a suitable subdivision of the cell complex K, we may assume
that each group element which maps a cell onto itself acts as the identity map on
this cell. Choosing some orientation for each cell, the associated chain complex
C∗(K) = C∗(K; Q) is the graded rational vector space with one basis element
for each cell. The projection map π : K → K/Γ induces a chain mapping π∗ :
C∗(K) → C∗(K/Γ) between these rational chain complexes. That is, πn maps
Cn(K) to Cn(K/Γ), and commutes with the boundary operator ∂ : Cn(K) →
Cn−1(K); i.e., we obtain the following commutative diagram

Cn(K)

∂

��

πn �� Cn(K/Γ)

∂

��

Cn−1(K)
πn−1

�� Cn−1(K/Γ) .
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But there is also a less familiar chain map

π∗ : C∗(K/Γ) → C∗(K)

in the other direction, which sends each cell of K/Γ to the weighted sum of the cells
of K that lie over it. Here each such cell σ of K is to be weighted by the number
of elements in the stabilizer Γσ ⊂ Γ. Then the composition

C∗(K/Γ)
π∗
−→ C∗(K)

π∗−→ C∗(K/Γ)

is just multiplication by the order of Γ; so the same is true of the induced compo-
sition

H∗(K/Γ)
π∗
−→ H∗(K)

π∗−→ H∗(K/Γ)

of rational homology groups. Since this composition is bijective, it follows easily
that H∗(K/Γ) maps isomorphically onto its image in H∗(K), and also that H∗(K)
splits as the direct sum of the image of π∗ and the kernel of π∗. On the other hand
the other composition

H∗(K)
π∗−→ H∗(K/Γ)

π∗
−→ H∗(K)

maps each element of H∗(K) to the sum of its images under the various elements
of Γ. It follows that the kernel of π∗ is the subspace consisting of all elements
η ∈ H∗(K) such that

∑
γ∈Γ γ∗(η) = 0. Since every element of the image of

π∗ is Γ-invariant, and no nonzero element of the kernel of π∗ is Γ-invariant, the
conclusion follows. (We thank Dennis Sullivan for supplying this argument.) �

In particular, if K is a rational homology sphere and the action of Γ preserves
orientation, then it follows that K/Γ is also a rational homology sphere.

Now suppose as in Theorem 2.18 that the quotient space Y is locally homeo-
morphic to Rd/Γ, where Γ is now the ramification group. Then we can choose a
Γ-invariant simplicial structure on Rd. Taking K to be the star boundary of the
origin (that is, the boundary of the union of all closed simplexes which contain the
origin) it follows that K/Γ is a homology (d − 1)-sphere, and hence that Y/Γ is a
rational homology d-manifold. The corresponding statement in the complex case
follows easily.

Remark 2.24 (Quotient analytic structures). Whether or not the quotient Y is a
(possibly non-Hausdorff) topological manifold, we can put some kind of analytic
structure on it as follows. (Recall that we use the word “analytic” as an abbreviation
for real analytic in the real case, and complex analytic in the complex case.) To
every open subset Y′ ⊂ Y, assign the algebra A(Y′) consisting of all functions
f : Y′ → R in the real case (or f : Y′ → C in the complex case), such that the
composition f ◦π mapping π−1(Y′) to R (or C) is analytic, where π : X → Y is
the projection map.
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Definition. We say that the orbifold Y is a d-dimensional smooth analytic man-
ifold if for every point of Y there is a neighborhood Y′ and functions f1, . . . , fd ∈
A(Y′) such that:

(1) the correspondence y 	→
(
f1(y), . . . , fd(y)

)
maps Y′ homeomorphically

onto an open subset of 10 Rd or Cd; and
(2) every element f ∈ A(Y′) can be expressed as an analytic function of

f1, . . . , fd.

In other words, for every such f there must be an analytic function F , defined on
some open subset of Rd or Cd, such that

f(y) = F
(
f1(y), . . . , fd(y)

)
for all y ∈ Y′.

Smooth examples. If a cyclic group acts on a one-dimensional complex manifold,
then it is easy to see that the quotient space is always an analytic manifold. Another
classical example is the following. Let Sn be the symmetric group on n elements
acting on Cn by permuting the n coordinates. Then the quotient Cn/Sn is a smooth
manifold which is isomorphic to Cn itself.11 We can simply choose f1, . . . , fn to
be the elementary symmetric functions of the n coordinates.

Such smooth examples seem to be rather rare when n ≥ 2. Here is more typical
example of a ramified action with a topological manifold as quotient.

A nonsmooth manifold example. Let the two element group {±1} act on R2

by

(x, y) 	→ ±(x, y).

Then the quotient space Y is clearly homeomorphic to R2. In fact if we introduce
the complex variable z = x+ iy, then z2 = x2− y2 +2ixy provides a good complex
parametrization. However, as a real orbifold Y does not have a smooth analytic
structure. To see this, note that the set A(Y) consists of all maps Y → R which
can be expressed as real analytic functions of

x2, y2, and x y.

There is no way of choosing just two functions f1 and f2 in A(Y) so that every
element of A(Y) can be expressed as a smooth function of f1 and f2. In fact, the
correspondence

(x, y) 	→ (ξ, η, ζ) = (x2, y2, xy)

sends the real plane R2 homeomorphically onto a topological submanifold of R3

which is clearly not smooth, since it projects onto the positive quadrant in the
(ξ, η)-plane. It follows from this that condition (1) of the Definition cannot be
satisfied at the origin.

10In the real case, it would be natural to also include manifolds-with-boundary by allowing a
closed half-space as model space in item (1) above. In fact, one could also include manifolds with
corners by allowing a convex polyhedron as model space. (Compare Example 2.9.)

11However the real case is quite different, since Rn/Sn is not isomorphic to Rn. In fact the
quotient Rn/Sn can best be identified with the convex polyhedron x1 ≤ x2 ≤ · · · ≤ xn in Rn.
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A wild topological manifold example. Let H be the space of quaternions. We
will give an example of a finite group G120 acting smoothly on H with the following
rather startling property. The quotient space

R× (H/G120) = (R×H)/G120

is homeomorphic to R5, but the set of ramified points R×0 corresponds to a line in
this quotient space which is so wildly embedded that its complement is not simply
connected.

To begin the construction, note that the unit sphere S3 ⊂ H is isomorphic to
the universal covering group of the rotation group SO(3). The 60 element icosahe-
dral subgroup of SO(3) is covered by the 120 element double icosahedral group
G120 ⊂ S3. The quotient space S3/G120 is the Poincaré fake sphere, with the
homology of the standard 3-sphere, but with fundamental group G120. If we let
the group G120 act on H by left multiplication, then the quotient H/G120 is not
a manifold, since a punctured neighborhood of the origin is not simply connected.
However, the double suspension theorem of Cannon and Edwards implies that the
product

R× (H/G120 ) ∼= (R×H)/G120

is a simply connected manifold, homeomorphic to R5. (Compare [Ca] or [Ed].) This
product cannot be given any differentiable structure such that the subset R× 0 of
ramified points is a differentiable submanifold. This follows since the complement
of this one-dimensional topological submanifold has fundamental group G120.

Locally proper actions and orbifolds. Recall that the action is locally proper
at x if it is proper throughout some G-invariant neighborhood of x. (Compare
Definition 2.10.) One important property of locally proper actions is the following.

Lemma 2.25. If the action is locally proper at x with finite stabilizers, then for
all x′ sufficiently close to x the stabilizer Gx′ is isomorphic to a subgroup of Gx.
In particular, the order |Gx| of the stabilizer is upper semicontinuous as a function
of x, so that |Gx′ | ≤ |Gx| for all x′ sufficiently close to x.

Proof. Suppose that there were points xj
′ arbitrarily close to x with Gxj

′ not
isomorphic to a subgroup of Gx. Since the action is locally proper, there is a
compact set K ⊂ G such that the stabilizer Gx′ is contained in K for all x′

in some neighborhood of x. The collection of all compact subsets of K forms a
compact metric space, using the Hausdorff metric. Therefore, given any sequence
of such points xj

′ converging to x, after passing to an infinite subsequence, we
can assume that the sequence of finite groups Gxj

′ ⊂ K converges to a Hausdorff
limit set G′ ⊂ Gx as j tends to infinity. This limit G′ must be a subgroup of
Gx; otherwise, for any g′ ∈ G′�Gx, we would have points x′

j converging to x and
group elements gj ∈ G converging to g′, with gj(x

′
j) = x′

j but g′(x) �= x.
This group Gxj

′ must be isomorphic to G′ for large j. In fact, since Gxj

converges to the finite group G′ as j → ∞, the correspondence which maps each
g ∈ Gxj

′ to the closest point of G′ must be a surjective homomorphism for large
j. Since we are assuming that Gxj

′ is not isomorphic to any subgroup of Gx, it
follows that the kernel of this surjection Gxj

′ → G′ must contain some nonidentity
element g′

j of G. But the sequence {g′
j} must converge to the identity element.

Now consider the exponential map exp : L → G, which maps a neighborhood of
the zero element in the Lie algebra to a neighborhood of the identity. (Recall that
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the Lie algebra L can be identified with the tangent space to G at the identity
element.) We can set g′

j = exp(vj), where vj tends to zero. Thus the group

generated by g′
j corresponds to the set of all images exp(k vj) with k ∈ Z. Clearly,

these images fill out the corresponding one-parameter subgroup more and more
densely as vj → 0, so that the Hausdorff limit could not be a finite group. This
contradicts our hypothesis that Gx is finite, and hence completes the proof. �

Here is a more precise statement.

Lemma 2.26. If the action is locally proper, then each stabilizer Gx contains a
subgroup G0

x which varies continuously with x, and such that G0
x′ = Gx′ for all x′

in a dense open set. If X is connected, then it follows that the various subgroups
G0

x are all mutually isomorphic.

As a typical example, in the space of smooth cubic curves in P2(C), every sta-
bilizer Gx contains a subgroup G0

x of order 18, with Gx equal to G0
x except along

two fibers where there are extra symmetries. (See [BM], and compare Section 5.)

Proof of Lemma 2.26. Recall that the ramification index ry at the image of x in
the quotient space is the order of the quotient group Ry = Gx/Hx. Since ry′ = 1
throughout a dense open subset of a neighborhood of y by Lemma 2.5, it follows
that Gx′ = Hx′ for x′ in a dense open subset of a neighborhood of x. On the
other hand, arguing as above, we see that the groups Hx′ for this dense open set
converge to a group G0

x ⊂ Hx as x′ converges to x. In fact it follows easily that
Hx′ contains a subgroup isomorphic to G0

x for every x′ in the neighborhood. �

G-invariant tubular neighborhoods. Given any smooth G-action with finite
stabilizers, and given any fiber F ⊂ X, it is not difficult to construct arbitrarily
small G-invariant neighborhoods Eε of F in X. Simply choose a transverse disk
Dε = Dε(x0) to the fiber F at x0, and let Eε be the union of its images g(Dε) as
g varies over G. Recall from Lemma 2.20 that the image disk g(Dε) depends only
on its center point x = g(x0). We will use the alternate notation

Dε(x) = g(Dε) whenever x = g(x0).

If the action is locally proper, we can give a much more precise description.

Theorem 2.27. If the action is locally proper with finite stabilizers, and if ε is
small enough, then the neighborhood Eε is diffeomorphic to the quotient space of
G× Dε(x0) by the equivalence relation

(g g0, δ) ∼
(
g, g0(δ)

)
for every g ∈ G, δ ∈ Dε , and every g0 in the stabilizer Gx0

. It follows that Eε can
be described as the total space of a locally trivial fiber bundle, with projection map
Eε → F which carries each Dε(x) ⊂ Eε to its center point x ∈ F. Furthermore,
the G-orbits provide a foliation of Eε which is transverse to every Dε(x), therefore
providing a local product structure around any Dε(x).

Proof (compare [Mei], [DK]).. We must first show that the various disks Dε(x)
with x ∈ F are pairwise disjoint.
Step 1. Since the stabilizer is finite, it follows that F is locally diffeomorphic to
G. Therefore it follows as in Lemma 2.20 that the various image disks g

(
Dε(x)

)
,

with x close to x0 in F are all disjoint, provided that ε is small enough.
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F

x0

xj

x j́

x*

x´

Dεj(x0)

gj

g j́

Figure 5. Illustrating the proof of Theorem 2.27

Step 2. Take ε > 0 as in Step 1. Suppose that there is a sequence of numbers
ε > ε1 > ε2 > · · · tending to zero such that for each j there are points xj �= x′

j on

F and group elements gj and g′
j with gj(x0) = xj and g′

j(x0) = x′
j such that the

two disks

Dεj (xj) = gj

(
Dεj (x0)

)
and Dεj (x

′
j) = g′

j

(
Dεj (x0)

)
intersect each other at some point x∗. (See Figure 5.) Then we can write

x∗ = gj(δj) = g′
j(δ

′
j)

for appropriate points δj , δ′j ∈ Dεj = Dεj (xo). Now setting g∗
j = g−1

j g′
j , it follows

that the disk g∗
j (Dε) intersects Dε at the point g∗

j (δ
′
j) = δj .

Since the action is locally proper, it follows that all group elements g which
satisfy g(Dε) ∩ Dε �= ∅ must be contained in some compact set K ⊂ G. After
passing to an infinite subsequence, we may assume that the group elements g∗

j tend

to a limit in g∗ ∈ K. Taking the limit of the equation g∗
j (δ

′
j) = δj as j → ∞,

since both δj and δ′j must tend to x0, it follows that g∗(x0) = x0. Therefore, the
sequence g∗

j (x0) must tend to x0. Thus for some fixed ε > 0, we have constructed
disks g∗

j (Dε) with center point arbitrarily close to x0 which intersect Dε but are
not equal to Dε. This contradicts Step 1, and it proves that all of the disks Dε(x)
must be pairwise disjoint.

It follows from Lemma 2.20 that the mapping Eε → F has a local product
structure near the disk Dε. We can use translation by any group element g to
translate this product structure to a neighborhood of any disk g(Dε). Further
details of the proof of Theorem 2.27 are straightforward. �

Corollary 2.28. If the action is locally proper with finite stabilizers, then the
quotient is an orbifold (compare Definition 2.7).

Proof. We know from Theorem 2.18 that the quotient is a weak orbifold. Choose
a disk Dε as in Theorem 2.27, and let Eε be the associated tubular neighborhood:
the union of all translates of Dε by elements of G. For any fiber F′ which intersects
Dε, we must study how a sufficiently small tubular neighborhood of F′ is related to
Eε. Let x′ be an arbitrary base point on F′, and let D′

ε′ be a small transverse disk
to F′ at x′, using a Gx′ -invariant metric. Choose some group element g0 which
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x
x´´

x´

F F´

Figure 6. Illustrating the proof of Corollary 2.28

maps x′ to a point x′′ ∈ Dε ∩ F′. Then D′
ε′ maps to a disk which is transverse to

F′ at x′′. Using the local product structure, if ε′ is small enough, we can project
g0(D

′
ε′) diffeomorphically onto a subdisk D′′ ⊂ Dε, as illustrated in Figure 6.

Now consider the orbifold chart Dε → Dε/Rx ⊂ Y = X/G, as well as the
corresponding chart D′

ε′ → D′
ε′/Rx′ ⊂ Y. Using Lemmas 2.25 and 2.26, we see

that for any g ∈ Rx′ the action of g on D′
ε′ will correspond to the action of some

uniquely defined φ(g) ∈ Rx on the image disk in Dε. Thus the compatibility
condition of Definition 2.7 is satisfied. �

Remark 2.29 (The projective linear group and projective space). For the rest of
this paper, the group G will be the real or complex projective linear group PGLm,
which acts on the corresponding projective space Pm−1, with m = 2 in Section 3,
or m = 3 in later sections.

Over any field, the corresponding group PGLm can be defined as the quotient
GLm /N , where GLm is the group of linear automorphisms of an m-dimensional
vector space, and N is the normal subgroup consisting of scalar transformations
x 	→ tx. Here t can be any fixed nonzero field element. Writing the linear trans-
formation as

(x1, x2, . . . , xm) 	→ (x′
1, x′

2, . . . , x′
m),

there is an associated automorphism (x1 : x2 : . . . : xm) 	→ (x′
1 : x′

2 : . . . : x′
m) of

the (m − 1)-dimensional projective space over the field. Automorphisms obtained
in this way are called projective automorphisms . Thus:

Over any field, PGLm can be identified with the group of all pro-
jective automorphisms of the projective space Pm−1.

Equivalently, PGLm can be described as the group of all equivalence classes of
nonsingular m × m matrices over the field, where two matrices are equivalent
if one can be obtained from the other by multiplication by a nonzero constant.

Let Pm2−1 be the projective space consisting of all lines through the origin in the
m2-dimensional vector space consisting of m×m matrices. Then it follows easily
that:
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Over any field, the group PGLm can be considered as a Zariski open

subset of the projective space Pm2−1.

Specializing to the real or complex case, it follows that PGLm is a smooth real or
complex manifold of dimension m2 − 1, with a smooth product operation. Hence
it is a Lie group.

We will need the following statement in Sections 3 and 6.

Lemma 2.30. Every element of PGLm(R) or PGLm(C) can be written as a com-
position

g = r ◦ d ◦ r′,
where r and r′ are isometries, that is elements of the projective orthogonal group
POm in the real case or the projective unitary group PUm in the complex case, and
where d is a diagonal transformation of the form

d(x1 : · · · : xm) = (a1x1 : · · · : amxm),

where the aj are real numbers with a1 ≥ a2 ≥ · · · ≥ am > 0. Furthermore, the
ratios (a1 : a2 : · · · : am) are uniquely determined by g (although r and r′ may not
be uniquely determined).

In particular, the invariant a1/am ≥ 1 provides a rough measure of how far the
automorphism g is from being an isometry with respect to the standard metric for
Pm−1. (See Definition 2.31.)

Proof of Lemma 2.30. To fix ideas, we will discuss only the complex case, but the
real case is completely analogous. This is proved by applying the Gram-Schmidt
process to a corresponding linear transformation � : V → V ′, where V and V ′

are m-dimensional complex vector spaces with Hermitian inner product and with
associated norm ‖v‖ =

√
v · v. Given a linear bijection � : V → V ′, choose a unit

vector u1 ∈ V which maximizes the norm ‖�(u1)‖. Then �(u1) can be written as
a product a1u

′
1, where a1 > 0 is this maximal norm and where u′

1 is a unit vector
in V ′. Note that � maps any unit vector v orthogonal to u1 in V to a vector
v′ orthogonal to u′

1 in V ′. In fact, each linear combination u1 cos(θ) + v sin(θ)
is another unit vector in V , which maps to a1u

′
1 cos(θ) + v′ sin(θ) in V ′. A brief

computation shows that the derivative of the squared norm of this image vector
with respect to θ at θ = 0 is 2a1u

′
1 · v′. Since the derivative at a maximum point

must be zero, this proves that u′
1 · v′ = 0, as asserted.

Thus � maps the orthogonal complement of u1 to the orthogonal complement of
u′
1. Repeating the same argument for this map of orthogonal complements, we find

unit vectors u2 orthogonal to u1 and u′
2 orthogonal to u′

1 so that �(u2) = a2u
′
2 with

a1 ≥ a2 > 0. Continuing inductively, we find an orthonormal basis {uj} for V and
an orthonormal basis {u′

j} for V ′ so that

�(uj) = aju
′
j with a1 ≥ a2 ≥ · · · ≥ am > 0.

Now taking V and V ′ to be copies of the standard Cm, it follows that � is the
composition of:

(1) a unitary transformation which takes the standard basis for Cm to the
basis {uj};

(2) a diagonal transformation of the required form; and
(3) a unitary transformation taking {u′

j} to the standard basis.
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This statement about the general linear group GLm clearly implies the required
statement about the projective linear group PGLm. This proves Lemma 2.30. �

Definition 2.31 (The Fubini-Study metric). We will sometimes refer to distances
between points of projective space. In the one-dimensional case we will use the stan-
dard spherical metric; but in higher dimensions we use the Fubini-Study metric,
which can be described as follows. It clearly suffices to consider the complex case.
Let u be a unit vector in Cn+1, so that u · u = 1, using the standard Hermitian
inner product. A point in Pn can described as an equivalence class (u) of such
unit vectors, where u is equivalent to u′ if and only if u′ = ei tu for some real t.
Now let u and v be fixed orthogonal unit vectors, u · v = 0. If we think of u and
v as points on a real sphere of dimension 2n + 1, then there is a unique geodesic
θ 	→ u cos(θ) + v sin(θ) joining these two points, parametrized by arclength, with
0 ≤ θ ≤ π/2. By definition, the corresponding locus

�(θ) =
(
u cos(θ) + v sin(θ)

)
in Pn is a geodesic parameterized by arclength for the Fubini-Study metric.12 It
follows that the Fubini-Study distance between two points on such a geodesic is
given by

D
(
�(θ), �(θ′)

)
= |θ′ − θ|.

More generally, since

�(θ) · �(θ′) = cos(θ) cos(θ′) + sin(θ) sin(θ′) = cos(θ′ − θ),

it follows easily that we can define the distance between any two points (u1) and
(u2) by the closely related formula

D
(
(u1) , (u2) ) = arccos(|u1 · u2|) ∈ [0, π/2].

The triangle inequality for distance defined in this way follows from the triangle
inequality for the standard sphere.

3. Divisors on P1
and the moduli space Mn

We first look at a basic family of moduli spaces which are relatively easy to
understand. Since the discussions in the real and complex cases are very similar, it
will be convenient to use the symbol F to denote either R or C. The projective line
P1 = P1(F) is a circle in the real case, or a Riemann sphere in the complex case.

It is often convenient to identify P1 with the union F̂ = F ∪ {∞}. More precisely,

each point (x : y) ∈ P1 can be identified with the quotient x/y ∈ F̂ = F ∪ {∞}.
Note that the group G = PGL2(F) acting on P1(F) corresponds to the group of
fractional linear transformations,

z 	→ az + b

cz + d
with a, b, c, d ∈ F , ad − bc �= 0,

acting on F̂.
By definition, an effective divisor of degree n on P1 is a formal sum of the

form

D = m1〈p1〉 + · · · + mk〈pk〉,

12There is actually a one-parameter family of minimal geodesics between (u) and (v), all with
the same length, since we can replace v by eitv.



192 ARACELI BONIFANT AND JOHN MILNOR

where the pj are distinct points of P1, and where the multiplicities mj ≥ 1 are
integers, with

∑
mj = n. The set |D| = {p1, . . . ,pk} ⊂ P1 will be called the

support of D.

Let D̂n = D̂n(F) be the space of all effective divisors of degree n on P1 = P1(F).
(The notation Dn will be reserved for the open subset consisting of n-tuples of
distinct points.) In the complex case, if we think of a divisor as the set of roots of a
homogeneous polynomial of degree n in two variables, then it follows easily that the

space D̂n(C) can be given the structure of a complex projective space Pn(C). In the

real case, D̂n(R) can be identified with the closed subset of Pn(R) corresponding
to those real homogeneous polynomials which have only real roots.

The group G = PGL2(F) acts on P1, and hence on the space D̂n of formal sums.
Note that the action on P1 is three-point simply transitive. That is, there is
one and only one group element which takes any ordered set of three distinct points
of P1 to any other ordered set of three distinct points.

It follows that the stabilizer GD for the action at a point D ∈ D̂n

is finite if and only if the number k of points in |D| satisfies k ≥ 3.
In fact GD maps injectively into the group of all permutations of
the set |D| whenever k ≥ 3.

Definition 3.1. Let D̂ fs
n be the open subset of D̂n consisting of effective divisors

with finite stabilizer, or in other words with at least three distinct points, and define

the moduli space for divisors to be the quotient Mn = D̂ fs
n /G.

One basic invariant for the G-orbit of a divisor is the maximum multiplicity

1 ≤ max
j

{mj} ≤ n

of the points in |D|.
Theorem 3.2. Mn is a T1-space for every n; but it is a Hausdorff space only for
n ≤ 4. For any n, the open subset of Mn consisting of G-equivalence classes of
divisors with maximum multiplicity satisfying

max
j

{mj} < n/2

is a Hausdorff space and an orbifold. However if n ≥ 5, then any point for which
maxj{mj} ≥ n/2 is not even locally Hausdorff.

For n ≥ 5, we will use the notation MHaus
n for this maximal open Hausdorff

subset of Mn.

Theorem 3.3. For n ≥ 5, the space MHaus
n is compact for n odd, but not for n

even.

The case n = 5 is particularly striking, since the non-Hausdorff space M5 consists
of a compact Hausdorff space MHaus

5 together with just one “bad” point of the form

(( 3〈p〉 + 〈q〉 + 〈r〉 )),

with maxj{mj} = 3 > 5/2.
To begin the proof of Theorem 3.2, we will study the cases n ≤ 4. It is easy to

check that Mn is empty for n < 3. For n = 3, since the action of G on P1 is three-
point simply transitive, it follows easily that M3(R) = M3(C) consists of a single
point; with stabilizer the symmetric group S3. For n = 4, we have the following.

(Recall that each point of Mn corresponds to an entire G-orbit of divisors D ∈ D̂ fs
n .)
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r = 2

M4(R)

M4(C)

improper point

r = 3

Figure 7. The moduli spaces M4(R) ⊂ M4(C)

Lemma 3.4. The moduli space M4(C) is an orbifold diffeomorphic to the Riemann

sphere P1(C) ∼= Ĉ with three ramified points. One of these is the unique improper
point corresponding to divisors of degree four with only three distinct points. The
stabilizer GD is isomorphic to:

• Z/2 ⊕ Z/2 if D represents an unramified point of this orbifold;
• Z/2 if D represents the improper point, which has index r = 2;
• the dihedral group of order eight for the other point of index r = 2; and
• the tetrahedral group of order 12 for the ramified point of index r = 3.

Lemma 3.5. In the real case, the moduli space M4(R) is an orbifold isomorphic
to a closed interval bounded by the two ramified points of index r = 2 in the circle
P1(R) ⊂ P1(C) ∼= M4(C). (Compare Figure 7. There is no real point of index r =
3.) The stabilizers in the real case are isomorphic to the corresponding stabilizers
in the complex case.

The proof of these two lemmas will make use of two familiar projective invariants
associated with a 4-tuple of points in P1. The first is the cross-ratio, which depends
on the ordering of the four arguments, and the second is the shape invariant J,
which is independent of order.

We will use cross-ratios of the form13

(1) ρ(x, y, z, w) = ρ

[
x y
z w

]
=

(x − y)(z − w)

(x − z)(y − w)
,

where x, y, z, w are distinct real or complex numbers. This expression is well
defined and continuous on the space of ordered 4-tuples of distinct points of R or

C, taking values in R̂ or Ĉ. In either case it extends uniquely to the case where
any one of the four points is allowed to take the value ∞. For example, as w → ∞
equation (1) tends to the limit

(2) ρ

[
x y
z ∞

]
=

x − y

x − z
.

13This notation is nonstandard but is convenient and easy to remember.
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It is not hard to check that ρ is unchanged if we apply an affine automorphism
x 	→ a x + b, or apply the inversion map x 	→ 1/x, to each of the four variables.
Since the group PGL2 of fractional linear transformations is generated by affine
transformations and inversion, it follows that ρ is invariant under the action of this
group.

Lemma 3.6. There is a necessarily unique projective automorphism carrying one
ordered set of four distinct points of P1 to another if and only if they have the same
cross-ratio, which can take any value other than 0, 1, or ∞.

Proof. It suffices to consider the special case where the second 4-tuple has the form
(0, y, 1, ∞), so that the cross-ratio is y by equation (2). Using three-point transi-
tivity, there is a unique projective automorphism taking the appropriate points to 0,
1, and ∞; and it follows that the remaining point must map to the cross-ratio y. �

However, as two of the four points come together (so that only three are distinct),
the cross-ratio will tend to a limit belonging to the complementary set {0, 1, ∞}.
(If only two of the four points are distinct, then the cross-ratio cannot be defined
in any useful way.)

Note that the cross-ratio is always unchanged as we interchange the two rows, or

the two columns, of the matrix

[
x y
z w

]
. Thus we obtain the following. (Compare

Lemma 2.26.)

Lemma 3.7. For any 4-tuple (x, y, z, w) of four distinct points, there is a transitive
four-element group of permutations of the four points, isomorphic to Z/2 ⊕ Z/2,
which preserves their cross-ratio. Hence the stabilizer GD for the associated divisor
D = 〈x〉 + 〈y〉 + 〈z〉 + 〈w〉 always contains Z/2 ⊕ Z/2 as a subgroup.

Proof. In both the real and complex cases, this follows immediately from the dis-
cussion above. �

The shape invariant J. We next describe a number J = J(x, y, z, w) which is
invariant not only under projective automorphisms of P1, but also under permuta-
tions of the four variables.

First consider the generic case where all four points are distinct. After a pro-
jective transformation, we may assume that w = ∞ and that x, y, z are finite.
Then x, y, z are uniquely determined up to a simultaneous affine transformation.
Therefore the differences

(3) α = x − y, β = y − z, γ = z − x

are uniquely determined up to multiplication by a common nonzero constant. Next
consider the elementary symmetric functions

σ1 = α + β + γ = 0 , σ2 = αβ + αγ + βγ , σ3 = αβγ.

If we multiply α, β, γ by a common constant t �= 0, then each σj will be multiplied
by tj . Therefore the ratio14

(4) J := − 4

27

σ 3
2

σ 2
3

14Here the factor of −4/27 has been inserted so that J will take the value +1 in the case of
dihedral symmetry, where two of the three numbers α, β, γ are equal.
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will remain unchanged. It might seem that w plays a special role in this con-
struction, but remember from Lemmas 3.6 and 3.7 that there is a transitive group
of projective automorphisms permuting the four variables. Therefore, it does not
matter which of the four variables we put at infinity.

If only three of the four variables x, y, z, w are distinct, then we set J = ∞. For
example if x = y so that α = 0, then σ3 = 0, hence J = ∞. It is not difficult to
check that the resulting function

(x, y, z, w) 	→ J(x, y, z, w) ∈ F̂

is continuous as a function of four variables in F̂, provided that we require that at
least three of the four variables remain distinct.

In general, four points of P1 determine six different cross-ratios, according to the
order in which they are listed (compare Remark 3.10), but only one shape invariant.

Lemma 3.8. Any one of these six cross-ratios determines the shape invariant
according to the formula

(5) J =
4

27

(ρ2 − ρ + 1)3

ρ2(1 − ρ)2
.

Proof. Since both sides of equation (5) are invariant under affine transformations
of the plane, it suffices to consider the special case where the 4-tuple (x, y, z, w)
is equal to (0, t, 1, ∞), with cross-ratio t. (In fact one can choose an affine trans-
formation which maps x to zero and z to one, while keeping ∞ fixed. The point y
will then necessarily map to the cross-ratio.) We then have

α = −t, β = t − 1, γ = 1,

hence σ2 = −(t2 − t + 1) and σ3 = t(1 − t), and the required identity (5) follows
immediately. �

Remark 3.9. The shape invariant J is just the classical j-invariant of an associated
cubic curve, divided by a constant factor of 123 = 1728. (Compare Section 5.) To
see the relationship, first subtract the average (x + y + z)/3 from x, y, and z, in
order to obtain a triple (X, Y, Z) with X + Y + Z = 0. These corrected variables
will then be the roots of a uniquely defined cubic equation X3 + AX + B = 0. If
we express the σ2 and σ3 of equation (4) as functions of these three variables, then
computation shows that

J =
4A3

4A3 + 27B2
.

Here the denominator is the classical expression for the discriminant of a cubic
polynomial, up to sign. Details of the computation will be omitted.

Proof of Lemma 3.4. The discussion above shows that every divisor

D = 〈x〉 + 〈y〉 + 〈z〉 + 〈w〉
with at least three distinct elements determines a point J(x, y, z, w) in the Riemann

sphere Ĉ, and that this image point is invariant under the action of the group
G = PGL2(C) on the divisor. It is easy to check that the resulting correspondence

M4(C) −→ Ĉ

is continuous and bijective, and hence is a homeomorphism.
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To describe the precise stabilizers for the various points of M4(C) we will need
the following.

Remark 3.10 (Symmetries of cross-ratios). For an arbitrary permutation σ of a set
{x, y, z, w} of four distinct points, the cross-ratio ρ(x, y, z, w) will be transformed
by some corresponding rational map g(σ). By Lemma 3.7, the four-element sub-
group consisting of permutations which preserve cross-ratios acts transitively on
the four points. Thus any given permutation can be composed with an element
of this subgroup so as to map w to itself. Therefore, in studying cross-ratios, it
suffices to consider only the subgroup S3 consisting of permutations of {x, y, z}
with w fixed. This group S3 consists of a cyclic subgroup of order three, together
with three elements of order two. It is not hard to check that the elements of order
two correspond to the involutions which takes ρ to either

(6) 1/ρ or 1 − ρ or ρ/(ρ− 1);

while the two elements of order three correspond to the rational maps

(7) ρ 	→ 1/(1 − ρ) and ρ 	→ 1 − 1/ρ.

Thus a generic element D ∈ D̂4 has six different associated cross-ratios, and any
one of the six determines the other five.

If x, y, z, w are distinct then by Lemma 3.7, the stabilizer GD of the associated
divisor

D = 〈x〉 + 〈y〉 + 〈z〉 + 〈w〉
can be identified with the group of all permutations of {x, y, z, w} which preserve
the cross-ratio. In particular, it always contains a subgroup isomorphic to Z/2⊕Z/2
by Lemma 3.7. If the six cross-ratios are all distinct, then the stabilizer is equal
to this commutative subgroup of order four; but there are three exceptional cases
(including the degenerate case), corresponding to equalities between various of the
numbers (6) and (7) and ρ.

Dihedral symmetry. If the shape invariant is J = 1, then there are only three
associated cross-ratios, namely −1, 1/2, and 2. (Each of these is fixed under one
of the involutions of equation (6).) As an example, a corresponding divisor can be
chosen as

D = 〈 − 1〉 + 〈0〉 + 〈1〉 + 〈∞〉.
The associated stabilizer is the dihedral group of order eight, generated by the
rotation

x 	→ 1 + x

1 − x
with 0 	→ 1 	→ ∞ 	→ −1 	→ 0,

together with the reflection x 	→ −x. The ramification index is r = 2.

Tetrahedral symmetry. If J = 0, then there are only two associated cross-ratios,

namely ρ = 1±
√
−3

2 . A corresponding divisor can be obtained by placing the four
points at the vertices of a tetrahedron on the Riemann sphere (identified with the
unit sphere in Euclidean 3-space). Then evidently the corresponding stabilizer is
the tetrahedral group of order 12 (the group of orientation preserving isometries of
the tetrahedron). Since the cross-ratios are not real, this possibility can occur only
in the complex case.

It is not hard to check from equations (6) and (7) that these are the only non-
degenerate examples for which there are not six distinct cross-ratios.
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The degenerate case. If two of the four points come together, then the possible
cross-ratios are 0, 1, ∞. (Compare Lemma 3.6.) Much of the discussion above
breaks down in this case. In particular, it is easy to check that the stabilizer has
only two elements instead of four. According to Lemma 2.25, this implies that the
action of G is not locally proper at such points.

Lemma 3.11. Although the action of G is not locally proper at such degenerate
points, it is still weakly proper. (Compare Definition 2.10.)

Proof. It will be convenient to use the notation x ≈ y to mean that x and y are
very close or are equal to each other. Then any two divisors in a neighborhood of
an improper divisor 2〈x〉 + 〈z〉 + 〈w〉 will have the form

Dj = 〈xj〉 + 〈yj〉 + 〈zj〉 + 〈wj〉 for j = 1, 2,

where xj ≈ yj , but where z1 ≈ z2 and w1 ≈ w2 are well separated. If there is
a group element taking D1 to D2, then since ρ(xj , yj , zj , wj) ≈ 0, it must take
{x1, y1} to either {x2, y2} or {z2, w2}. After composing with an element of the
central subgroup Z/2 ⊕ Z/2, we may assume that

{x1, y1} 	→ {x2, y2} and that z1 	→ z2, w1 	→ w2.

This shows that we can choose the group element to belong to a compact subgroup
of PGL2, which proves that the action is weakly proper. �

This, together with Theorem 2.18 and Example 2.8, completes the proof of
Lemma 3.4. �
Proof of Lemma 3.5. In the real case, a completely analogous argument shows that

the correspondence D 	→ J(D) gives rise to an injective map from M4(R) into R̂.

However the image of M4 is no longer the entire R̂. In fact the image is precisely
equal to the closed interval 1 ≤ J ≤ ∞. To see this, consider the correspondence
ρ 	→ J(ρ) of equation (5) on the interval 0 < ρ < 1. Evidently J(ρ) tends to infinity
as ρ tends to zero or one. It follows from equation (6) that this correspondence
must satisfy the identity

J(ρ) = J(1 − ρ),

so that the point ρ = 1/2 with J(1/2) = 1 must be a local extremum. Using the
other symmetry relation, we see that the behavior in the intervals −∞ < ρ < 0 and
1 < ρ < ∞ is completely analogous. Since this rational function has degree six, it
is at most six-to-one. It follows that it must map each of the six intervals

[−∞, −1] , [−1, 0] , [0, 1/2] , [1/2, 1] , [1, 2] , and [2, +∞]

homeomorphically onto [1, +∞].
The rest of the proof of Lemma 3.5 can easily be completed, since the arguments

are almost the same as those in the complex case. �
Next we must study the case n > 4.

Lemma 3.12. If D =
∑

j mj〈pj〉 is a divisor of degree n > 4 with

max
j

{mj} ≥ n/2 ,

then the quotient space Mn is not locally Hausdorff at the image point π(D).

For the rest of this section, the real and complex cases are completely analogous,
so it will suffice to concentrate on the complex case.
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Proof of Lemma 3.12. First consider the special case of divisors of even degree n =
2h ≥ 6, with maxj{mj} = h ≥ 3. Identifying P1 with C ∪ {∞}, let D1 and D2 be
of the form

Dj = D′
j + h〈∞〉,

where both D′
1 and D′

2 are divisors of degree h = n/2 with support consisting of
h distinct points in the finite plane, and where h〈∞〉 is the divisor consisting only
of the point ∞ with multiplicity h. Thus the support |Dj | has h + 1 ≥ 4 elements.
Since 4 > dim(G) = 3, we can always choose two such divisors D1 and D2 which
do not belong to the same G-orbit.

Now consider the projective involution gr(z) = r2/z, where r is a large real
number. Note that gr maps the neighborhood |z| < r of zero onto the neighborhood
|z| > r of infinity. Then the two divisors

D′
1 + gr(D′

2) and gr(D′
1) + D′

2

belong to the same G-orbit. Yet by choosing r sufficiently large, we can place the
first arbitrarily close to D1 and the second arbitrarily close to D2. This proves that

the quotient M2h = D̂ fs
2h/G is not a Hausdorff space. In fact, since D2 can be

arbitrarily close to D1, it follows that M2h is not even locally Hausdorff at ((D1)).
Furthermore, since any divisor with maxj{mj} > h can be approximated by one
with maxj{mj} = h, it follows that M2h is not locally Hausdorff at any point with
maxj{mj} ≥ h.

The proof for n = 2h + 1 ≥ 5 is similar. For this case we take

D1 = D′
1 + (h + 1)〈∞〉 and D2 = D′

2 + h〈∞〉,
where D′

1 has degree h ≥ 2, but D′
2 has degree h + 1 ≥ 3. It then follows as

above that M2h+1 is not Hausdorff. Again D1 and D2 can be arbitrarily close
to each other: Starting with any D1, it is only necessary to replace the point of
multiplicity h+1 for D1 by a point of multiplicity h, together with a nearby point of
multiplicity one, in order to obtain an appropriate D2. It follows easily that M2h+1

is not locally Hausdorff at any point with maxj{mj} ≥ h + 1. This completes the
proof of Lemma 3.12. �

The proof of Theorem 3.2 will also require a study of group elements which are
“close to infinity” in G (or in other words, outside of a large compact subset of
G). Choose some metric on P1, for example the standard spherical metric, and let
Nε(p) be the open ε-neighborhood of p.

Lemma 3.13 (Distortion Lemma for automorphisms of P1). Given any ε > 0,
there exists a compact set K = Kε ⊂ G with the following property. For any
g ∈ G�K, there exist two (not necessarily distinct) open ε-disks N+ = Nε(p)
and N− = Nε(q) such that

g
(
N+

)
∪ N− = P1.

It follows that g maps every point outside of N+ into N−. (Roughly speaking,
we can think of N+ as a repelling disk and N− as an attracting disk.)

Proof of Lemma 3.13. First consider the corresponding statement for the group of
diagonal automorphisms

gκ(x : y) = (κx : y), with κ ∈ C�{0},
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g

N+ = N
ε
(p)

N - = N
ε
(q)

Figure 8. Illustrating the Distortion Lemma. The two rectangles
represent copies of P1. The image g

(
N+

)
covers everything outside

of the dotted circle. Hence everything outside of N+ must map
into N−.

or in affine coordinates with z = x/y, z 	→ κz. Interchanging the coordinates x
and y if necessary, we may assume that |κ| ≥ 1. The condition that gκ lies outside
of a large compact set then means that |κ| is large (as illustrated in Figure 8). The
proof can then easily be completed, choosing p = 0 and q = ∞. (For example, if
κ = 1/ε2, then gκ maps the small disk |z| < ε onto the large disk |z| < 1/ε.)

The proof for the group of projective transformations G then follows immedi-
ately, using Lemma 2.30. �
Proof of Theorem 3.2. We will first show that Mn is a T1-space. This means that

every point of Mn is a closed set, or equivalently that every G-orbit in D̂ fs
n is a

closed set. In other words, we must show that every limit point of such an orbit

within the larger space D̂n either belongs to the orbit or else has infinite stabilizer,

so that it is outside of D̂ fs
n . (Compare the proof of Lemma 6.2 for a different

argument.)

Given any D ∈ D̂ fs
n , let D′ be a divisor which can be expressed as the limit

D′ = lim
j→∞

gj(D)

of points gj(D) in the G-orbit ((D)). If D′ itself does not belong to this G-orbit,
then we will show that the support |D′| can have only one or two elements, so that

D′ �∈ D̂ fs
n .

Choose ε > 0 small enough so that any two points of |D| have distance ≥ 2 ε, or
in other words so that any Nε(p) can contain at most one point of |D|. The group
elements gj must tend to infinity in G (that is, they must eventually lie outside of
any compact subset), since otherwise the limit point would be in the G-orbit ((D)).
Hence we can choose corresponding εj tending to zero. For each j with εj < ε, we
can choose εj-disks N+

j and N−
j as in the Distortion Lemma 3.13, and it follows

that all but at most one point of |gj(D)| must lie in the disk N−
j . Passing to the

limit, it follows that |D′| can have at most two points, as asserted.
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Thus it follows that ((D)) is closed as a subset of D̂ fs
n , and hence that π(D) is

closed as a subset of Mn. Therefore the quotient Mn = D̂ fs/G is a T1-space.
Finishing the proof of Theorem 3.2 will require one further preliminary step.

Definition 3.14. For any n, let Vn be the open set consisting of all divisors in D̂n

such that

max
j

{mj} < n/2.

(For n ≥ 5, Vn is just the set we have called MHaus
n .)

Proposition 3.15. For any n, the action of G = PGL2 on this open set Vn ⊂ D̂n

is proper.

Proof. Consider two divisors D1 , D2 ∈ Vn. We must construct neighborhoods
U1 of D1 and U2 of D2 and a compact set K ⊂ G so that any g ∈ G which maps
a point D′

1 ∈ U1 to a point D′
2 ∈ U2 must belong to K.

Let ε be small enough so that any two distinct points of |D�| have distance

(8) dist(p, p′) > 4 ε

from each other, both for � = 1 and for � = 2. Thus no ball of radius ε can intersect
more than one of the ε balls around the points of |D1| and |D2|.

Let Kε be a corresponding compact subset of G, as described in the Distortion

Lemma 3.13. Let Nε(D�) ⊂ D̂n be the neighborhood of D� consisting of all D′
� ∈ D̂n

such that, for each p ∈ |D�|, the number of points of D′
� in Nε(p) counted with

multiplicity, is precisely equal to the multiplicity of p as a point of D�. (In other
words, a point p of multiplicity mj for D� is allowed to split into as many as
mj distinct points in D′

�, but these points are not allowed to move out of the
ε-neighborhood of p. Compare Figure 9.)

We must prove that any g ∈ G which maps some D′
1 ∈ Nε(D1) to a D′

2 ∈ Nε(D2)
must belong to the compact set Kε. Suppose to the contrary that g �∈ Kε. Then
we could construct corresponding ε-balls N+ = Nε(p0) and N− = Nε(q0), so that
g(N+)∪N− = P1. Since any ε-ball intersects at most one of the Nε(p) with p ∈ |D|,
the ball N+ must contain fewer than n/2 points of D′

1, counted with multiplicity.
Hence its complement must contain more than n/2 such points. Since g maps the
complement of N+ into N−, this means that N− contains more than n/2 points
of D′

�, counted with multiplicity. But this is impossible since N− can intersect at
most one of the ε-balls around points of |D2|. This contradiction completes the
proof of Proposition 3.15. �

Since proper action implies Hausdorff quotient, it also completes the proof of
Theorem 3.2. �

Proof of Theorem 3.3 (Compactness). Consider the set Vn ⊂ D̂n consisting of di-
visors with maximum multiplicity strictly less than n/2. (Compare Definition 3.14.)
We will prove that the set Vn is compact if and only if n is odd.

First consider the case of even degree n = 2k ≥ 4. Let D ∈ Dk be some
divisor consisting of k distinct nonzero complex numbers. (Here we are identifying
P1 with C ∪ {∞}.) Setting gλ(z) = λz, consider the sequence of divisors Dj =
gj(D) + g1/j(D), which converges to k〈∞〉 + k〈0〉 as j → ∞. We can spread out
the last k points by passing to the sequence gj(Dj), which converges to k〈∞〉+D,
or we can bring the first k points away from infinity by passing to the sequence
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4
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2

Nε(p)

g

Nε(q)

Figure 9. Illustrating the proof of 3.15. The top frame illustrates
a typical divisor D1 ∈ V9, showing the ε-balls around points of
multiplicity 4, 2, and 3. The next two frames illustrate a divisor
D′

1 ∈ Nε(D1), and the bottom frame illustrates a divisor D′
2 whose

points are contained in ε-balls around the points of D2. Assuming
that g �∈ Kε maps D′

1 to D′
2, the last two frames show associated

balls N+ = Nε(p) and N− = Nε(q) such that the five points
outside of N+ must all map into N−, yielding a contradiction.

g1/j(Dj) which converges to D + k〈0〉. However no matter what automorphism we
apply to this sequence, there will always be at least one point with multiplicity k
or larger. Therefore, the corresponding sequence in Vn has no limit in Vn, which
proves noncompactness.

For the proof in the odd case we will need the following.

Lemma 3.16. If n = 2k − 1 is odd, then there exists a compact set Kn ⊂ D̂n with

the following property. A divisor D ∈ D̂n belongs to Vn if and only if its orbit

((D)) ⊂ D̂n intersects the set Kn.

Proof. It will be convenient to use the standard spherical metric 2 |dz|
1+|z|2 , so that the

distance between any two antipodal points is π. For any set S ⊂ P1 = C∪{∞}, let
0 ≤ diam(S) ≤ π denote the diameter. For any divisor D, define the weight of a
subset S ⊂ |D| to be the sum of the multiplicities of the points of S. Let Kn be the
set of all divisors D of degree n which are spread out so that any subset S ⊂ |D| of
weight ≥ k, has diameter Diam(S) ≥ π/4.

Clearly, Kn is a closed subset of D̂n and, hence, is compact. We must show
that the orbit ((D)) of a divisor intersects Kn if and only if D contains no point of
multiplicity ≥ k. Certainly if D does contain a point of multiplicity ≥ k, then the
same is true for every divisor in the orbit ((D)), so ((D)) must be disjoint from Kn.
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Let Θ(D) be the minimum of Diam(S) over all subsets S ⊂ |D| which have

weight ≥ k. Then Θ is a continuous function from D̂n to R, so it must take a
maximum value on the compact set ((D)). We claim that this maximum must be
either zero (when |D| contains a point of multiplicity k or more) or else ≥ π/4 (when
every point has multiplicity less than k). Suppose to the contrary that Θ takes a
maximum of Θ0 which is strictly between zero and π/4 at some divisor D0 ∈ ((D)).
This means that |D0| has one or more subsets of weight ≥ k with diameter Θ0, and
all others with larger diameter. Since the intersection of two subsets of weight ≥ k
must be nonempty, it follows that the union of these smallest sets of weight ≥ k
must have diameter ≤ 2Θ0 < π/2. Hence this union is strictly contained in the
hemisphere centered at any one of its points. After rotating the Riemann sphere,
we may assume that this hemisphere is centered at zero. Using affine coordinates,
this corresponds to the unit disk |z| < 1.

Given any compact subset of the open unit disk, we can choose λ so that the
map gλ(z) = λz will strictly increase the spherical distance between any two points
of this compact set. In fact we will show that the map gλ from the disk |z| < λ
onto the unit disk strictly increases spherical distances. To prove this, note that
the inverse map g1/λ multiplies infinitesimal distances near w by a factor of

λ
(
1 + |w|2

)
1 + |λw|2 .

This expression is strictly less than one for |w| < 1, as one can check by multiplying
the inequality λ|w2| < 1 by 1−λ and then rearranging terms. It follows that every
geodesic segment maps to a strictly shorter curve under g1/λ, and the conclusion
follows.

Thus every one of our purportedly smallest sets |D0| will map to a strictly larger
set. But this contradicts the assumption that Θ0 is the maximum. (Note that
any other set of weight ≥ k, with diameter strictly greater than Θ0, will still have
diameter greater than Θ0 after a small perturbation.) This contradiction completes
the proof of Lemma 3.16. �

We can now complete the proof of Theorem 3.3. Since the set Kn ⊂ D̂n is
compact, its image in the moduli space Mn is also compact. Evidently, this image
is precisely the required set Vn. �

Remark 3.17 (Trivial stabilizers). For n ≥ 5, a generic divisor D ∈ Dn has trivial
stabilizer. (See Theorem 9.3 for a similar statement for curves in P2.) To see
this, let us temporarily work with the space Dord

n consisting of ordered n-tuples
→
p = (p1, . . . ,pn) of distinct points in P1. Every such

→
p determines a corresponding

divisor

D(
→
p) = 〈p1〉 + · · · + 〈pn〉,

and every four-element subset Σ = {j1, . . . , j4} ⊂ {1, . . . , n} determines a corre-
sponding degree four divisor

D(
→
p, Σ) = 〈pj1〉 + · · · + 〈pj4〉.

Let J(
→
p, Σ) ∈ C be the shape invariant associated with this divisor. Then for each

Σ �= Σ′ the equation

J(
→
p, Σ) = J(

→
p, Σ′)
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determines a proper algebraic subvariety of Dord
n . The complement of the union of

these finitely many subvarieties is a dense open subset of Dord
n ; and any element

in this dense open set corresponds to a divisor 〈p1〉 + · · · + 〈pn〉 which has trivial

stabilizer. This follows since the stabilizer of D(
→
p) consists of all permutations of

{1, . . . , n} which map D(
→
p) to itself. But any nontrivial permutation must clearly

map some four point subset to a different four point subset.

Remark 3.18 (Comparison with the moduli space M0,n). Let M0,n be the classical
moduli space consisting of closed15 Riemann surfaces of genus zero which are pro-
vided with an ordered list of n ≥ 3 distinct points; where two such marked Riemann
surfaces are identified if there is a conformal isomorphism taking one to the other.

We can unorder these n points by taking the quotient Mun
0,n = M0,n/Sn under

the action of Sn, the symmetric group of permutations of the ordered list. This
quotient can be identified with an open subset

Dn/G ⊂ D̂ fs
n /G = Mn(C)

of our moduli space for divisors. Here Dn ⊂ D̂n is the set of divisors with with
maxj{mj} = 1, so that its n points are all distinct.

Following Deligne, Mumford, Knudsen, and many others, the space M0,n has
a very interesting compactification (see Remark 3.20). We can easily apply their
construction to the unordered case. Let F stand for either R or C, so that we can
describe the real and complex cases in parallel.

Definition 3.19. By an (unordered) tree-of-marked-spheres (or circles in the
real case), we will mean a connected space T which is the union S1 ∪ · · · ∪ Sk of
one or more copies Sj of the projective line P1(F), together with a finite subset of
T which we will call the set of marked points . We require that:

(1) each marked point belongs to only one of the Sj ;
(2) each nonempty intersection Si∩Sj with i �= j must consist of a single point

(called a nodal point), which does not belong to any other Sk;
(3) each Sj must contain at least three points16 which are either marked or

nodal; and
(4) the abstract graph with one vertex for each Sj and one edge for each nodal

point should be a tree; that is, it must be connected and acyclic.

(Compare Figure 10.) Two such trees-of-marked-spheres are isomorphic if there
is a homeomorphism between the underlying spaces T and T′ which preserves the
marked points and which is fractional linear on each Sj . By definition, the degree
n ≥ 3 of a tree-of-marked-spheres is the total number of marked points.

By definition, each point of the compactification M un

0,n corresponds to a unique
isomorphism class of trees-of-marked-spheres of degree n. (Compare [Ar1, Ar2].) In
the complex case, we can think of this construction intuitively as follows. Starting
with a tree-of-marked-spheres T, if we remove a small round neighborhood of each
intersection point and glue the resulting boundary circles together, then we obtain
a Riemann surface of genus zero with n marked points, corresponding to a nearby
element of Mun

0,n. Conversely, suppose that we start from a surface of genus zero

15By definition, a Riemann surface is closed if it is compact without boundary.
16This is Mumford’s stability condition. In the complex case, it means that Sj with these

points removed must be a hyperbolic Riemann surface.
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Figure 10. Showing a tree-of-marked-spheres of degree 15. Each
red dot represents a marked point, and each black dot represents
a nodal point. (For the count of 15, it is assumed that all red dots
are visible in the figure.)

with n ≥ 3 punctures, provided with its natural hyperbolic metric. If this surface
has one or more very short closed geodesics, then we can obtain a nearby tree-of-
marked-surfaces of genus zero, by replacing each such geodesic by a single point.

There is a many-valued map from M un

0,n to Mn. More precisely, for each point

of M un

0,n, represented as a tree of k spheres, there are k associated points of Mn,
defined as follows. (Compare Figure 11.) For each sphere Sj ⊂ T, there is a unique
continuous retraction rj : T → Sj which maps every point of Sj to itself, and
which maps each Si with i �= j to the closest nodal point of Sj . The collection of
all marked points of T corresponds under rj to a divisor Dj of degree n on the copy
Sj of P1, and hence on the standard P1.

Note that the non-Hausdorff nature of D̂n is closely related to this construction.
In fact, whenever the spheres Sj and Sk have an intersection point, it is not hard

to see that the corresponding divisors Dj and Dk in D̂n represent points of Mn

which do not have disjoint neighborhoods. For example, our proof in Lemma 3.12
that M5 and M6 are not Hausdorff makes use precisely of the divisors illustrated
in Figure 11. (However, in the degree four case, the corresponding divisors D1 and
D2 actually represent the same point of M4, which is a Hausdorff space.)

It is not too difficult to prove that M un
0,n can be identified with Mn for the cases

n = 3 and n = 4, and with MHaus
n for n = 5. Similarly MHaus

6 can be identified with

an open subset of M un

0,6. However there seems to be no such direct relationship
when n ≥ 7.

Remark 3.20 (The compactification of M0,n). We can learn more about Mun

0,n by

noting that it is equal to the quotient of the compactification M0,n of the moduli
space for ordered n-tuples by the action of the symmetric group Sn. This compact-
ification M0,n is a beautiful object which was introduced by Knudsen [Knu], based
on ideas of Grothendieck, Deligne, and Mumford. (See Fulton and MacPherson,
[FMcP] for a generalization.) It has been studied by many authors and is well
understood.
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Figure 11. The top row represents three examples of trees-of-
marked-spheres, corresponding to points in the compactification
M un

0,n for n equal to 4, 5, and 6, respectively. Corresponding to
each sphere Sj in T, there is a canonical retraction map from T to
Sj , indicated by an arrow in the figure, which maps the n marked

points of T to a divisor Dj ∈ D̂n. Here each former intersection
point is to be weighted by the number of marked points which map
to it. These image divisors are shown in the bottom row. (Here a
point of multiplicity two or three is indicated schematically by a
cluster of two or three overlapping dots.)

We can work over either the real numbers or the complex numbers. The con-
struction of this compactification in terms of trees-of-marked-spheres (or marked

circles in the real case) is just like the description of Mun
0,n as given above, except

that the n marked points must now be given n distinct labels, using for example
the integers between 1 and n.

First consider the complex case. (In Mumford’s terminology, such a tree-of-
labeled-spheres is called a “stable curve of genus zero”. Compare [Mu, p.228].)
Knudsen showed that the compactification M0,n(C) can be constructed out of a
smooth variety by iterated blowups, and hence that it is a smooth complex vari-
ety. (For an alternative proof, using cross-ratios to embed M0,n(C) smoothly in
a product of many spheres, see [MS1, Appendix D].) It follows immediately that
M0,n(R) is also a smooth manifold, since it is just the fixed point set for complex
conjugation on the complex manifold.

The topology of M0,n(C) has been studied by Keel [Ke]. He showed for example
that these manifolds are simply connected, with homology only in even dimensions,
and with no torsion. For the simplest cases, M0,3 is a point, M0,4 is a copy of

the sphere P1, and M0,5 is the connected sum of one copy of P2 with its standard
orientation, together with four copies with reversed orientation.

The topology of M0,n(R) has been studied by Etingof, Henriques, Kamnitzer,
and Rains [EHKR], who showed for example that there is an isomorphism of mod 2
cohomology rings of the form

Hk
(
M0,n(R); Z/2

) ∼= H2k
(
M0,n(C); Z/2

)
.
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Figure 12. Illustrating the map M0,2+1 × M0,3+1 ↪→ M0,5 of
equation (9)

The manifold M0,n(R) is nonorientable with a nonabelian fundamental group for
all n > 4.

Consider a partition of the index set {1, 2, . . . , n} into two disjoint subsets I
and J , where I has p ≥ 2 elements and J has q ≥ 2 elements. In either the real or
the complex case, there is an associated embedding

(9) M0, p+1 ×M0, q+1 ↪→ M0,n,

where n = p+q. If we restrict this map to the dense open subset M0,p+1×M0,q+1,
then the associated trees-of-labeled-spheres can be described quite explicitly as
illustrated in Figure 12. Label the first sphere by the elements of I together with
one additional element, ∗. Similarly, label the second sphere by the elements of J
together with one additional element, ∗′. Now construct the third tree by gluing ∗
onto ∗′.

Every element of the ideal boundary M0,n�M0,n is contained in the image of
at least one such embedding (9). Furthermore, using mod 2 coefficients in the real
case, every homology group of M0,n, except in the top dimension, is generated by
the classes which correspond to these embedded submanifolds.

As a simplest example, there are three distinct ways of partitioning {1, 2, 3, 4}
into subsets with two elements. Correspondingly, in both the real and complex
cases, there are three distinct ways of embedding the point M0,3 ×M0,3 into the

circle or 2-sphere M0,4. The complement of this set of three points is the dense
open subset M0,4.

Example 3.21 (The hyperbolic dodecahedron M0,5(R)). There are ten ways of
partitioning {1, 2, 3, 4, 5} into subsets of orders two and three, and correspondingly
ten ways of embedding M0,3 × M0,4

∼= M0,4 into M0,5. In the real case, the
ten embedded circles divide this surface into 12 pentagons, which represent the
12 connected components of M0,5(R). (Compare Figure 13.) This surface can be
given a hyperbolic metric, so that these circles are geodesics. Like the standard
dodecahedron in Euclidean 3-space, the surface admits a group of 120 isometries
such that any isometry from one pentagon to another extends uniquely to a global
isometry. However, the two isometry groups are not isomorphic: one has a direct
summand of order two generated by the antipodal map, while the other is the
symmetric group S5. Like the standard dodecahedron, M0,5 has 12 faces and 30
edges; but it has only 15 vertices, so that the Euler characteristic is 12− 30 + 15 =
−3. Just as in the standard dodecahedron, every face has a unique opposite face.
However, unlike the standard dodecahedron, it cannot admit any fixed point free
involution, since its Euler characteristic is odd.
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Figure 13. On the left, the universal covering space of M0,5(R)
yields a tessellation of the hyperbolic plane by regular pentagons.
On the right, regions with the same label map to a common pen-
tagon in M0,5(R). (It is very hard to visualize the quotient space

M0,5(R) in which pentagons with the same label have been iden-
tified.)

Example 3.22 (The space M0,6(R)). This is an interesting example for 3-manifold
theory. This manifold is highly symmetric, with a group of 720 automorphisms. (In
fact any M0,n with n ≥ 5 has the full symmetric group on n elements as a group
of automorphisms.)

The ten partitions of {1, 2, 3, 4, 5, 6} into two subsets with three elements each
yield ten embeddings of the torus M0,4 × M0,4 into M0,6. If we remove these
ten tori, then the remainder M can be given the structure of a complete hyper-
bolic manifold of finite volume, as described in Figure 14. (See http://math.

stonybrook.edu/~jack/scgp18.pdf for further details.) This is an example of a
JSJ-decomposition, as first introduced by Jaco and Shalen [JS] and by Johanssen
[J]. See Figure 15 for a cartoon of the resulting 3-manifold.

Using this decomposition, it is not hard to check that the fundamental group
π1

(
M0,6(R)

)
maps onto a free group on ten generators. This fundamental group

also contains copies of the abelian group Z ⊕ Z corresponding to the various tori.
To see this, first note that a topological manifold homeomorphic to M0,6 can be
constructed from the hyperbolic manifold M by cutting off an open neighborhood
Nj of each cusp, to obtain a submanifold M ′ with the same homotopy type, and
then pasting the resulting boundary tori together in pairs.

For each torus Tj = ∂Nj , the fundamental group π1(Tj) ∼= π1(Nj) injects iso-

morphically into π1(M). To see this, note that the universal covering space M̃
(isomorphic to hyperbolic 3-space) has the property that any subset of diameter δ
can be shrunk to a a point without moving any point further than δ. Any closed
loop in Nj can be deformed within Nj towards the corresponding cusp point so as
to have arbitrarily small length L, and hence so as to have diameter less than its
distance from Tj . If such a loop is contractible within M , then it can be lifted to

http://math.stonybrook.edu/~jack/scgp18.pdf
http://math.stonybrook.edu/~jack/scgp18.pdf


208 ARACELI BONIFANT AND JOHN MILNOR

Figure 14. Each of the 60 3-cells of M0,6(R) is bounded by six
pentagons and three squares. (The 90 squares fit together in ten
groups of nine to form ten tori.) If we place this cell in hyperbolic 3-
space and then stretch the three squares out to points on the circle
at infinity, then we can obtain a convex hyperbolic polyhedron with
three ideal vertices at infinity together with two finite vertices, and
with all dihedral angles equal to 90◦. The resulting 60 polyhedra
can then be glued together to form a hyperbolic 3-manifold M with
20 infinite cusps.

a closed curve of length L in the universal covering space, which can be contracted
within a small neighborhood. It follows that the original curve must be contractible
within Nj , as required.

Now if we form a closed manifold M ′′ from M ′ by gluing pairs of boundary tori
together, then it follows by iterated use of the HNN theorem17 that π1(M

′) injects
into π1(M

′′). Therefore each π1(Tj) injects into π1(M
′′) ∼= π1(M0,6).

4. Curves (or 1-cycles) in P2
and their moduli space

This section will be an outline of basic definitions and notations for curves or
1-cycles of arbitrary degree n. (See §5 for a more detailed discussion of the degree
three case, and see §6 and §7 for higher degrees.)

Let F be either R or C. It will be convenient to define an irreducible curve of
degree n ≥ 1 over F as an equivalence class of irreducible homogeneous polyno-
mials Φ(x, y, z) of degree n with coefficients in F, where two such polynomials are
equivalent if one is a nonzero constant multiple of the other. In the complex case

17See [HNN], [Ser2]. This is a purely group theoretic result with the following topological
consequence: Let K be a cell complex with two disjoint subcomplexes and an isomorphism f
between them, let K′ = K/f be the quotient complex in which these subcomplexes are glued
together. If the fundamental groups of both subcomplexes inject into π1(K), then the fundamental
group of the image subcomplex injects into π1(K′).
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Figure 15. A cartoon of the 3-manifold M0,6(R), which has an
automorphism group of order 720. If we cut along the ten tori
(represented by short transverse line segments), then the remainder
can be given the structure of a complete hyperbolic manifold with
20 infinite cusps.

it follows from the Hilbert Nullstellensatz that two irreducible curves are equal if
and only if they have the same zero locus

{(x : y : z) ∈ P2(C); Φ(x, y, z) = 0}.
However, in the real case, the analogous zero locus in P2(R) is no longer a complete
invariant. As an example, we will consider the equivalence classes of x2 + y2 + a z2

and x2 + y2 + b z2 to be distinct curves if 0 < a < b, even though the corresponding
zero loci in P2(R) are both empty. In such cases, it is necessary to look at the
corresponding complex zero locus in order to distinguish between two different
irreducible real curves.

More generally, the term curve will be used for any union of finitely many
distinct irreducible curves. The notation Cn = Cn(F) will be used for the space of
all curves of total degree n in P2(F). However, this space of curves is not compact.
For example, the ellipse x2 + ay2 = a converges, as a → 0, to the locus x2 = 0,
which we can think of as the line x = 0 counted twice. To allow for such degenerate
limits, we can proceed as follows.

Definition 4.1. An effective (algebraic) 1-cycle of degree n over F is a formal
sum

C = m1 · C1 + · · · + mk · Ck,
where the Cj are distinct irreducible curves defined over F, and where the multi-
plicities mj are strictly positive integer coefficients with

n =
k∑

j=1

mj · degree(Cj).

The notation Ĉn will be used for the space of all effective 1-cycles.
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The vector space consisting of all polynomials Φ : F3 → F which are homogeneous
of degree n has a basis consisting of the

(
n+2
2

)
monomials xiyjzk with i+ j +k = n.

Each such Φ factors as a product of powers Φ
mj

j of irreducible polynomials, which
are uniquely defined up to a nonzero constant factor, and hence corresponds to a
unique effective 1-cycle over F. This proves the following.

Lemma 4.2. The space Ĉn(F) consisting of all effective 1-cycles of degree n can
be given the structure of a projective space of dimension(

n + 2

2

)
− 1 =

n(n + 3)

2

over F.

(This space Ĉn is known as the Chow variety for 1-cycles of degree n. Compare
[Harr, p. 272].) The disjoint union

{0} � Ĉ1 � Ĉ2 � Ĉ3 � · · ·

of the Ĉn can be described as the free additive semigroup with one generator for
each irreducible curve over F.

For any 1-cycle C =
∑

mj · Cj over F, the zero set

|C| = |C|F =
{
(x : y : z) ∈ P2(F) ; Φ(x, y, z) = 0

}
= |C1| ∪ · · · ∪ |Ck| ⊂ P2(F)

will be called the support of C. Note that this definition ignores multiplicities. In
the real case, it is also useful to consider the complex support |C|C ⊂ P2(C), which
provides more information.

Thus a curve is just a 1-cycle

C = C1 + · · · + Ck,

where the Cj are distinct irreducible curves, and where all of the multiplicities are

+1. The space Cn of curves is a dense open subset of the projective space Ĉn. In
the complex case, a curve is uniquely determined by its support, so that there is
no need to distinguish between C and |C|. But for 1-cycles or for real curves, it is
important to make the distinction.

Let G = PGL3(F) be the eight-dimensional Lie group consisting of all projective
automorphisms of the projective plane P2 = P2(F), as discussed in Remark 2.29.
Each such projective automorphism acts18 on the space of curves in P2, and hence

acts on the space Ĉn of effective 1-cycles of degree n. The notation ((C)) ⊂ Ĉn will
be used for the orbit of C under the action of G.

Definition 4.3. The subgroup GC ⊂ G, consisting of all automorphisms g ∈ G
which map C to itself, is called the stabilizer of C. In the case of a smooth
complex curve of degree n > 1, it can be identified with the group of all conformal
automorphisms of C which extend to projective automorphisms of P2. (Here the
condition n > 1 is needed to guarantee that there is at most one such extension.)

18If C is defined by the equation Φ(x : y : z) = 0, then g(C) is defined by

Φ ◦ g−1(x : y : z) = 0.



GROUP ACTIONS, DIVISORS, AND PLANE CURVES 211

Definition 4.4. An algebraic set (or Zariski closed set) in a projective space

(such as in Ĉn) over F will mean any subset19 defined by finitely many homogeneous
polynomial equations with coefficients in F. Such a set is irreducible if it is not
the union of two proper algebraic subsets. (The term variety will also be used
for an irreducible algebraic set.) Any algebraic set can be expressed uniquely as a
union of finitely many maximal irreducible algebraic subsets, which are called its
irreducible components .

Remark 4.5. If the stabilizer GC is finite, then it is clearly an algebraic set. However,
if it is infinite, then it is noncompact, and hence cannot be described as an algebraic
subset of a projective space. However, it is still locally closed in the Zariski topology.
More explicitly, we can think of PGL3 as a Zariski open set in the projective space P8

consisting of lines through the origin in the space of 3×3 matrices. Its complement
in P8 is the Zariski closed subset corresponding to singular matrices. Now the
stabilizer of C is locally closed, since it can be described as the intersection of the
open set PGL3 with a closed set described by polynomial equations in the entries
aij of the matrices.

It follows that Gc is either a finite group or a Lie group with finitely many
connected components. The distinction between these two possibilities is of funda-
mental importance. Note that a 1-cycle C has infinite stabilizer if and only if its

G-orbit ((C)) ⊂ Ĉn has dimension strictly less than dim(G) = 8. In fact there is a

natural fibration with projection map g 	→ g(C) from G to the subset ((C)) ⊂ Ĉn

with fiber GC . It follows that

(10) dim(GC) + dim ((C)) = dim(G),

where dim(G) = 8 in our case.

Definition 4.6. Let Wn be the subset of Ĉn consisting of all 1-cycles with infinite
stabilizer. (Compare §8.) We will be particularly concerned with the complemen-
tary set

Ĉ
fs
n = Ĉn�Wn,

consisting of 1-cycles with finite stabilizer . The quotient space

Mn = Mn(F) = Ĉ
fs
n /G

consisting of all projective equivalence classes of such 1-cycles will be called the
moduli space for 1-cycles of degree n over C. Thus each element ((C)) ∈ Mn is

an equivalence class of effective 1-cycles in Ĉ fs
n , where two 1-cycles C and C′ are

equivalent if and only if g(C) = C′ for some g ∈ G, or in other words if and only if
they belong to the same G-orbit in the space of 1-cycles.

To begin the discussion, note that Wn is a closed subset of Ĉn, or equivalently

that its complement Ĉ fs
n is an open set. In fact, for any C in Wn we can choose

a one-parameter subgroup of G which maps C to itself. Since the set of all one-
parameter subgroups of G is compact, it follows easily that Wn is also closed and
compact.

See §8 for a detailed study of Wn(C), including a proof that it is a (Zariski
closed) algebraic set.

19Caution. Here in the real case, we consider only real points of projective space. This contrasts
with our terminology for curves, where we implicitly use complex points to distinguish between
different real curves.
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Another important algebraic set, at least in the complex case, is the locus Rn

consisting of all reducible 1-cycles in Ĉn. By definition, a 1-cycle is reducible if
and only if it is in the image of the smooth map

(C, C′) 	→ C + C′ from Ĉk × Ĉn−k to Ĉn

for some 0 < k < n. In the complex case, each such image is an irreducible
variety. In fact the product of two irreducible varieties is irreducible (see for example
[Harr, Exercise 5.9]), while the image of an irreducible variety under projection is
algebraic ([Harr, Thm. 3.5]) and is clearly irreducible. It follows that the set Rn(C)
of all reducible 1-cycles is an algebraic set. However, in the real case the best one can
say is that Rn(R) is a closed semialgebraic set , defined by polynomial equalities
and inequalities.20 As an example, for any fixed b, the 1-cycle

x2 + 2bxy + y2 = 0

in P2(R) is reducible if and only if |b| ≥ 1, in which case it is equal to a union of two

(not necessarily distinct) lines y/x = −b ±
√

b2 − 1 through the origin (0 : 0 : 1) of
the affine plane. In the case |b| < 1, this 1-cycle is irreducible with real zero locus
|C|R equal to the empty set.

We will be particularly interested in the complementary open set

C irr
n = Ĉn�Rn ⊂ Cn

consisting of irreducible 1-cycles of degree n. Evidently, every irreducible 1-cycle
has all multiplicities equal to one, and hence is actually an irreducible curve.

Note that the dimension function n 	→ dim(Ĉn) = n(n + 3)/2 is convex, in the

sense that dim(Ĉn) > dim(Ĉk) + dim(Ĉn−k) for 0 < k < n. Here are a few values:

(11)
n 1 2 3 4 5 · · ·

dim(Ĉn) 2 5 9 14 20 · · · .

It follows by an easy computation that dim(Ĉn) = dim(Ĉn−1) + n + 1. Similarly, it
follows, for n ≥ 2, that the dimension of the space of reducible cycles is

dim(Rn) = dim(Ĉn−1) + 2 = dim(Ĉn) − n + 1.

In other words, the closed subset consisting of reducible cycles in Ĉn has codimen-
sion n − 1; provided that n ≥ 2.

5. Cubic curves

This section will study the moduli spaces M3(R) and M3(C) for curves of degree
three. At first we will not distinguish between the real and complex cases, since
the arguments are exactly the same for both.

Note that n = 3 is the first case where Mn �= ∅. In fact, for n < 3 it follows
easily from equation (10) and the values in (11) that there are no 1-cycles with
finite stabilizer; thus the corresponding moduli space Mn is empty. Similarly, since
dim(R3) = 7 < 8, it follows that:

Every reducible curve or 1-cycle of degree three has infinite stabi-
lizer. Thus, when studying M3, it suffices to work with the open
subset C irr

3 ⊂ C3 consisting of irreducible curves.

20See [BCR] for semialgebraic sets.
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Note that any irreducible curve of degree three (or more generally of odd degree) is
uniquely determined by its real support |C|R. In fact any curve of odd degree has
many real points, since every real line intersects it in at least one point. (However,
a reducible curve such as x(y2 + z2) = 0 is not necessarily determined by its real
support.)

The following statement is surely well known, although we do not know any
explicit reference that considers completely arbitrary cubic curves.

Proposition 5.1. If the field F is either C or R, then a cubic curve C ⊂ P2(F)
is irreducible if and only if it can be transformed, by an F-projective change of
coordinates, to the standard normal form, which can be written in affine coordinates
(x : y : 1) as

(12) y2 = x3 + a x + b.

Furthermore:

(a) This associated normal form is unique up to the transformation

(13) (a, b) 	→ (t4a, t6b),

where t can be any nonzero element of F.
(b) The curve defined by (12) has finite stabilizer if and only if (a, b) �= (0, 0).
(c) This reduction to normal form can be carried out uniformly over some

neighborhood U of any given C0. That is, there is a smooth map C 	→ gC
from U to PGL3(F) so that for any C ∈ U the automorphism gC : P2 → P2

maps C to a curve in standard normal form.

The proof will depend on the following.

Lemma 5.2. Every irreducible real or complex cubic curve contains at least one
flex point.

Proof of Lemma 5.2. In the complex case, we will make use of the classical Plücker
formulas, which compare an irreducible curve C ⊂ P2(C) with its dual curve C∗ ⊂
P2∗. (See for example [Nam] or [GH, p. 278].) Here P2∗ is the dual complex
projective plane consisting of all lines in P2, and C∗ ⊂ P2∗ is the subset consisting
of lines which are tangent to C.

Consider a curve C of degree n in P2 = P2(C) with no singularities other than
simple double points and cusps, and with only simple flex points and bitangent
lines (that is lines that are tangent at two different points). These conditions are
certainly satisfied in the cubic case. (In particular, a cubic curve can have no
bitangents.) Let

f be the number of flex points,
δ the number of double points,
κ the number of cusp points, and
b the number of bitangents,

and let f∗, δ∗, κ∗, and b∗ be the corresponding numbers for the dual curve. Then

f = κ∗ ⇐⇒ f∗ = κ and δ = b∗ ⇐⇒ δ∗ = b.

Furthermore, the degrees n∗ of C∗ and n of C are given by the formulas

n∗ = n(n − 1) − 2δ − 3κ,

n = n∗(n∗ − 1) − 2b − 3f.
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Now let us specialize to the case n = 3. Note that δ + κ ≤ 1, since otherwise it
would follow from the last equation and its dual that n∗ ≤ 2, hence n ≤ 2. Thus,
there are only three possible cases to consider.

In the smooth case δ = κ = 0 these equations yield

n∗ = 6 and n = 3 = 30 − 3f ; hence, there are f = 9 flex points.

If there is a simple double point so that δ = 1 and κ = 0, they yield

n∗ = 6 − 2 = 4 and 3 = 12 − 3f with f = 3 flex points.

In the case of a cusp point, with δ = 0 and κ = 1, they yield

n∗ = 6 − 3 = 3 and 3 = 6 − 3f with f = 1 flex point.

Thus the number of flex points of an irreducible complex cubic is always odd.
It follows that every irreducible real cubic must have at least one flex point. In

fact, the associated complex curve must also be irreducible. (Otherwise, it would
have a real factor.) Since the nonreal flex points occur in complex conjugate pairs,
there must be at least one real flex point, which proves Lemma 5.2. �

Outline Proof of Proposition 5.1 (compare [BM, §3]). Given a single flex point,
choose a projective transformation which moves this point to (0 : 1 : 0), and which
moves the tangent line to C at this point to the line z = 0. The tangent line has a
triple intersection point with the curve C at (0 : 1 : 0); hence, it can have no other
intersection point. This means that the defining equation for C must now consist
of an x3 term, plus other terms which are all divisible by z. Furthermore, it must
include an y2z term, since otherwise all of its partial derivatives at (0 : 1 : 0) would
be zero. After switching to affine coordinates (x : y : 1) and after multiplying x
and y by suitable constants, the equation will have the form

y2 = x3 + a x + b plus terms in x2, xy, and y.

However, the last two terms can be eliminated by adding a suitable p x+ q to the y
coordinate, and the x2 term can then be eliminated by adding a suitable constant
to the x coordinate. �

Using Proposition 5.1, it follows easily that the quotient space C irr
n /G of irre-

ducible curves modulo the action of G can be identified with the quotient of the
plane consisting of pairs (a, b) ∈ F2, by the equivalence relation

(14) (a, b) ∼ (t4a, t6b) for any t �= 0.

(Compare Figure 16.) This entire quotient space has a rather nasty topology, since
the center point a = b = 0, corresponding to the cusp curve

y2 = x3,

belongs to the closure of every other point. However, we will eliminate this problem
by considering only curves with finite stabilizer, and hence removing the center
point.

Theorem 5.3. If the field F is either R or C, then the moduli space

M3(F) = C
fs
3 (F)/G(F)

can be identified with the quotient of the punctured (a, b)-plane F2�{(0, 0)} by the
equivalence relation (14). In the real case this moduli space is real analytically dif-
feomorphic to the unit circle, with no ramification. In the complex case it is an
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Figure 16. Foliation of the real (a, b)-plane, with the origin re-
moved, by the connected components of the curves (a3 : b2) =
constant. More explicitly, each curve can be parametrized as
a = a0t

2 and b = b0t
3 with t > 0, where (a0, b0) can be any

point on one of these curves. The unit circle has a single trans-
verse intersection with each curve.

orbifold, biholomorphic to the 2-sphere consisting of all ratios (a3 : b2) ∈ P1(C),
but with three ramified points. In both cases there is just one improper point, cor-
responding to curves with a simple self-crossing singularity, where the action of G
is only weakly proper.

In fact it is easy to check that every orbit in R2�{(0, 0)} intersects the unit circle
a2 + b2 = 1 exactly once. Therefore, the moduli space M3(R) is real analytically
diffeomorphic to the unit circle. In the complex case, each orbit corresponds to a
fixed ratio (a3 : b2) ∈ P1(C). (Equivalently, this ratio is captured by the shape
invariant

J =
4a3

4a3 + 27b2
∈ Ĉ

of Remark 3.9.) Thus M3(C) is biholomorphic to the Riemann sphere P1(C) ∼= Ĉ.
(Compare Remark 2.24.) Here is an alternative description.

Lemma 5.4. The moduli space M3(C) for complex cubic curves is a Hausdorff
orbifold which is canonically isomorphic to the moduli space M4(C) for divisors of
degree four. In particular both spaces have three ramified points, one of which is
improper with index r = 2, the others having index r = 2 and r = 3, respectively.

Proof. Given four distinct points on the Riemann sphere, there is a unique 2-fold
covering curve, branched at these four points. In fact, if we place one of the four
points at infinity and let f(x) be the monic cubic polynomial with roots at the
three finite points, then the locus y2 = f(x) in the affine plane, or y2z = f(x, z) in
the projective plane, maps to P1 by the required branched covering map

(x : y : z) 	→ (x : z),
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branched at the four specified points. It follows from Proposition 5.1 that every
smooth cubic curve can be put in this form. Furthermore, as two of the four
points come together, the corresponding cubic curve will tend to a curve with a
simple double point. Any symmetry fixing the point at infinity will give rise to a
corresponding symmetry of the cubic curve, so that there is a precise correspondence
between ramified points for divisors of degree four and for curves of degree three.

However, this does not mean that the corresponding stabilizers are isomorphic.
We have seen that a generic divisor of degree four has stabilizer Z/2⊕Z/2. On the
other hand, the stabilizer of a generic complex cubic curve is nonabelian of order
18. (See the paragraph following Theorem 9.3.) For the two proper ramified points,
with ramification index two (or three), the order of the stabilizer is 8 (or 12) for
divisors, but 36 (or 54) for cubic curves.

Now consider the degenerate (improper) case where two points of the divisor
come together, or where the cubic curve acquires a self-crossing point. Then the sta-
bilizer has order two in the divisor case, and order six in the cubic curve case. (Com-
pare [BM, Figure 10], where the six symmetries of one real form of this curve are
generated by 120◦ rotations, and reflections on the vertical axis.) By Lemma 2.25,
it follows that the class of the complex cubic curve with a self-crossing point is not
even locally proper.

However, the action is weakly locally proper. We can write the singular curve in
standard normal form as

Φ(x, y) = x3 − 3x + 2 − y2 = 0,

with ∂Φ/∂x = ∂Φ/∂y = 0 at the singular point (1, 0), and with invariant

(a3 : b2) = (−27 : 4).

It follows from Proposition 5.1(c) that any curve which is close to this singular curve
can be reduced to standard normal form by an automorphism close to the identity.
Furthermore, if two such curves belong to the same G-orbit, then it follows easily
from Proposition 5.1(a) that we can transform one to the other by an automorphism
close to the identity. Thus the action is weakly proper, which completes the proof
of Lemma 5.4, and hence proves Theorem 5.3 in the complex case.

In the real case, we need only note that the curve with a self-crossing point, as
illustrated in Figure 18, has stabilizer generated by the reflection (x, y) 	→ (x, −y),
while every smooth curve has stabilizer of order six. (See the more detailed expo-
sition below.) Therefore, the action is not locally proper at this point. The proof
that it is weakly proper proceeds just as in the complex case. This completes the
proof of Theorem 5.3. �

The circle of real cubic curves. Although M3(C) is isomorphic to M4(C), the
real analogue M3(R) is quite different from M4(R). We have shown that the space
M3(R) of projective equivalence classes of cusp-free irreducible real cubic curves
is diffeomorphic to the unit circle. In fact each such curve-class has a unique
representative with equation of the form

(15) y2 = x3 + ax + b with a2 + b2 = 1.

However, this “unit circle” normal form seems somewhat arbitrary. For example, if
we used a circle of different radius, then we would get a quite different parametriza-
tion.
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Note that the natural map from M3(R) onto the real part of M3(C) is definitely
not one-to-one. In fact it is precisely two-to-one. Two real curves of the form
y2 = x3+ax+b and y2 = x3+ax−b with b �= 0 are not real projectively equivalent;
yet they have the same ratio (a3 : b2) and hence are complex projectively equivalent.

We know of two quite natural ways of mapping M3(R) homeomorphically (but
not diffeomorphically) onto the real projective line P1(R). One is given by repre-
senting each smooth curve-class by its unique Hesse normal form

(16) x3 + y3 + z3 = 3 k x y z,

with k �= 1. (Compare [BM, Theorem 6.3 and Figure 10].) This is very convenient,
since it displays the stabilizer as the group of permutations of the three coordinates,
with order six. It also shows that each smooth cubic curve C has a unique center
of symmetry in P2�|C| which is invariant under all projective automorphisms,
and which corresponds to the point (1 : 1 : 1) in Hesse normal form.21

The Hesse normal form works beautifully for smooth curve-classes. However,
the limits as k tends to +1 or ±∞ are badly behaved, and yield reducible curves.22

Another possible choice is the flex-slope normal form

(17) y2 = x3 + (s x + 1)2,

in affine23 coordinates, where s can be any real number. Here the two finite flex
points are located at (x, y) = (0, ±1), and s is equal to the slope dy/dx at the
upper flex point.

Lemma 5.5. For any irreducible real cubic curve C ⊂ P2(R), the following three
properties are equivalent24

(a) C is either smooth, or else smooth except at one isolated point.
(b) C contains three flex points.
(c) C is equivalent, under a real projective change of coordinates, to one and

only one curve F(s) in the flex-slope normal form.

Note that every curve in the form (17) has a flex point of slope s at (0, 1), as
well as a flex point of slope −s at (0, −1). In fact it follows easily from (17) that

y = ±(1 + s x) + O(x3) as x → 0,

so that the points (0, ±1) satisfy dy/dx = ±s and d2y/dx2 = 0.
See Figure 17 for some typical examples. Note that the first four curves in

this figure are connected, while the last three have two components (although one
component in Figure 17(ε) is extremely small). The first and last curves would be
much larger if drawn to scale: they have been shrunk to fit in the picture. If we
rescale by setting x = s2X and y = s3Y so that Y 2 = X3 + (X + 1/s3)2, then the
curve would converge to Y 2 = X3 + X2 as s → ±∞, with a self-crossing singular
point at X = Y = 0, as shown in Figure 18.

21Using the standard normal form, the center of symmetry c can be computed as follows. If m
is the midpoint of the two finite flex points, then the tangent lines at these two flex points intersect
at the point 2

3
m+ 1

3
c. (If a sequence of smooth cubics converges to an irreducible singular cubic,

one can check that the centers of symmetry converge to the singular point. Compare Figure
17(ε).)

22We could get around this and obtain the correct irreducible curve-class by taking the limit
of carefully rescaled curves.

23In homogeneous coordinates, the equation is y2z = x3 + z(s x+ z)2.
24Another equivalent condition is that the group of automorphisms is the nonabelian group of

order six.
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s = 1.7

(ε) s = 1.889 (ζ) s = 1.921 s = 2.4

(β) s = 0 (γ) s = 1.238 (δ) s = 1.817

Figure 17. Graphs of seven curves F(s) in flex-slope normal form,
so that the finite flex points are at (0, ±1). Here the slope s ranges
from −1.7 to +2.4. The tangent lines at the flex points are indi-
cated by dotted lines. The grid of points with an integer coordinate
is also shown. Note the isolated singular point which appears at
s = 1.88988 · · · and immediately expands to a circle. The figures
blow up as s → ±∞. (See Figure 18 for the limiting behavior.)
The five middle curves, labeled as (β) through (ζ), correspond to
the points with the same labels in Figure 19.

Figure 18. Although the flex-slope normal form blows up as s
tends to ±∞, a carefully rescaled version, with Y 2 = X3 + (X +
1/s3)2, tends to the illustrated curve, with a simple self-crossing
at the limit of the two finite flex points. This limit belongs to the
leaf α in Figure 19.

Proof of Lemma 5.5. The proof proceeds in three steps as follows.

Proof that (a) =⇒ (b). Every smooth real or complex cubic curve has a classical ad-
ditive group structure. Choosing a flex point as identity element (compare Lemma
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5.2), the flex points are the solutions to the equation 3x = 0. In the complex case
the group is isomorphic to R/Z⊕ R/Z with nine flex points; while in the real case
the group is isomorphic to either R/Z or R/Z× (Z/2), with a unique subgroup of
order three, and hence exactly three flex points. (Compare [BM, §5].)

There are just two real cubic curve-classes made up of singular curves. (Compare
Figure 17(ε) and Figure 18.) For a curve with an isolated singular point, we
must prove that there are still three flex points. Putting the curve in standard
normal form, with one flex point on the line at infinity, note that the slope dy/dx
of the upper branch y > 0 of this curve tends to +∞, both as y → 0 and as
x, y → +∞. Therefore, the slope must take on a minimum value, necessarily at
a flex point, somewhere on this branch. It follows easily that there are three flex
points altogether. �

(On the other hand, as we converge towards the rescaled curve of Figure 18, the
equation Y 2 = X3 + (X + 1/s3)2 converges to Y 2 = X3 + X2, and the two finite
flex points at (0, ±1/s3) converge to the singular point at the origin.)

Proof that (b) =⇒ (c). Now assume that there are three flex points. According to
Proposition 5.1, we can put the curve into standard normal form y2 = x3 + a x + b,
with one flex point on the line at infinity. Let (x1, ±y1) be the two finite flex points.
Translating the x coordinate appropriately and multiplying the y coordinate by a
constant, we can move the flex points to (0, ±1). The curve will then be defined
by a monic equation of the form y2 = p(x) so that

dp

dx
= 2y

dy

dx
and

d2p

dx2
= 2

(
dy

dx

)2

+ 2y
d2y

dx2
.

Now evaluate at (x, y) = (0, 1). Since y = 1, and dy/dx = s, and d2y/dx2 = 0,
it follows easily that p(x) = 1 + 2sx + s2x2 + x3, as required. Furthermore, since
the construction is uniquely specified, it follows that the parameter s is uniquely
determined by the curve-class. �

Proof that (c) =⇒ (a). Finally, assuming that the curve is in flex-slope normal
form (17), we must show that it is either smooth everywhere or else has just one iso-
lated point as singularity. It is not hard to show that any singularity must lie on the
x-axis, and correspond to a double or triple root of the polynomial x3 + (s x + 1)2.
Using the standard formula for the discriminant of a cubic polynomial (see for ex-
ample [BMac]), we can check that the discriminant of this polynomial is given by
Δ = 4s3 − 27. Therefore, the corresponding curve is singular if and only if

s = 3/
3
√

4 = 1.88988 · · · .

For this value of s, it is not hard to check that the associated polynomial factors as

x3 + (s x + 1)2 = (x + r)2(x + r/4), where r =
3
√

4,

with a double root at −r and a simple root at −r/4. It follows easily that
the associated curve has an isolated point at (−r, 0). Thus we have proved that
(a) ⇒ (b) ⇒ (c) ⇒ (a), completing the proof of Lemma 5.5. �

Remark 5.6. More generally, for any curve of the form

Y 2 = X3 + AX2 + BX + C,
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α

β

γ

δ

ε

ζ ∞
1+√3 1−√3
1

−2
k =

0

s=1.817

s=0

s=1.238

s=1.889

s=1.921

s=∞

Figure 19. Showing the unit circle in the (a, b)-plane together
with six leaves from the foliation of Figure 16. The labels α
through ζ on these leaves correspond to the labels on the cubic
curves of Figures 17 and 18. The numbers outside the circle in this
figure give the flex-slope invariant s for the corresponding curves,
and the numbers inside the circle give the Hesse invariant k. Note
that both s and k increase monotonically from −∞ to +∞ as we
follow the circle clockwise from α back around to α. (Thus s takes
negative values between α and β.) The curve associated with any
point of this circle has two connected components if and only if
k ≥ 1 ⇐⇒ s ≥ 1.88988 · · · ; corresponding to the arc between ε
and α.

the flex-slope invariant can be computed as

s =
dY/dX

3
√

Y
,

to be evaluated at either of the finite flex points (X0, ±Y0). In fact, if we set
x = λ2X and y = λ3Y , then the slope will be dy/dx = λ dY/dX. Choosing

λ = 1/ 3
√

Y 0, the y coordinate at the finite flex points will be ±1, and we can
translate the x coordinate so that it will be zero at these points.

Thus we have three different possible normal forms for real cubic curves: the
unit circle normal form (15), the Hesse normal form (16), and the flex-slope normal
form (17). These are compared in Figure 19. Two of the leaves in this figure
correspond to singular curves, and they separate the connected cubic curves from
curves with two components: The α-leaf is the set of curves with a self-crossing
point, giving rise to improper group action; while the ε-leaf is the set of curves with
an isolated (necessarily singular) point. A cubic curve has two components if and
only if 1 ≤ k < ∞ ⇐⇒ 1.889 · · · ≤ s < ∞ .
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The β leaf also corresponds to cubic curves with a distinctive geometry. These
are the only real cubics such that the tangent lines at the three flex points all
pass through a common point. Note that the β leaf and the δ leaf both lie in the
coordinate line a = 0, with shape invariant J = 0. These correspond to complex
curves with six-fold rotational symmetry. Similarly both the γ-leaf and the ζ-leaf
lie in the coordinate line b = 0 with J = 1, corresponding to complex cubics with
four-fold rotational symmetry.

It is noteworthy that the one singular curve-class in M3(C) splits into two distinct
singular curve-classes α and ε in M3(R). However, only the singularity of type α,
corresponding to curves with a real self-crossing point, is improper. All other curves
in C fs

3 (R) have an automorphism group S3 of order six; but real curves of class α
have an automorphism group of order two.

6. Degree at least four

Recall from Section 4 that the moduli space Mn = Mn(C) is defined to be the

quotient space Ĉ fs
n /G, where Ĉ fs

n = Ĉ fs
n (C) is the open subset consisting of 1-cycles

with finite stabilizer in the complex projective space Ĉn consisting of all 1-cycles of
degree n, and where G is the projective linear group PGL3(C). Here is a preliminary
statement.

Theorem 6.1. For n ≥ 5 the moduli space Mn is not a Hausdorff space.

Proof. Consider the subspace of Mn consisting of formal sums

m1 · L1 + · · · + mk · Lk with n =
∑

mj ,

where the Lj are lines. Each line Lj in the plane P2 is dual to a point pj in the
dual plane P2∗, yielding an associated zero-cycle m1〈p1〉 + · · · + mk〈pk〉 in the
dual plane. The argument is now similar to the proof of Lemma 3.12, but with
suitable modification since we are now working in P2 rather than P1.

By definition, four points of P2 are in general position if no three are contained
in a common line. Note that the action of G = PGL3 on P2 is simply transitive on
ordered 4-tuples (p1, p2, p3, p4) which are in general position. In fact there is one
and only one group element g such that

g(p1) = (1 : 0 : 0) , g(p2) = (0 : 1 : 0) , g(p3) = (0 : 0 : 1) , and g(p4) = (1 : 1 : 1).

It follows that any zero-cycle which includes four points in general position will
have finite stabilizer (of order at most k!, where k is the number of distinct points
in the cycle).

First consider the case n = 5. For any ε > 0, let

gε(x : y : z) = (x : y : εz).

The zero-cycle

D0 = (1 : 0 : 0) + (0 : 1 : 0) + (0 : 0 : 1)

is invariant under gε. Let

Dε = D0 + (1 : 1 : 1) + (ε : ε : 1)

so that

gε(Dε) = D0 + (1 : 1 : ε) + (1 : 1 : 1).
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Thus, as ε → 0 we have

lim
ε→0

Dε = (1 : 0 : 0) + (0 : 1 : 0) + 2 · (0 : 0 : 1) + (1 : 1 : 1),

but

lim
ε→0

gε(Dε) = (1 : 0 : 0) + (0 : 1 : 0) + (0 : 0 : 1) + (1 : 1 : 0) + (1 : 1 : 1).

These two limits are clearly not G-equivalent since the first limit has a point
(0 : 0 : 1) of multiplicity two, while the second limit is a zero-cycle with five distinct
points of multiplicity one. This proves that the quotient space is not Hausdorff.

The proof for n > 5 can now be obtained by adding extra G-invariant terms of
the form (x : y : 0) to Dε. �

In this section and the next one we will describe moderately large open subsets
of Mn which are Hausdorff. We first prove that Mn is a T1-space.

Lemma 6.2. For any G-orbit ((C)) ⊂ Ĉn, every limit point in the complement

((C))�((C)) has infinite stabilizer.

(Compare [AF2, p. 527].)

Proof. More generally, the corresponding statement holds for any algebraic action
of an algebraic group G on a projective space PN . (See [Br, Prop. 1.11].) The proof
can be outlined very briefly as follows. The orbit of any p ∈ PN can be described
as the image of a map g 	→ g(p) from G to PN . Denoting this image by Gp,
it follows from a theorem of Chevalley that Gp is a constructible set, and hence
contains a subset U which is dense and open as a subset of its closure Gp ⊂ PN ,
using the Zariski topology. (Compare [Gor] or the proof of [Harr, Thm. 3.16].) Thus
the complement Gp�Gp is contained in an algebraic set Gp�U with dimension
strictly smaller than the dimension of G. It follows, using equation (10), that every
point in this complement has infinite stabilizer. �

As an immediate corollary, it follows that Mn is a T1-space:

Corollary 6.3. Every G-orbit which is contained in Ĉ fs
n is a closed subset of Ĉ fs

n .

In other words, every point in the quotient space Mn = Ĉ fs
n /G is closed.

In the rest of this section we will use the concept of virtual flex point in order to
prove that certain large subsets of Mn are Hausdorff.

Definition 6.4. Let Un ⊂ Cn be the open set consisting of all line-free curves
C of degree n. In other words, for C ∈ Un we assume

(1) that C contains no line, and
(2) that every irreducible component of C has multiplicity one.

For C ∈ Un, a point p ∈ |C| will be called a virtual flex point if it is either a
singular point or a flex point.

Lemma 6.5. Every virtual flex point p for a curve in Un can be assigned a flex-
multiplicity ϕ(p) ≥ 1 with the following two properties:

(1) The sum of ϕ(p) over all virtual flex points is equal to 3n(n − 2).
(2) Under a generic small perturbation, each virtual flex point p splits into

ϕ(p) distinct nearby simple flex points.
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Proof of Lemma 6.5. Define ϕ(p) as the local intersection multiplicity between the
curve C of degree n and its associated Hessian curve HC of degree 3(n − 2). (See
for example [Gr], [Kir], [Kun], or [Sha].) The statement then follows from Bézout’s
theorem. In order to apply Bézout, it is first necessary to check that C and HC
have no common subcurve. But such a subcurve would have to be either a line or a
component of multiplicity ≥ 2; and both possibilities have been excluded. To prove
that ϕ(p) ≥ 1 at every singular point, we proceed as follows. Taking the singular
point of a curve of degree n to be (0 : 0 : 1), the defining equation must have the
form

Φ(x, y, z) =

n∑
j=2

Φj(x, y) zn−j ,

where the Φj are homogeneous of degree j. It is then easy to check that the last
row (Φx z, Φy z, Φz z) of the Hessian matrix is identically zero at (0, 0, 1), so that
this point is a common zero of Φ and the Hessian determinant. �

Example 6.6. Suppose that there are k smooth local branches (= curve germs)
B1, . . . , Bk of the curve C passing through p. (Compare the cases ϕ = 6, 7 in
Figure 20, and for other examples see Figure 22.) Then

ϕC(p) =
∑
j

ϕBj
(p) + 6

∑
i<j

Bi · Bj ,

where Bi · Bj is the local intersection multiplicity. (Here ϕBj
(p) makes sense, since

ϕ can be defined as a local analytic invariant.) This equation can be proved by
choosing small generic translations of the Bj so that they intersect transversally,
and then noting that a simple intersection has flex-multiplicity six.25

ϕ=1 ϕ=2 ϕ=6 ϕ=8ϕ=7

Figure 20. Examples of virtual flex points with small flex-multi-
plicity. The first is a simple flex point, the second is a double flex
point (y = x4), and the remaining three are singular points.

It will be convenient to consider the probability measure on P2 defined by

ϕ̂(S) =

∑
p∈S ϕ(p)

3n(n − 2)
∈ [0, 1] for every set S ⊂ P2.

Here it is understood that ϕ(p) = 0 unless p is a virtual flex point in |C|.

25Consider for example a cubic curve with a single double point. It follows from the proof of
Lemma 5.2 that there are three flex points, which must certainly have multiplicity ϕ = 1. Since∑

ϕ = 9, it follows that ϕ = 6 at the double point. (Alternatively, see Figure 22(4) for an example
of degree n = 4 with four simple double points and no flexes, and with

∑
ϕ = 3n(n− 2) = 24.)
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smooth curves

.2 .4 .5

(1)(2)

(3)

(4)

Lmax

p
max

Figure 21. The large black triangle encloses all possible pairs(
pmax(C), Lmax(C)

)
for curves of degree n = 4, while the small

black subtriangle encloses the possible pairs for smooth degree
four curves. (See the proof of Corollary 6.9.) By Theorem 6.8,
the G-action is locally proper for curves below the diagonal line
pmax + Lmax = 1. The boundaries of three typical rectangles
U4(1/5) , U4(2/5), and U4(1/2) of provably proper action are also
shown. The heavy dots correspond to the four examples shown in
Figure 22.

Definition 6.7. To every C ∈ Un, we can assign the two rational numbers

pmax = pmax(C) = max
p

ϕ̂C(p) and Lmax = Lmax(C) = max
L

ϕ̂C(L),

where p ranges over all points in |C| ⊂ P2, and where L ranges over all lines in P2.
Evidently, since there are at most n points of C on L

(18) 0 < pmax ≤ Lmax ≤ 1 and Lmax ≤ n pmax.

(The large emphasized triangle in Figure 21 encloses all points satisfying these
inequalities.)

Theorem 6.8. If pmax(C0)+Lmax(C0) < 1 for a curve C0 ∈ Un, then the action
of G on Un is locally proper at C0, hence the moduli space Mn is locally Hausdorff
at the corresponding point π(C0) ∈ Mn. In fact, choosing a real number κ so that
pmax(C0) < κ and Lmax(C0) < 1 − κ, the action of G is proper throughout the
entire open subset Un(κ) ⊂ Un consisting of curves which satisfy pmax(C) < κ and
Lmax(C) < 1 − κ.

Corollary 6.9. The action of G is locally proper at every smooth curve in Cn.
In fact, every smooth curve belongs to Un(κ) for every κ between 1/(n + 1) and
1/2. Furthermore, if C is any curve in Un which satisfies pmax +Lmax < 1, then C
belongs to Un(κ) for some κ between 1/(n+1) and 1/2. Thus every curve-class with
pmax + Lmax < 1 belongs to an open subset of Mn which is a Hausdorff orbifold,
and which contains every smooth curve-class.
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(1) (2) (3) (4)

Figure 22. Representatives for the four equivalence classes of
curves which are unions of two smooth quadratic curves. The first
two are W-curves. (See §8.) In each case there are four intersection
points, counted with multiplicity.

Proof of Corollary 6.9. (Assuming Theorem 6.8) If C is a smooth curve, then every
virtual flex point is an actual flex point, with flex-multiplicity

ϕ ≤ n − 2 , hence ϕ̂ ≤ 1/3n.

Thus pmax ≤ 1/3n; and therefore Lmax ≤ 1/3 since there are at most n points of
C on any line. It follows easily that C ∈ Un(κ) for every κ between 1/(n + 1) and
1/2.

Note that if we parametrize the line pmax + Lmax = 1 by setting

(pmax, Lmax) = (κ, 1 − κ),

then this line intersects the triangle defined by the inequalities (18) precisely in
the interval 1/(n + 1) ≤ κ ≤ 1/2. (Compare Figure 21.) Further details are easily
supplied. �

Example 6.10. Let C be a curve of degree four which is the union of two smooth
curves of degree two. Then C has no flex points, but it may have either one, two,
three, or four singular points, as illustrated in Figure 22. The corresponding values
of pmax and Lmax can be tabulated as follows. (Compare the four labeled points
in Figure 21.)

# singular points: (1) (2) (3) (4)
pmax + Lmax : 1 + 1 = 2 .5 + 1 = 1.5 .5 + .75 = 1.25 .25 + .5 = .75

Thus Theorem 6.8 implies that the last curve represents a point in moduli space
which is proper and, hence, locally Hausdorff. On the other hand, the first two
are W-curves, and hence do not represent any point of moduli space. (Compare
Figure 28 in Section 8.) The point of M4 corresponding to the third curve is more
interesting:

Proposition 6.11. Let C3 be a curve in P2(C) which is the union of two smooth
quadratic curves which have three intersection points (as in Figure 22(3)). Then
the action of G is not even weakly proper at C3.

Proof. We will make use of the statement that the automorphism group (= stabi-
lizer) of a generic curve of degree four is trivial. (See Theorem 9.3.)
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Note that any curve C which is the union of two smooth quadratic curves with
four distinct intersection points has a group of projective automorphisms which is
transitive on these four points.

To see this, note that the four points must be in general position, since a line
can intersect a smooth quadratic in at most two points. Thus, after a projective
transformation, we can put the intersection points at (±1, ±1). The general qua-
dratic equation in affine coordinates can be written as Q(x, y) + L(x, y) = c; where
Q is homogeneous quadratic and L is linear. If the equation is to hold at all of the
points (±1, ±1), then it is easy to check that the linear term L(x, y) must be zero,
and that the coefficient of xy in the quadratic term must be zero. Thus we are
reduced to an equation of the form a x2 + b y2 = c; where evidently c must equal
a + b.

Any curve defined by an equation of the form a x2 + b y2 = a + b is clearly
invariant under the four element group

(x, y) 	→ (±x, ±y).

It follows that any union C of two such curves is also invariant under this four
element group. Let gC be the element of the stabilizer GC corresponding to the
involution (x, y) ↔ (−x, −y). We can choose a curve C0 arbitrarily close to C which
has no nontrivial automorphism. It follows that the curves C0 and gC(C0) represent
the same point of M4; but that gC is the only group element carrying one to the
other.

Now, as we move two of the intersection points together to obtain the third curve
(3) in Figure 22, the corresponding sequence of involutions clearly cannot lie in any
compact subset of G. Thus the action of G is not weakly proper at this curve. �

We do not know whether the moduli space M4 is locally Hausdorff near the
corresponding point.

The proof of Theorem 6.8 will be based on the following.

Lemma 6.12 (Distortion Lemma for P2). For any ε > 0, there exists a compact
set Kε ⊂ G = PGL3(C) such that, for any g ∈ G�Kε, one or both of the following
two conditions is satisfied. Either:

(1) there exists a line L+ ⊂ P2 and a point p− ∈ P2 such that

g
(
Nε(L

+)
)

∪ Nε(p
−) = P2 ; or

(2) there exists a point p+ ∈ P2 and a line L− ⊂ P2 such that

g
(
Nε(p

+)
)

∪ Nε(L
−) = P2 .

Note that we can interchange the two cases simply by replacing g by g−1. It
is also important to note that both (1) and (2) are open conditions, which will
remain valid under a small perturbation of ε.

Proof of Lemma 6.12. In order to prove this lemma, we will discuss first the special
situation in which the group action is diagonalizable of the form

g(x : y : z) = (x′ : y′ : z′) = (rx : sy : tz) with |r| ≥ |s| ≥ |t| > 0.

The ratio δ = |r/t| ≥ 1 can be thought of as a measure of the distortion of g.
Evidently, δ is bounded on any compact set of diagonal matrices. We want to
study the limiting behavior as δ → ∞.
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Note that either |r/s| ≥
√

δ or |s/t| ≥
√

δ (or both if |s| is precisely equal to√
|rt|).

Case 1. Suppose that |r/s| ≥
√

δ. It will be convenient to choose a representative
(x, y, z) for (x : y : z) so that |x| + |y| + |z| = 1, and also a representative (r, s, t)
for (r : s : t) (depending on x, y, z) so that the triple

(x′, y′, z′) = (rx, sy, tz) satisfies |x′| + |y′| + |z′| = 1.

Then

|x′|
|y′| =

∣∣∣∣rxsy
∣∣∣∣ ≥

√
δ

∣∣∣∣xy
∣∣∣∣ and similarly

∣∣∣∣x′

z′

∣∣∣∣ =
∣∣∣sx
tz

∣∣∣ ≥ δ
∣∣∣x
z

∣∣∣ .
It follows that

|y′| ≤ |x′y|
|x|

√
δ

≤ 1

|x|
√

δ
and similarly |z′| ≤ 1

|x|δ .

Thus if |x| is bounded away from zero and δ tends to infinity, then |y′| and |z′| must
tend to zero; hence (x′ : y′ : z′) must tend to the point (1 : 0 : 0). More explicitly, if
|x| > ε and if δ is large enough, then (x : y : z) must map into the ε neighborhood
of this point.

But according to Lemma 2.30, any element of G = PGL3 can be written uniquely
as a product r◦g◦r′, where r and r′ are unitary rotations, and where g is diagonal.
Suppose as above that the diagonal transformation g maps everything outside of
a small neighborhood of the line x = 0 into a small neighborhood of the point
y = z = 0. Then setting

L+ = r′
−1({x = 0}

)
and p− = r

(
{y = z = 0}

)
,

we obtain the required line and point, with

P2 r′ �� P2 g
�� P2 r �� P2

L+
∼= �� {x = 0} {y = z = 0}

∼= �� p−.

Case 2. If |s/t| ≥
√

δ, then a similar argument shows that we have

|z′| ≤ 1

|x|δ as above, but now |z′| ≤ 1

|y|
√

δ
.

Thus if (x : y : z) is bounded away from the point (0 : 0 : 1), then either |x| ≥ ε or
|y| ≥ ε. Therefore, as δ tends to infinity, |z′| must tend to zero, so that we converge
to the line z′ = 0. Further details of the proof are straightforward.

�

Proof of Theorem 6.8. Recall that Un(κ) is the set of line-free curves C ∈ Cn sat-
isfying pmax(C) < κ and Lmax(C) < 1 − κ. Given two curves C0 and C′

0 in Un(κ),
first choose ε small enough so that the ε-neighborhoods Nε(p) of the various virtual
flex points of C0 are disjoint, and so that there exists a line intersecting any three
of the neighborhoods N2ε(pj) only if the center points pj are collinear. (Compare
Figure 23. Such an ε must exist since, if there were such a line for arbitrarily small
ε, then the center points would have to be collinear.) Furthermore, we also require
the corresponding conditions for C′

0.
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L
_

ε

Figure 23. Illustrating the proof of Theorem 6.8. For C′ ∈ N′,
every virtual flex point of C′ must have distance less than ε from
the corresponding virtual flex point of C′

0.

Now let N be the neighborhood of C0 consisting of all curves C ∈ Un such that,
for every virtual flex point p of C0, the number of virtual flex points of C in Nε(p),
counted with flex-multiplicity, is exactly the flex-multiplicity of p ∈ C0. Construct
the neighborhood N′ of C′

0 in the analogous way.
Choosing Kε as in Lemma 6.12, we must show that there cannot be any C ∈ N

and any g �∈ Kε such that g(C) = C′ belongs to N′. Replace g by g−1 if necessary,
so that we are in Case (2) of the Distortion Lemma 6.12. Then ϕ̂C

(
Nε(p

+)
)

< κ,
and it follows from the Distortion Lemma that the ε-neighborhood of L− contains
more that 1 − κ virtual flex points of g(C) = C′. This contradiction completes the
proof of Theorem 6.8. �

Remark 6.13 (The classical moduli space Mg). Since a smooth curve of degree

n in P2(C) has genus g(n) =
(
n−1
2

)
, it is natural to compare the moduli space

M sm
n (C) for smooth curves in P2 with the classical moduli space Mg(n), consisting

of conformal isomorphism classes of closed Riemann surfaces of genus g(n). The
dimension of this classical moduli space is given by26

dim(Mg) = 3g− 3 for g ≥ 2, but dim(M1) = 1.

Compare [ACGH, p.28] or [Mu, Ch. 5].
For every n ≥ 3 there is a natural inclusion

M sm
n (C) ↪→ Mg(n).

(Compare Remark 9.10 below.) The case n = 3 is exceptional, since in this case,
we obtain an isomorphism

M sm
3 (C)

∼=−→ M1,

26For g ≥ 2, the moduli space Mg can be considered as a quotient space Tg/MCGg, with
the associated orbifold structure. Here Tg is the (3g− 3)-dimensional Teichmüller space, and the
mapping class group MCGg is a discrete group which acts on Tg. (See for example [Hub].) For
g = 1, the corresponding description would be that M1 is the quotient of the upper half-plane in
C by the group PSL(2,Z) of fractional linear transformations.
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where both spaces are isomorphic to C with two ramified points, using the shape
invariant J of §5 (which is just the classical j-invariant, up to a multiplicative
constant; compare [BM]).

For n = 4, the inclusion M sm
4 ↪→ M3 can be understood as follows. Any closed

Riemann surface C of genus g has g linearly independent holomorphic 1-forms, say
ω1, . . . , ωg. For any point p ∈ C, the ratio(

ω1(p) : . . . : ωg(p)
)

can be interpreted as a point in the projective space P g−1(C). Thus there is a
canonical map from any Riemann surface of genus g > 1 into P g−1(C), well defined
up to projective automorphisms of P g−1(C). Furthermore any conformal automor-
phism of C corresponds to a change of basis for the vector space of 1-forms and,
hence, to a projective automorphism of its image in the projective (g− 1)-space.

By definition, a smooth complex curve C of genus g > 1 is called hyperelliptic
if it admits a holomorphic function C → P1(C) of degree two (or equivalently if it
is a 2-fold branched covering of the sphere). The following is proved, for example,
in [Be] or [Gr].

Proposition 6.14. If S is a Riemann surface of genus three which is not hyper-
elliptic, then the canonical map S → P2(C) is a smooth embedding. Furthermore,
every embedding of a Riemann surface of genus three into P2(C) can be obtained by
this construction, and every conformal automorphism of the Riemann surface cor-
responds to a projective automorphism of the embedded curve. On the other hand,
a hyperelliptic Riemann surface of genus three cannot be embedded in P2(C).

Corollary 6.15. The moduli space M sm
4 (C) for smooth projective curves of degree

four maps bijectively onto the open subset of M3 consisting of conformal equiv-
alence classes of nonhyperelliptic Riemann surfaces of genus three. Furthermore,
any conformal automorphism of a smooth projective curve of degree four extends to
a projective automorphism of P2(C).

(See Remark 9.10 for a more general statement.)

Proof of Corollary. This follows since a smooth curve of genus three in P2(C) neces-
sarily has degree four, and since any conformal automorphism of a Riemann surface
corresponds to a projective automorphism of its image in Pg−1(C). �

Note that there exists a smooth curve of genus g in P2 only if g is a number of
the form g(n) =

(
n−1
2

)
. For degrees n ≥ 5 and hence g(n) ≥ 6, the dimension

dim Mg(n) = 3g(n) − 3 = 3(n2 − 3n)/2

is strictly larger than

dim Mn = dim Ĉn − 8 = (n2 + 3n − 16)/2.

Therefore, only a very thin set of Riemann surfaces of genus g ≥ 6 can be embedded
smoothly into P2(C). (However every Riemann surface can be immersed into P2(C)
with only simple double points. See for example [Hart, Corollaries 3.6 and 3.11,
Chapter IV].)
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7. Singularity genus and proper action

This section will describe another criterion for proper action, based on the genus
invariant for a singular point. (See Theorems 7.13 and 7.17.) However, we must
first understand the concept of genus for surfaces which may be noncompact and
nonalgebraic.

The topological genus for more general surfaces. By a surface S we will
mean a C1-smooth,27 oriented two-dimensional Hausdorff manifold, possibly with
C1-smooth boundary. (In particular, any Riemann surface is also a surface in this
sense.) The genus g(S) ≥ 0 of such a surface is a fundamental topological invariant,
taking integer values (or the value +∞ in some noncompact cases).

It will be convenient to work with the homology group H1 = H1(S; Q), using
rational coefficients.28 Choosing an orientation for S, any two homology classes
α, β ∈ H1 have a well-defined intersection number, yielding a skew-symmetric
bilinear pairing

(α, β) 	→ α · β = −β · α ∈ Q.

Definition 7.1. The genus g(S) is defined to be the rank of this intersection
pairing, divided by two. In other words, 2 g is the dimension of the quotient
group H1/N , where N is the null space, consisting of all α such that α · β = 0 for
all β. As an example, if S is a compact surface with boundary, then g is finite and N
is generated by the homology classes of the boundary circles. (It will be convenient
in this section to use the word “circle” for any manifold which is homeomorphic to
the standard circle.) Whenever g is finite, it is not difficult to choose a basis for

H1/N so that the matrix for this pairing consists of g blocks of

(
0 1
−1 0

)
along the

diagonal, with zeros elsewhere.

Theorem 7.2. Here are seven basic properties of the genus.

(1) Additivity. If S is the union of two disjoint open subsurfaces29 S1 and
S2, then g(S) = g(S1) + g(S2).

(2) Monotonicity. If S ⊂ S ′, then g(S) ≤ g(S ′).
(3) Puncture tolerance. The genus of S is unchanged if we remove any

finite subset from S. Similarly, it is unchanged if we remove the interior of
a closed disk which is embedded in the interior of S.

(4) Compact versus noncompact. If S is noncompact, then g(S) is equal
to the supremum of the genera of compact sub-surfaces. On the other hand,
if S is compact with boundary ∂S, then the genus of S is equal to the genus
of the interior S�∂S.

(5) The closed surface case. For a compact surface S with empty bound-
ary (or more generally for one such that each connected component has at
most one boundary component), the doubled genus is equal to the first Betti

27Smoothness is not really necessary but makes proofs easier.
28One could equally well use coefficients in any field. The field Z/2 has the unique property

that the definition works equally well for nonorientable surfaces. However the “genus” of a non-
orientable surface, defined in this way, may be a half-integer. For example, the real projective
plane has genus 1/2 in this sense, and the hyperbolic dodecahedron of Figure 13 has genus 5/2.

29It is customary to define genus only for connected surfaces, but this extension to non-
connected cases is often convenient.
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number:

(19) 2 g(S) = dim H1(S).

(6) Cutting and pasting. Let S be a compact surface of genus g with �
connected components and with b boundary circles. Then the Euler charac-
teristic can be computed as

(20) χ(S) = 2� − 2 g − b.

If we form a new surface S ′ by pasting together two boundary circles of S,
then χ(S) = χ(S ′). (In fact the number b decreases by two, but either �
decreases by one or g increases by one.)

(7) The classical basic example. If C ⊂ P2 is a smooth complex curve of
degree n, then (as noted earlier) the genus is given by

(21) g(C) =

(
n − 1

2

)
.

Remark 7.3. Felix Klein defined30 the genus as the maximal number of disjoint
nonseparating circles which can be placed on the surface (that is, circles Cj such
that both sides of any Cj belong to the same component of S�

⋃
Cj). In particular,

a surface has genus zero if and only if has the Jordan property of being separated
by any embedded circle. It is a nontrivial exercise, using properties (4) and (6), to
check that this agrees with our definition of genus in all cases.

Proof of Theorem 7.2. The first five statements follow easily from corresponding
statements for the quotient group H1/N ; which are not difficult to check.

For (1): If S is the disjoint union of S1 and S2, then evidently

H1(S)/N(S) = H1(S1)/N(S1) ⊕ H1(S2)/N(S2).

For (2): If S ⊂ S ′, then H1(S)/N(S) maps injectively into H1(S ′)/N(S ′). In
fact, if two elements of H1(S) have nonzero intersection number, then the corre-
sponding two elements of H1(S ′) will have the same nonzero intersection number.

For (3): If S ′ = S�{p}, then H1(S) can be obtained from H1(S
′) by setting the

homology class of a small loop around the puncture point equal to zero. However,
this does not change the quotient H1(S ′)/N(S ′) since the homology class of this
loop belongs to N(S ′).

For (4): This follows since H1(S) is clearly isomorphic to the direct limit of the
homology groups of the compact subsurfaces of S.

For (5): The Poincaré duality theorem for a compact oriented n-manifold without
boundary implies that the intersection pairing (α, β) 	→ α ·β from Hj ×Hn−j to Q

is nonsingular,31 giving rise to an isomorphism from Hj to the cohomology group
Hn−j ∼= Hom(Hn−j , Q). In particular, for the special case j = n − j = 1, this
implies that the null space N is trivial, so that H1/N = H1.

The proof of (6) will make use of properties of the Euler characteristic. Note
first the additive property

(22) χ(X ∪ Y ) = χ(X) + χ(Y ) − χ(X ∩ Y ),

30See [Gra, p. 230].
31See for example [GH]. The intersection pairing in homology corresponds to the cup product

pairing in the dual cohomology groups.
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which clearly holds whenever X and Y are finite complexes with X ∩ Y as a sub-
complex. In the special case where X ∩Y is a finite union of circles, since the Euler
characteristic of a circle is zero, this simplifies to χ(X ∪ Y ) = χ(X) + χ(Y ). As
an example, suppose that X is a compact connected surface of genus g bounded by
b circles. Then we can choose Y to be a union of b closed disks so that X ∩ Y is
the union of these circles, and so that X ∪ Y is a closed surface of genus g. Then

χ(X ∪ Y ) = 2 − 2g = χ(X) + χ(Y ) = χ(X) + b,

yielding the standard formula χ(X) = 2 − 2g− b. Now if S is the disjoint union of
� such manifolds, since both g and the number of boundary circles are additive, we
obtain the required identity

χ(S) = 2 �(S) − 2 g(S) − b(S)

for any compact surface, where �(S) is the number of components of S.
For the proof of (7), see for example [GH]. �

Here is a convenient consequence of property (6).

Corollary 7.4. Suppose that a compact connected surface S of genus g can be
obtained from a disjoint union of � connected surfaces Sj of genera g1, . . . , g� by
pasting together k pairs of boundary circles. Then

(23) g = k + 1 − � +
�∑

j=1

gj .

In fact it follows from (20) that

χ(Sj) = 2 − 2gj − bj and that χ(S) = 2 − 2g−
(∑

bj − 2k
)
,

where the expression in parentheses is the number of boundary circles of S. Equa-
tion (23) then follows easily since χ(S) =

∑
χ(Sj).

The genus of a singularity. Let p be a (necessarily isolated) singular point of
a complex curve C ⊂ P2, and let Np the ε-ball centered at p, using the standard
Fubini-Study metric (Definition 2.31). If ε is small enough, then for every smooth
curve C′ of the same degree which approximates C closely enough (depending on ε),
the intersection Sp = C′ ∩ Np will be a smooth32 compact connected surface with
b boundary components, where b ≥ 1 is the number of local branches of C through
the point p, and where the genus of Sp is independent of the choice of C′. This is
proved for example in [Mi1] or [Wal].

Definition 7.5. By the genus gC(p) of the singularity we will mean the genus of
this surface Sp. We also define the augmented genus (or δ-invariant33) as

g
+
C (p) = gC(p) + b − 1.

32To see this, note that the set of ε′ for which the intersection is not transverse has measure
zero by Sard’s theorem. In fact, it is a semialgebraic set (see [BCR]), and hence must be finite.

33See for example [Ser1, pp. 59-65] or [Nam, p.126]. We have preferred the g+ notation since
it makes the connection with genus clearer.
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Example 7.6. Here is an example to illustrate these ideas. Let C be a singu-
lar projective curve with singular points p1, . . .pm. The topological genus of the
nonsingular open subset

C�{p1, . . . . , pm}.
is called34 the geometric genus ggeom(C).

Lemma 7.7 (Degree and geometric genus). With C as above, we have

(24) ggeom(C) +
m∑
j=1

g
+
C (pj) =

(
n − 1

2

)
+ � − 1,

where n is the degree of C and � ≥ 1 is its number of irreducible components.

Proof. Choose a small closed ball around each pj , and let C′ be a smooth degree n
curve which closely approximates C. Let Sj be the intersection of C′ with the ball
around pj , and let S ′ be the closure of C′�

(
S1 ∪ · · · ∪ Sm

)
. If the balls are small

enough and the approximation is close enough, then each Sj will have genus g(pj)
and will have bj boundary circles, where bj is the number of local branches of C at
pj . Furthermore, S ′ will be a smooth curve with

∑
j bj boundary circles and with

� connected components S ′
k, where � is the number of irreducible components of C,

and with g(S ′) equal to the geometric genus ggeom(C). Now applying equation (23)
to the surface C′, which is the union of the Sj together with the � components S ′

k

of S ′ pasted together along
∑

bj boundary circles, we see that

g(C′) =

m∑
j=1

bj + 1 − (m + �) +
( m∑

j=1

g(Sj) +

�∑
k=1

g(S ′
k)
)
.

Here the left side is equal to
(
n−1
2

)
, while the right side can be rearranged as

m∑
1

(
g(Sj) + bj − 1

)
+ ggeom(C) + 1 − � =

m∑
1

g
+(pj) + ggeom(C) + 1 − �.

The required equation (24) now follows easily. �

Remark 7.8. The numbers gC and g
+
C are closely related to the Milnor number μ.

(See for example [Mi1], [Wal], [Ghy], [Sea].) Using affine coordinates (x, y), this
number μ for the curve F (x, y) = 0 at a point p can be defined as the intersection
multiplicity between the curves Fx = 0 and Fy = 0 at p, where the subscripts
indicate partial derivatives.

If p = (0, 0), then μ can be computed as the dimension of the quotient algebra
C[[x, y]]/(Fx, Fy), where C[[x, y]] is the ring of formal power series in two variables
and (Fx, Fy) stands for the ideal generated by these two partial derivatives. (Com-
pare [Fu, p.9].) It follows easily that μ > 0 if and only if p is a singular point of
C.

Lemma 7.9. The Milnor number μ of a singular point is the sum of the genus g

and the augmented genus g+. That is,

(25) μ = g + g
+.

Since 0 ≤ g+ ≤ μ ≤ 2 g+, it follows that g+ > 0 if and only if p is a singular point.

34This is equivalent to the standard definition in the case of an irreducible curve. Our ggeom(C)
is just the sum of the geometric genera of the irreducible components of C.
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Proof. According to [Mi1, Theorem 7.2], μ is equal to the first Betti number
dim

(
H1(Sp)

)
of the surface Sp. We must show that the sum

g + g+ = 2 g + b − 1

is equal to this Betti number dim
(
H1(Sp)

)
. Recall from Theorem 7.2(6) that the

Euler characteristic of a connected surface of genus g with b boundary components
is 2 − 2g− b. Comparing this with the standard expression

dim(H0) − dim(H1) + dim(H2)

for the Euler characteristic (where H2 = 0 in our case), we obtain

2 − 2g− b = 1 − dim(H1) + 0,

and hence 2g + b − 1 = dim(H1). The equation (25) follows. �

Example 7.10. For the curve F (x, y) = xp − yq = 0, the quotient algebra

C[[x, y]]/(Fx, Fy) = C[[x, y]]/(xp−1, yq−1)

has an additive basis consisting of the (p− 1)(q − 1) monomials xjyk with 0 ≤ j <
p − 1 and 0 ≤ k < q − 1. Therefore

μ = (p − 1)(q − 1).

Let δ be the greatest common divisor of p and q. Then it is not hard to check
that there are δ branches of the curve through the point (0, 0). From the equations
g + g+ = μ and g+ − g = δ − 1, we see that

(26) g = (μ + 1 − δ)/2 and g+ = (μ + δ − 1)/2.

In the case of a cusp curve, with p and q relatively prime, this reduces to

g = g
+ = μ/2 = (p − 1)(q − 1)/2.

(Compare the four cusps shown in Figure 24.) On the other hand for p = q = 2,
the curve

x2 − y2 = (x + y)(x − y) = 0

has a simple self-crossing, and we get μ = 2 and (g, g+) = (0, 1). For p = 4, q = 2
the curve x4 − y2 = (x2 + y)(x2 − y) has a tacnode singularity, with two smooth
branches intersecting tangentially. In this case μ = 3 and (g, g+) = (1, 2), again
as in Figure 24.

(0,1) (1,1) (1,2) (1,3) (2,2) (2,3) (3,3) (3,3)
Figure 24. Showing the pair of invariants (g, g+) for the eight
possible singularities with g+ ≤ 3. These are, respectively, a simple
node, an x3=y2 cusp, a tacnode, a triple crossing, an x5=y2 cusp,
an x3 = y2 cusp together with a nontangent line, an x3 = y4 cusp,
and an x7 = y2 cusp. (For computation of these invariants, see
Example 7.10 as well as Lemma 7.12.)
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Remark 7.11 (Erratum). In [Mi1, p. 60], it was stated incorrectly that the invariant
μ is equal to the classical multiplicity of the singularity. In fact the classical mul-
tiplicity m of a singular point p ∈ C is defined to be the intersection multiplicity
at p between C and a generic line through p. The following examples show that
neither of these two invariants at the point x = y = 0 determines the other.

curve m μ
x3 = y5 3 8
x3 = y7 3 12
x4 = y5 4 12

Note that the multiplicity m for a singular point of a curve of degree n satisfies

2 ≤ m ≤ n.

The set of all curves in Cn which have a singularity of multiplicity m or larger forms
a closed algebraic subset of codimension

(
m+1
2

)
− 2 in Cn. The proof is similar to

the proof of Proposition 10.1.

Lemma 7.12 (Multi-branch lemma). The augmented genus of a singularity with
k local branches B1, . . . ,Bk can be computed as follows

g
+
C (p) =

∑
j

gBj
(p) +

∑
i<j

Bi · Bj ,

where Bi · Bj is the intersection number between the two branches.

(Compare the analogous formula for flex-multiplicity in Example 6.6.) As an
example, if there are k smooth branches intersecting pairwise transversally at a
common point p, then g

+
C (p) =

(
k
2

)
, and it follows easily that gC(p) =

(
k−1
2

)
.

Outline Proof. 35 First choose a fixed small round neighborhood N of p, and choose
generic small translations Bj+vj of the various branches so that each one still inter-
sects ∂N transversally and so that any two translated branches intersect transver-
sally in Bi · Bj ≥ 1 distinct points. Then approximate each translated branch very
closely by a smooth curve. Thus we are reduced to the case of smooth curves
intersecting transversally. The disjoint union of the resulting smooth curves will
have k components, each with one boundary curve, and will have genus

∑
gBi

(p).
A smooth curve which is close to the actual union of these transversally intersect-
ing curves will be homeomorphic to the object obtained by removing a small round
neighborhood of each transverse intersection point and then by gluing the 2

∑
Bi ·Bj

resulting boundary circles together in pairs. By Theorem 7.2(6), each such pasting
must either increase the genus by one or decrease the number of components by
one. Since the total effect is to decrease the number of components from k to one,
the final genus must be

gC(p) = 1 − k +
∑
i

gBi
(p) +

∑
i<j

Bi · Bj .

Adding k − 1 to both sides, the conclusion follows. �

35For a detailed proof of an equivalent statement, see [Wal, Th. 6.5.1].
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Genus and proper action. Using the genus invariant for singular points, we can
provide criteria for proper action of G = PGL3 on subsets of Cn which are different
from those in Section 6 and which involve only the complexity of the singularities.
First, as in Section 6, we consider only line-free curves. Let U ⊂ Cn be some
G-invariant open set of curves.

Theorem 7.13. Suppose that the following three conditions are satisfied:

(1) No curve in U contains a line.
(2) No curve in U is separated by a single point.
(3) The following inequality is satisfied:

max
p∈C∈U

gC(p) + max
p∈C∈U

g
+
C (p) <

(
n − 1

2

)
.

Then the action of G on U is proper, and hence the open set U/G ⊂ Mn is a
Hausdorff orbifold.

Here condition (2) is very weak, and fails to be satisfied only in the exceptional
case that C is the union of two subcurves which intersect in only one point. (Using
Lemma 7.12, one can check that this cannot happen for n < 9 when conditions (1)
and (3) are satisfied.)

For degree n = 4, condition (3) allows only simple nodes and cubic cusp singu-
larities. However, for n = 5 the first six singularities of Figure 24 are allowed, and
for larger degrees much wilder singularities are allowed.

The proof of Theorem 7.13 will require two lemmas.

Lemma 7.14. Given any curve C in P2 there exists an εC > 0 with the following
property. Any open ball of radius εC in P2 is contained in some open ball B which
either

(a) is disjoint from C or intersects C in a smooth topological disk, or
(b) is centered at a singular point p ∈ C and is small enough so that

g
+
C (p) = g(C ∩ B) + b − 1,

where b is the number of boundary components of C ∩ B.

Proof. Clearly every point of P2 is contained in at least one open ball which satisfies
either (a) or (b). Since P2 is compact, it is contained in a union B1 ∪ · · · ∪ Bm of
finitely many balls, each of which satisfies (a) or (b). Now consider the function

p 	→ max
j

dist(p, P2�Bj)

from P2 to the real numbers. This is continuous and strictly positive everywhere.
Hence it has a minimum value, which is the required number εC > 0. �

Lemma 7.15. If the curve C is line-free, then for every ε > 0 there exists δ > 0
with the following property. For any line L ⊂ P2, each connected component of the
intersection C ∩ Nδ(L) has diameter less than ε.

In particular, if we take ε = εC , then the corresponding δ will be called δC .

Proof of Lemma 7.15. Otherwise, for some fixed ε0 > 0, we could choose a sequence
{δj} converging to zero, and an associated sequence of lines Lj , such that for each
j some component of C0 ∩Nδj (Lj) has diameter ≥ ε0. After passing to an infinite
subsequence, we may assume that {Lj} converges to a limit line L′. It then follows
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that the intersection of any neighborhood of L′ with C0 has one or more components
of diameter ≥ ε0. Since any nested intersection of compact connected sets is again
connected, it would follow that L′ ∩ C0 has a component of length ≥ ε0, which is
impossible since C0 is line-free. �
Proof of Theorem 7.13. If the action of G on the open set U ⊂ Cn were not proper
then we could find:

(1) a sequence of curves C1(k) converging to some C1 ∈ U; and
(2) a sequence of curves C2(k) converging to some C2 ∈ U; and
(3) group elements gk diverging to infinity in G with gk

(
C1(k)

)
= C2(k).

Choose ε smaller than the numbers εC1
and εC2

of Lemma 7.14 and also smaller
than the numbers δC1

and δC2
of Lemma 7.15. We will make use of the Distortion

Lemma 6.12. To fix our ideas, suppose that we are in the case where, for infinitely
many k, there exists a point p+ and a line L−, so that gk maps everything outside
of Nε(p

+) into Nε(L
−). (In some cases, it will be necessary to interchange the roles

of C1 and C2, and of gk and g−1
k , in order to reach this situation.)

Since our curves are not disconnected by any single point, it follows that Nε(p
+)

will be contained in an open ball B of type (a) or (b) of Lemma 7.14 such that
the complement C1�B is connected. Therefore, this complement must map into
a single component of C2 ∩ Nε(L

−), which necessarily has diameter less than εC2
.

Now approximate C1 closely by a smooth curve C′
1. We can compute the genus of

C′
1�B as follows. Assuming that B is of type (b) centered at p, so that g

+
C1

(p) =
g(C′

1 ∩ B) + b − 1, it follows from Corollary 7.4 that

g
+
C1

(p) + g(C′
1�B) =

(
n − 1

2

)
.

In fact, if we cut C′
1 along the boundary of B, then the part inside B will have genus

gC1
(p), with b ≥ 1 boundary circles. The union C′

1 has genus
(
n−1
2

)
. According

to Corollary 7.4 this must be equal to the sum b + 1 − � + gC1
(p) + g(C′

1�B),
where � = 2 and where the first four summands add up to g

+
C1

(p). (On the other

hand if B is of type (a), then we can simply replace g
+
C1

(p) by zero.) Since C′
1�B

must map bijectively into a neighborhood of the form NεC2
(p′), it follows that

g
+
C1

(p)+gC2
(p′) ≥

(
n−1
2

)
, contradicting our hypothesis and completing the proof of

Theorem 7.13. �
Curves which contain lines. If we want to allow curves which contain lines,
then we have to work a little harder. Let C be a curve in P2, and let L be a line in
P2 which may be contained in C or may have finite intersection with C. Then we
define an invariant gmax(C, L) ≥ 0 as follows.

Definition 7.16. If C ∩ L is finite, let gmax(C, L) ≥ 0 be the maximum of gC(p)
over all singular points of C which are contained in L. On the other hand, if L ⊂ C,
define gmax(C, L) to be the sum of gC(p) over all singular points of C in L.

Theorem 7.17. Let U′ ⊂ Cn be some G-invariant open set consisting of curves
which are not separated by any point (as in Theorem 7.13), but which may contain
lines. If the following condition is satisfied

(3′) max
C∈U′

max
L

gmax(C, L) + max
p∈C∈U′

g+(p) <

(
n − 1

2

)
,

then the action of G = PGL3 on U′ is proper, so that U′/G is a Hausdorff orbifold.
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(If the curves in U′ do not contain any lines, then it is easy to check that this
statement is completely equivalent to Theorem 7.13.)

Note that the property of being separated by a point is much easier to satisfy
for curves which contain lines. For example, if p(x) is a polynomial of degree n− 1,
then the curve which is described in affine coordinates by y2 = p(x) has only one
point p = (0 : 1 : 0) on the line at infinity. Thus the union of this curve with the
line at infinity is an example of a curve of degree n which is separated by a single
point p. A brief computation using Lemma 7.12 shows that g+(p) = n − 1, and
hence g(p) = n− 2. For n ≥ 6, this curve satisfies condition (3’), and yet Theorem
7.17 does not apply.

Here is a sample consequence.

Corollary 7.18. Let U′ ⊂ Cn be the open set consisting of curves with no singulari-
ties other than simple double points and cubic cusps (or equivalently with g+(p) ≤ 1
for all singular points). If n ≥ 4, then the action of G on U′ is proper, and hence
the open set U′/G ⊂ Mn is a Hausdorff orbifold.

Note that the condition n ≥ 4 is essential. For a cubic curve with a cusp point,
the quotient is not even a T1-space, while for a cubic curve with a double point
(Figure 18), the action is not proper (although the quotient is Hausdorff). This
corollary applies to a union of four lines in general position, but not to a union of
four lines where three pass through a common point. (Compare Figure 28.)

Proof of Corollary 7.18 (Assuming Theorem 7.17). Since only simple double points
are allowed, any singularity of C within a line L ⊂ C must have genus zero. The
conclusion then follows easily. (More generally, we can allow (p, q)-cusps with p
and q relatively prime provided that (p − 1)(q − 1) <

(
n−1
2

)
.) �

Proof of Theorem 7.17. The argument proceeds much as in the proof of Theorem
7.13, but now we must allow for the extra possibility that the line L− is contained in
the curve C2. In that case, a small neighborhood Nε(L

−) will contain no singular
points except those in L−. Choose a small ball around each of these, and then
approximate C2 very closely by a smooth curve C′

2. Then we see from Corollary 7.4
that the genus of C′

2 ∩Nε(L
−) is precisely equal to the sum gC2

(p1)+ · · ·+gC2
(pk)

of the genera of these singularities. In fact this intersection can be obtained from
a surface of genus zero with k holes by pasting a surface of genus gC2

(pj) into the
jth hole for each j between 1 and k.

We now need a modified version of Lemma 7.15. If a line L′ is contained in
one of the neighborhoods Nε(L) for a line L ⊂ C2, then we may use Nε(L) in the
proof of the theorem. But if we exclude all such L′, then the proof of Lemma 7.15
proceeds as before. Further details will be left to the reader. �

Following is a special case where we can push this argument a little further.

Remark 7.19 (Extension to 1-cycles). If we consider 1-cycles rather than curves,
with multiplicities allowed, then the arguments become more difficult since every
point of a curve of multiplicity two or more is singular. As a consequence, in the
definition of the genus associated with a point of C or a line through C, we must
take the lim-sup over all possible smooth approximating curves.

As a simplest example, consider a 1-cycle of the form C = Cn−2 + 2 · L, where
Cn−2 is a generic smooth curve of degree n − 2 and L is a generic line counted
twice. Then one can check that the largest value of g+ at a point is g+(p) = 3,
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corresponding to an intersection point in Cn−2 ∩ L. Using Corollary 7.4, one can
check that the largest value of g on a line (when n ≥ 4) is g(L) = n − 2 for the
doubled line L. The required inequality

max g+(point) + max g(line) <

(
n − 1

2

)
then reduces to 3 + (n − 2) < (n − 1)(n − 2)/2, which is satisfied if and only
if n ≥ 6. Thus we can conclude that Mn is locally Hausdorff at ((Cn−2 + 2 · L))
whenever n ≥ 6. Details of the argument will be omitted.

8. Infinite automorphism groups

In this section we will always work over the complex numbers. Following Klein
and Lie, a curve36 C ∈ Cn is called a W-curve if it is invariant under a one-
parameter group of projective transformations. Recall from Remark 4.5 that a curve
or cycle C has infinite stabilizer if and only if this stabilizer is a Lie group, necessarily
containing a one-parameter subgroup. (It will be enough to study curves, since
clearly a 1-cycle C has infinite stabilizer if and only if its support |C| also has

infinite stabilizer.) We use the notation Wn for the closed subset of Ĉn consisting
of all curves or cycles with infinite stabilizer.

A detailed classification of curves with infinite stabilizer has been provided by
[AF1]. (See also [Ghi] and [Pop].) We will provide a different version of the classi-
fication. Since many different W-curves may be invariant under the same group, it
is convenient to first list the possible connected subgroups of PGL3(C) which can
serve as the identity component G0

C of some stabilizer.
The most symmetric W-curves are those with a stabilizer of dimension two or

more. These are relatively easy to describe:

Theorem 8.1. There are only six connected Lie groups of dimension two or more
which can occur as the component of the identity G 0

C for some curve in P2. The
corresponding curves can be listed as follows. (Compare Figure 25.)

dim(GC) = 

degree(C) = 

6

1

4

2

3

≥3

3

2
2

3
2

3

Figure 25. The six highly symmetric curves

One line. If C is a line, the stabilizer GC has dimension six.37 Putting this line
at infinity, GC = G 0

C can be identified with the group consisting of all nonsingular
affine transformations

(27) (x, y) 	→
(
αx + βy + σ, γx + δy + τ

)
with αδ − βγ �= 0.

36Klein and Lie [KL] also considered transcendental curves (such as the logarithmic spiral)
which are invariant under a one-parameter group, but we consider only algebraic curves.

37This is the unique example for which the action of the stabilizer GC on |C| is not effective,
so that the stabilizer is larger than the group of automorphisms. The group of automorphisms of
the line is the three-dimensional group PGL2, which is a quotient group of the six-dimensional
stabilizer GC .
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Two lines. If C is the union of two distinct lines, the group GC is four-
dimensional, and G0

C can be identified with the solvable subgroup of (27) consisting
of transformations (x, y) 	→ (αx + βy + σ, δy) (preserving the line y = 0, as well
as the line at infinity).

Concurrent lines. If C is the union of three or more lines passing through a
common point, the group GC is three-dimensional, and G0

C can be identified with
the subgroup of (27) consisting of affine transformations

(x, y) 	→ (αx + βy + σ, y)

which preserve every line y = constant. (This is the only case which includes curves
of every degree n ≥ 3. For n ≥ 4, note that it includes infinitely many G-equivalence
classes, since any four lines through a point have a G-invariant cross-ratio.)

Degree two. If C is a smooth degree two curve, the group GC is a three-
dimensional simple group which is isomorphic to PGL2, but with a nonstandard
embedding of PGL2 into PGL3.

Degree two plus tangent line. For the union of a smooth degree two curve
with a tangent line, the stabilizer has dimension two, isomorphic to the group of
affine automorphisms z 	→ αz + β of C.

Three nonconcurrent lines. For a triple of lines in general position, the group
GC has dimension two, and G0

C can be identified with the abelian group consisting
of nonsingular diagonal transformations

(x, y) 	→ (αx, βy).

The proof of these statements will depend on the following catalog of all possible
one-dimensional stabilizers.

Theorem 8.2. A curve C ⊂ P2(C) has infinite stabilizer if and only if, after a
projective change of coordinates, it is invariant under one (or more than one if
it is listed in Theorem 8.1) of the following kinds of one-parameter subgroups of
PGL3(C). We first list the diagonalizable subgroups, and then one nondiagonaliz-
able subgroup.

(1) Type D(p, q, r): Diagonalizable, with typical equation

(28) xp = yqzr.

Here the integers p≥q≥r≥0 should be pairwise relatively prime with p=q+r≥1.
(Compare Figure 26.) The automorphism takes the form

(29)

⎛⎝x
y
z

⎞⎠ 	→

⎛⎝tq 0 0
0 tp 0
0 0 1

⎞⎠⎛⎝x
y
z

⎞⎠ ,

where t varies over the multiplicative group of all nonzero complex numbers. In this
case, the invariant curve C can be any union of finitely many irreducible curves of
the form x = 0, or y = 0, or z = 0, or

(30) xp = a yqzr with a �= 0.
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x=0

y=0z=0

x=0

y=0z=0

x=0

y=0z=0

y = x x2 = yz x3 = y2z
(1, 1, 0) (2, 1, 1) (3, 2, 1)

Figure 26. Graphs of curves of the form (28) of types
(1, 1, 0), (2, 1, 1), and (3, 2, 1), shown in the real affine plane with
normalization

x + y + z = 1.

For arbitrary a �= 0, the curves (30) of type (1,1,0) are straight
lines through the point (0, 0, 1), curves of type (2, 2, 1) are degree
two curves tangent to the coordinate lines at the points (0, 1, 0)
and (0, 0, 1), while curves of type (3, 2, 1) have a flex at (0, 1, 0)
and a 3-2 cusp at (0, 0, 1).

(2) Nondiagonalizable,38 of type ND, with automorphism

(31)

⎛⎝x
y
z

⎞⎠ 	→

⎛⎝1 t t2/2
0 1 t
0 0 1

⎞⎠⎛⎝x
y
z

⎞⎠ ,

where t varies over the additive group of all complex numbers. In this case C can
be any union of curves of the form z = 0 or

(32) x z = y2/2 + a z2, with a constant.

(In the affine plane with z = 1, these are just “parallel” parabolas x = y2/2 + a .)

Remark 8.3 (The catalog of curves in Wn). Before proving Theorem 8.2, we will de-
scribe these curves in more detail. At the same time, we will compute the dimension
of the space Wn.

• Type D(1, 1, 0). The curves of type D(1, 1, 0) are the easiest to describe. To
be invariant under the action (x, y, z) 	→ (tx, ty, z), a curve must be a union of
lines (x : y) = constant through the point (0 : 0 : 1), possibly together with the line
at infinity z = 0. In other words, a curve C of degree n has type D(1, 1, 0) if and
only if it is a union of n lines, at least n−1 of which pass through a common point.
To compute the dimension of the corresponding subset of Wn, note that we need
two parameters in order to specify the intersection point, two parameters to specify
the free-line, and then one parameter for each additional line. Hence the dimension
of the corresponding irreducible subset of Wn is n + 3 (provided that n ≥ 3). If
n ≥ 4, then this component contains infinitely many different projective equivalence

38There is also another nondiagonalizable group (x : y : z) �→ (x + ty : y : z) which we will
ignore, since it occurs only as a subgroup of the three-dimensional group GC where C is a union
of concurrent lines. (Compare Figure 25.) Every such C has already been included under type
D(1, 1, 0).
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classes. In fact, for n > 4 there are n − 4 independent cross-ratio invariants. The
algebraic subset consisting of lines through a common point has n − 3 cross-ratio
invariants.

• Type D(2, 1, 1). By definition each irreducible nonlinear curve of type
D(2, 1, 1) can be put in the form x2 = a y z with a �= 0. Any two curves in this
form intersect in the two points (0 : 0 : 1) and (0 : 1 : 0). For example, in the region
z �= 0, we can use affine coordinates with z = 1. The curves are then parabolas
x2 = a y which are tangent to each other at the origin. Thus any automorphism
which maps each curve to itself and fixes the origin must also map the tangent line
y = 0 to itself. Similarly, the tangent line z = 0 at the point (0 : 1 : 0) must map
to itself, and the line x = 0 joining the two intersection points must map to itself.
A union of k such curves, with k ≥ 2, can be determined by k + 6 independent
parameters: namely six parameters to determine the three coordinate lines, and
one more for each curve. Thus the corresponding irreducible variety in W2 k has
dimension 6+k. Note that we can obtain varieties of higher degree, but of the same
dimension, by adjoining one or more of the three coordinate lines to the curve.

Whenever p ≥ 2, the orbits under this one-parameter group of automorphisms
form a smooth foliation of the thrice punctured plane. Here the three coordinate
points (1 : 0 : 0), (0 : 1 : 0), and (0 : 0 : 1) are singularities of the foliation, since
they are fixed points of this automorphism group. (For type (1, 1, 0) with p = 1,
there is also an entire line z = 0 of fixed points.)

Caution. The real pictures which we use as illustrations can never completely
describe a complex curve. As one example, any finite union of concentric circles

u2 + v2 = ρ2w2

is clearly a W-curve, yet superficially it does not look like one of our examples. But
in fact it can easily be put in the D(2, 1, 1) form x2 = a y z by setting

x = w, y = u + iv, z = u − iv, and a = 1/ρ2.

• Type D(p, q, r) with p > 2. For a curve of the form

xp = a yqzr, with p > 2 hence q ≥ 2,

the point (x : y : z) = (0 : 0 : 1) is a cusp-point of the form xp = a yq, using affine
coordinates with z = 1. On the other hand, using affine coordinates with y = 1,
the point (0 : 1 : 0) is either a cusp-point of the form xp = azr if r > 1, or a flex
point of the form xp = az if r = 1. In either case these two points are distinguished.
Hence, as in type D(2, 1, 1) it follows that one, two, or all three of the coordinate
lines x = 0, y = 0, and z = 0 can be adjoined to the curve without increasing
the dimension of the associated irreducible components. (Compare the last three
curves on the top line of Figure 28.) As in type D(2, 1, 1), this dimension is k + 6
where k is the number of nonlinear components; but now we need only require that
k ≥ 1.

• Nondiagonalizable type. Using affine coordinates with z = 1, the transforma-
tion (31) takes the form

(x, y) 	→ (x + ty + t2/2, y + t).

It is not hard to check that each parabola of the form 2x = y2 + k maps onto itself
under this transformation. Evidently, these parabolas form a smooth foliation of
the affine plane. However, they must intersect somewhere on the line at infinity.
Let us write this equation in projective coordinates as 2xz = y2 + kz2, and then
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Figure 27. Six curves from the nondiagonalizable family (32),
shown in the real affine plane after a projective transformation
which moves the line at infinity z = 0 to the x-axis. (See (33)
below.) Here we obtain ellipses for k > 0 (shown for k = 1/2, 1, 2),
tending to the origin as k → +∞, and tending to a parabola, which
is shown, as k → 0. For k < 0, we obtain a hyperbola (shown
for k = −2), which converges to a single line counted twice as
k → −∞. Any two of these curves intersect only at the origin,
with intersection multiplicity four.

rename the coordinates as x = Z, y = X, and z = Y , so that the equation now
becomes

2ZY = X2 + kY 2.

Evidently, any two of these curves intersect at the point (X : Y : Z) = (0 : 0 : 1).
If we again pass to affine coordinates, but now with Z = 1, this yields the family
of quadratic curves

(33) 2Y = X2 + kY 2

in the (X, Y )-plane, as illustrated in Figure 27. These curves are all tangent to the
X-axis at the origin. The limit of these curves as k → ∞ is the 1-cycle defined by
the equation Y 2 = 0, or in other words the X-axis counted twice.

More generally, it is not hard to check that a union of k ≥ 2 smooth curves of
degree two can be put simultaneously into the nondiagonalizable normal form (32)
if and only if these curves all are mutually tangent at a common point of intersection
and have no other intersection. (Thus the pairwise intersection multiplicity at this
point must be four.) Equivalently, these curves must belong to the pencil consisting
of all sums

{αΦ1 + βΦ2},
where Φ1 = 0 defines a smooth degree two curve and Φ2 = 0 is one of its tangent
lines, counted with multiplicity two. The corresponding irreducible component of
W2k has dimension 5+k, assuming that k ≥ 2. (It takes six parameters to specify a
quadratic curve plus distinguished point, and one more for each additional curve.)
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We can also adjoin the common tangent line without increasing the dimension of
the locus in the appropriate space Cn.

Examples. For n = 3, it is not hard to check that the algebraic set W3 ⊂ C3

is the union of two maximal irreducible subvarieties, both of dimension seven. One
consists of the G-equivalence class of the cusp curve x3 = y2z, together with the
classes of x3 = 0 and y2z = 0. A generic curve in the other is a smooth quadratic
curve together with a line which intersects it transversally. There are also five
nonmaximal subvarieties having the following as generic elements: (1) a smooth
degree two curve plus tangent line, (2) three lines in general position, (3) three
distinct lines through a common point, (4) two lines, one with multiplicity two,
and (5) one line with multiplicity three.

For n = 4, there are eight different maximal irreducible subvarieties, with generic
representatives as illustrated in Figure 28. (Again, there are also many nonmaximal
subvarieties. Compare Remark 8.5.) The dimension of the algebraic set W4 is equal
to eight, the maximum of the dimensions of its irreducible components.

Remark 8.4 (Dimension of Wn). From the discussion above, for n equal to 3 or 4,
the dimension of the complex algebraic set Wn is n + 4. On the other hand, for
n > 4 the dimension of Wn is n + 3. In fact the maximal irreducible component
of type D(1, 1, 0) has dimension n + 3 for all n ≥ 3. It is not hard to check that
the dimension of any other kind of maximal irreducible component increases more
slowly as a function of n, so that n + 3 is the maximal dimension for all n > 4.

Remark 8.5. Of course not every curve in a maximal irreducible component is
generic. For example, there are many other curves in W4, which are not shown in
Figure 28 but which can be obtained as degenerations of the generic curves. Thus,

(2,1,1)

8

ND

7

(1,1,0)

7

(3,2,1)

7

(3,2,1)

7

(3,2,1)

7

(4,3,1)

7

(2,1,1)

7

Figure 28. The algebraic set W4 ⊂ Ĉ4 consisting of curves or cy-
cles of degree four with infinite stabilizer is the union of eight max-
imal irreducible subvarieties. Representative generic curves from
each of these subvarieties are shown. In each case, the dimension
of the algebraic subset is listed, as well as the automorphism type
indicated by the appropriate indices p ≥ q ≥ r, or by ND for
nondiagonalizable.
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in the (2, 1, 1) example, the outer ellipse can expand and converge to a union of
two vertical tangent lines. Similarly, the inner ellipse can shrink and converge to a
horizontal line counted with multiplicity two.

Remark 8.6. It is clear from these examples that the compact sets Wn ⊂ Ĉn have
rather complicated topologies. However, the Wn have fairly high codimension in

Ĉn, so only the high-dimensional homology of the complement Ĉ fs
n = Ĉn�Wn is

affected. Suppose for example that n > 4, so that the real dimension dimR(Wn) is
2(n + 3). Using standard tools of algebraic topology (see for example [Sp]), there
is an exact sequence

Hk−1(Wn) → Hk(Ĉn, Wn) → Hk(Ĉn) → Hk(Wn)

of cohomology groups with integer coefficients. Since Hk(Wn) = 0 for k > 2(n+3),

it follows that Hk(Ĉn, Wn) maps isomorphically onto Hk(Ĉn) when k ≥ 2(n + 4).
Now using the duality theorem

Hk(Ĉn, Wn)
∼= ��

∼=
��

Hk(Ĉn)

∼=
��

Hd−k(Ĉn, Wn) �� Hd−k(Ĉn) ,

where d = n(n + 3) = dimR(Ĉn), we see that Hj(Ĉ
fs
n ) maps isomorphically onto

Hj(Ĉn) ∼=
{
Z for k even

0 for k odd

whenever j ≤ d − 2(n + 4) = n2 + n− 8. (Here we are assuming that n > 4. For n
equal to 3 or 4 the corresponding condition would be j ≤ n2 + n − 10.)

Proof of Theorem 8.2. We know that every infinite stabilizer must contain one or
more one-parameter Lie groups. Every one-parameter subgroup of PGL3(C) can
be parametrized as

t 	→ exp(tA) = I + tA + (tA)2/2! + (tA)3/3! + · · · ,

where A is a 3 × 3 matrix. We can simplify this matrix in three different ways:

• We can put A into Jordan normal form by a linear change of coordinates.
• We can add a constant multiple of the identity matrix to A or, in other

words, multiply exp(tA) by a nonzero constant, since this will not affect
the image in PGL3.

• We can multiply the matrix A itself by a nonzero constant; this is just
equivalent to multiplying the parameter t by a constant.

We will first show, using these three transformations, that the matrix A can be
reduced to one of the following, which we will refer to as Cases 1 through 4.⎛⎝a 0 0

0 b 0
0 0 c

⎞⎠ ,

⎛⎝0 1 0
0 0 1
0 0 0

⎞⎠ ,

⎛⎝0 1 0
0 0 0
0 0 0

⎞⎠ , and

⎛⎝0 1 0
0 0 0
0 0 1

⎞⎠ .

In fact if A has three linearly independent eigenvectors, then we are in Case 1.
In particular, if the eigenvalues a, b, c are all distinct, then we are always in Case 1.
At the opposite extreme, if the eigenvalues are all equal, then subtracting a multiple
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of the identity matrix we may assume that they are all zero. The Jordan normal
form will then correspond to either Case 2 or 3. (Evidently, A cannot be the zero
matrix.) Finally, suppose that just two of the eigenvalues are equal. Then we can
assume that the first two are zero and the third is one, so that the Jordan normal
form is either a diagonal matrix, so that we are in Case 1, or else corresponds to
the matrix of Case 4. The four corresponding matrices exp(tA) can now be listed
as follows.⎛⎝eta 0 0

0 etb 0
0 0 etc

⎞⎠ ,

⎛⎝1 t t2/2
0 1 t
0 0 1

⎞⎠ ,

⎛⎝1 t 0
0 1 0
0 0 1

⎞⎠ , and

⎛⎝1 t 0
0 1 0
0 0 et

⎞⎠ .

Case 1. Suppose that a curve is invariant under the transformation

(x : y : z) 	→ (eatx : ebty : ectz).

Clearly, this maps each of the three coordinate axes to itself. In affine coordinates
with z = 1, we can write this as

(x0, y0) 	→ (x, y) = (ea
′tx0, eb

′ty0) where a′ = a − c , b′ = b − c.

In other words, if x0 and y0 are nonzero, we can write

(34) x/x0 = ea
′t , y/y0 = eb

′t.

Since a, b, c cannot all be equal, we may assume (after permuting the coordinates
if necessary) that a′ and b′ are nonzero.

First suppose that the ratio b′/a′ is a rational number, which we can write as a
fraction in lowest terms as ±�/m with �, m > 0. Then m b′ = ±� a′, so that

(y/y0)
m = emb′t = e±�a′t = (x/x0)

±�.

In other words, we have an equation of the form either

ym = ax� or ymx� = a

for a suitable constant a. After permuting the coordinates appropriately, this takes
the required form (30).

On the other hand, if b′/a′ is irrational or imaginary, then the invariant curve
cannot be algebraic. Choosing t so that a′t is an integral multiple of 2πi in the
equation (34), we see that x = x0 but that y takes a countably infinite number of
distinct values, which is impossible for any algebraic curve.

Case 2. Using affine coordinates (x : y : 1), the automorphism will take the form

(x0, y0) 	→ (x, y) = (x0 + ty0 + t2/2, y0 + t).

Eliminating t = y − y0 from this equation, the curve through (x0, y0) takes the
form x = y2/2 + (x0 − y 2

0 /2), which agrees with the required normal form (32).

Case 3. In this case the transformation takes the simpler form

(x0 : y0 : z0) 	→ (x0 + ty0 : y0 : z0),

so that the invariant curves are just the parallel lines y = y0 and z = z0 or, in other
words, lines which pass through the point (1 : 0 : 0) on the line at infinity. These
can easily be put in the Case 1 normal form, of type D(1, 1, 0).
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Case 4. Here the transformation takes the more ominous form

(x0, y0, z0) 	→ (x, y, z) = (x0 + ty0, y0, etz0).

Thus y = y0 is constant. If y0 = 0, then the invariant lines are just parallel
lines with x = x0, again of type D(1, 1, 0). But if y0 �= 0, then we can solve for
t = (x − x0)/y0, so that the invariant curves have the form

z = z0 exp
(
(x − x0)/y0

)
.

Since this cannot be the equation of any algebraic curve, this completes the proof
of Theorem 8.2. �

Proof of Theorem 8.1. We must show that every curve with stabilizer of dimension
two or more is contained in the list illustrated in Figure 25.

Let C = C1 ∪ · · · ∪ Ck be a curve with irreducible components Cj . Then any
automorphism of GC must permute the Cj . Thus the intersection

⋂
j GCj

, consisting
of projective automorphisms which map each Cj to itself, is a subgroup of finite
index (at most k!) in GC . If dim GC ≥ 2, then it follows that every irreducible
component of C must have dim GCj

≥ 2. Therefore every irreducible component
must be a curve of degree one or two. In fact, any irreducible curve of degree three
or more is either a cusp curve, with dim GC = 1, or else has finite stabilizer.

Thus we need only consider unions of lines and smooth quadratic curves. In
particular, we can ignore curves of type D(p, q, r) with p > 2, since they either
contain a cusp curve or consist of at most three lines. (Note that any union of at
most three lines is already included in the list represented by Figure 25.) We can
also ignore curves of type ND with two or more components, since it is easy to
check that they have a one-dimensional stabilizer. Thus we only need to consider
curves of type D(2, 1, 1) or D(1, 1, 0).

It is easy to check that a curve of type D(1, 1, 0) has stabilizer of dimension two
or more if and only if it either consists of concurrent lines, or consists of exactly
three lines. Since these are already included, it suffices to consider curves which
have at least one component of degree two.

Consider first a single smooth curve of degree two. Since such a curve has genus
zero, it is conformally isomorphic to P1, and its group of conformal isomorphisms is
isomorphic to the group PGL2, of dimension three. The subgroup of isomorphisms
fixing two points is one dimensional and is a group of type D(2, 1, 1). (Compare
Figure 26.) In particular, it extends to a projective automorphism of P2. Since the
group of all conformal automorphisms is clearly generated by automorphisms with
two fixed points, it follows that every automorphism of a degree two curve extends
to an automorphism of P2. This yields the required nonstandard embedding of
PGL2 into PGL3. The discussion of automorphisms of a genus zero curve with one
fixed point is similar. Since any line must intersect the degree two curve in one or
two points, the other possible cases are easily excluded. �

9. Finite automorphism groups

This section will discuss the projective automorphism groups of smooth curves
in P2(C), first answering the following question:

For which degrees n and which primes p does there exist a smooth
plane curve of degree n which admits a projective automorphism of
period p?
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It will also show, following [Ch], that the stabilizer (= projective automorphism
group) of a generic curve of degree four is trivial (Theorem 9.3), and that every finite
subgroup of PGL3(C) can occur as the stabilizer for some smooth curve (Theorem
9.4). The second half of the section will discuss the corresponding questions for
conformal automorphisms of arbitrary compact Riemann surfaces.

Theorem 9.1. Let n be a positive integer, and let p be prime. There exists a
smooth curve of degree n in P2(C) with a projective automorphism of period p if
and only if either

(1) n is congruent to either 0, 1, or 2 modulo p, or
(2) the integer

2g + 1 = 2

(
n − 1

2

)
+ 1 = n2 − 3n + 3

is congruent to zero modulo p.

In case (2), this congruence is satisfied for some n if and only if p is either equal
to 3 or else has the form p = 6m + 1 with m ∈ Z.

(Compare Remark 9.5, and see [Harui] which provides a detailed classification
of automorphism groups of smooth plane curves.)

For n equal to 1 or 2, all primes can occur. Table 1 lists the possible primes for
other small n, as well as the associated genus. Note that the largest prime is 2g+1
whenever 2g + 1 is a prime, and is strictly less than 2g + 1 otherwise. (Compare
Theorem 9.9.)

Table 1. Degree, genus, and possible prime periods for smooth
plane curves

n 3 4 5 6 7 8 9 10

g 1 3 6 10 15 21 28 36

primes 2,3 2, 3,7 2, 3, 5,13 2,3, 5,7 2, 3, 5, 7,31 2, 3, 7,43 2,3, 7,19 2, 3, 5,73

Here the primes coming from case (2) have been shown in boldface. Evidently,
these can be much larger than those from case (1). (Automorphisms of period p = 3
can be obtained from case (1) in all cases, but also from case (2) when n is divisible
by 3.) As one example, for n = 4 and p = 7 the corresponding curve is known
as the Klein quartic. The full automorphism group is a simple group of order
168 = 23 · 3 · 7.

Table 2 shows the prime factorization of 2g+1 for small n (or a dash if 2g+1 = 1).
These prime factors are exactly the primes which can occur in case (2).

Table 2. Showing 2g + 1 as a product of primes.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2g + 1 - - 3 7 13 3·7 31 43 3·19 73 7·13 3·37 7·19 157
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Proof of Theorem 9.1. To show that these conditions are sufficient, it suffices to
provide a list of specific examples shown in Table 3. (Of course we do not claim
that these are the only such examples.)

Table 3. Here ξ is to be a primitive pth root of unity.

n ≡ 0 (mod p) Φ = xn + yn + zn (x : y : z) �→ (x : y : ξ z)

n ≡ 1 (mod p) Φ = xn + yn + zn−1y (x : y : z) �→ (x : y : ξ z)

n ≡ 2 (mod p) Φ = xn + yn−1 z + zn−1y (x : y : z) �→ (x : ξ y : ξ−1 z)

2g+ 1 ≡ 0 (mod p) Φ = xn−1y + yn−1z + zn−1x (x : y : z) �→ (x : ξ y : ξ2−nz)

Each of these four curves is smooth, since in each case it is not difficult to check
that the only solution to the equations Φx = Φy = Φz = 0 is x = y = z = 0.
Furthermore, the indicated mappings are clearly period p automorphisms of P2(C),
and it is not difficult to check that each one maps the corresponding locus Φ = 0
to itself.

The last case (corresponding to case (2) above) is the most interesting. Note
that Φ is the sum of three monomials, which are multiplied, respectively, by ξ, by
ξn−1+2−n = ξ, and by ξ(n−1)(2−n). Thus, in order to map the curve Φ = 0 to itself,
we must have

(n − 1)(2 − n) ≡ 1 (mod p).

But this is equivalent to our hypothesis that n2 − 3n + 3 ≡ 0 (mod p).
We must also check that this congruence

n2 − 3n + 3 ≡ 0 (mod p)

has a solution n for a given prime p > 3 if and only if p is of the form 6m + 1.
Multiplying this congruence by 4 and then making the substitution 2n = b + 3,
we obtain the equation b2 + 3 ≡ 0 (mod p). In other words there is a solution

if and only if the quadratic residue symbol

(
−3

p

)
is equal to one. By quadratic

reciprocity (see for example [L]), we have(
3

p

)
= (−1)(p−1)/2

(
p

3

)
and

(
−1

p

)
= (−1)(p−1)/2 hence

(
−3

p

)
=

(
p

3

)
.

Thus there is a solution if and only if p ≡ 1 (mod 3). Since p is odd, this means
that p ≡ 1 (mod 6).

To prove that the conditions of Theorem 9.1 are necessary, we will make use of
the following.

Lemma 9.2. Any automorphism of P2(C) of prime order p can be put into the
normal form

(35) (x : y : z) 	→ (x : ξy : ξkz)

by a linear change of coordinates in P2, where ξ is a primitive pth root of unity and
k is an integer modulo p.

Proof. Any automorphism of P2(C) lifts to an automorphism of C3. If the given
automorphism is nontrivial with finite order, then using the Jordan normal form we
see that the lifted automorphism is diagonalizable, with either two or three distinct
eigenvalues. After dividing by a suitable constant and permuting the variables,
we can always put the map into the form (x : y : z) 	→ (x : ξy : ξ′z). If the
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automorphism has prime order p, then we can choose ξ to be a primitive pth root
of unity, as required. �

The proof that the conditions of Theorem 9.1 are necessary now proceeds as
follows. Every homogeneous polynomial Φ(x, y, z) can be expressed as a sum of
monomials ah,i,jx

hyizj with h+ i+ j equal to the degree n. If the curve is smooth,
there must be at least one such nonzero monomial with h ≥ n − 1, since otherwise
the curve would be singular at the point (1 : 0 : 0). Similarly, there must be one
such monomial with i ≥ n − 1 and one with j ≥ n − 1. There may well be other
nonzero monomials in the defining equation, but we will ignore them and focus on
the nine monomials which satisfy these conditions.

Under the linear map (x, y, z) 	→ (x, ξy, ξkz) from C3 to itself which corresponds
to (35), each monomial xhyizj will be multiplied by the power ξ�, where � ≡
i + kj (mod p). The exponents � corresponding to our nine chosen monomials can
be tabulated as shown in Table 4.

Table 4. Special monomials and the exponent of ξ

A B C

xhyizj xn xn−1y xn−1z yn yn−1z yn−1x zn zn−1y zn−1x

� 0 1 k n n− 1 + k n− 1 nk 1 + (n− 1)k (n− 1)k

Here the chosen monomials have been separated into three groups, which we
will refer to as Groups A, B, and C. If we choose one monomial from each of
these three groups, the sum will be a homogeneous polynomial defining a (not
necessarily smooth) plane curve. But in order for the resulting curve to admit (35)
as an automorphism of period p, the following requirement must be satisfied:

Condition (*). The exponents � corresponding to the three chosen
monomials must be congruent to each other modulo p.

If n is congruent to 0, 1, or 2 mod p, then we know from Table 3 that this condition
can be satisfied. Suppose then that n is not congruent to 0, 1, or 2 mod p. For the
rest of the proof, “congruence” will always mean congruence mod p.

First suppose that we try to choose the first monomial in Group A, with exponent
� = 0. Then since n−1 �≡ 0 and n �≡ 0, we must choose n−1+k as the exponent in
Group B, so that k ≡ 1−n �≡ 0. We can then check that none of the three choices in
Group C will work. (As an example, to show that 1+(n−1)k cannot be congruent
to zero, note that k ≡ 1 − n and hence 1 + (n − 1)k ≡ 1 − (n − 1)2 = n(2 − n),
which cannot be congruent to zero.)

However, if we choose 1 as exponent in Group A, then we must choose the middle
entry n−1+k in Group B, where now k is congruent to 2−n �≡ 0. A straightforward
computation shows that the first and last choices in Group C will not work, but
the middle choice gives us the required polynomial of case (2). If we choose the
last entry in Group A, then a similar argument shows that we must choose the last
entry in Group B and in Group C, yielding a polynomial which is equivalent to case
(2). This proves Theorem 9.1. �
Caution. There is no claim that these are the only possible curves. We can form
many other curves by adding other monomials to the defining equation. The only
claim is that these are the only pairs (n, p) which can be realized.

Now consider the following.
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Theorem 9.3 (Chang). For n ≥ 4, a generic real or complex curve of degree n in
P2 has no projective automorphisms other than the identity map.

On the other hand, for degree n = 3 the projective automorphism group of
a generic curve has order six in the real case and 18 in the complex case. (See
[BM, §3]. In terms of the additive group structure on an elliptic curve, taking a flex
point as zero element, the group of automorphisms is generated by the translations
p 	→ p+p0, where p0 can be any one of the flex points, together with the reflection
p 	→ −p. There are three flex points in the real case and nine in the complex case.)

To give the idea of the argument without too many complicated estimates, we
will consider only the degree four case.

Proof of Theorem 9.3 for n = 4. Clearly it suffices to prove that a generic curve of
degree four has no automorphism of prime order. The space of smooth curves of
degree n = 4 has dimension n(n + 3)/2 = 14. We must show that the algebraic
subspace consisting of curves with an automorphism of period p has dimension
strictly less that 14 for each p. In fact we know from Table 1 that we need only
consider the primes 2, 3, and 7.

Any automorphism of P2 of prime period can be put into diagonal form by a
linear change of variables. First suppose that there are only two distinct eigenvalues,
so that it can be put into the form

(36) (x : y : z) 	→ (x : y : ξz) so that xhyizj 	→ ξj xhyizj ,

where ξ is a primitive p-root of unity. First consider the prime p = 2. It is not
hard to check that there are nine monomials of degree four with j even and only
six with j odd. Thus, if we consider only linear combinations of monomials with j
even we get an eight-dimensional space of curves with an automorphism of period
two. Since these include the Fermat curve x4 + y4 + z4 which is certainly smooth,
it follows that a generic curve of this form is smooth. We could also consider the
case j odd, but this would yield a five-dimensional space, which we can ignore.

Now note that the normal form (36) corresponds to a splitting of C3 as the
direct sum of a two-dimensional eigenspace (for the x, y variables), and a one-
dimensional eigenspace (for the z variable). It takes two parameters to specify the
first eigenspace, and two more parameters to specify the second eigenspace, and
finally at most eight more parameters to specify the curve. Thus the dimension of
the space of all such curves is 2 + 2 + 8 = 12, which is less than 14, as required.

For period p = 3, a similar argument shows that there are seven monomials with
j ≡ 0 (mod 3), and five with j ≡ 1, leaving three with j ≡ 2. Thus the space of all
such smooth curves has dimension at most 2+2+(7− 1) = 10. (We say “at most”
10, since we have not checked for smoothness.)

For p ≥ 5, there are no smooth curves of degree four with an automorphism
having only two distinct eigenvalues. In fact every such curve must either contain
the line z = 0 (if j > 0) or else be a cone over the point (0, 0, 1) (if j = 0).

Now consider an automorphism of period three with three distinct eigenvectors,
so that we can use the normal form (x, y, z) 	→ (x, ξy, ξ2z). Then we must consider
the value of i + 2j modulo 3. It turns out that there are six monomials with
i + 2j ≡ 0, and four with i + 2j ≡ 1, and hence five with i + 2j ≡ 2. Since it
takes six parameters to specify the three eigenspaces, we get an upper bound of
6 + (6 − 1) = 11, which is again less than 14.
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The case of period seven with three distinct eigenvalues is more complicated,
since there are several possible choices of ξ′. However, one can check that it is
always possible to reduce to the case ξ′ = ξ2 or ξ′ = ξ3. In the first case the most
frequent value is 1 + 2j ≡ 4 (mod 7) which occurs three times, while in the second
case it is 1 + 3j ≡ 3, which occurs three times. Thus the dimension is at most
6 + (3 − 1) = 8. This completes the proof for curves of degree four. �

It follows that in the space of smooth degree four curves, the codimension of the
subset consisting of curves with nontrivial stabilizer is precisely 14 − 12 = 2.

Theorem 9.4. Any finite subgroup of G = PGL3(C) can occur as a stabilizer.
More explicitly, for any subgroup Γ ⊂ G of finite order m, there exists a smooth
projective curve C of degree 4m with stabilizer GC equal to Γ.

See [HMO] and [Harui] for discussion of all stabilizers of smooth plane curves.

Remark 9.5. A catalog of all possible finite subgroups of G = PGL3(C) has been
provided by Miller, Blichfeld, and Dickson [MBD, Part II]. (See also Hambleton
and Lee [HL].) Without giving the complete list, here are some examples. The
group can have arbitrary order, since any abelian group with two generators is
contained in the stabilizer for three lines in general position, as described at the
beginning of Section 8. Any finite subgroup of the rotation group SO3 can occur,
since SO3 ⊂ PGL2 ⊂ PGL3. There are only three simple groups:

• The group PSL2(F7) of order 168 can be realized as the stabilizer of the Klein
quartic. (See the discussion following Table 1 above.)

• The alternating group A6 of order 360 is the stabilizer of a smooth degree six
curve which was described by Wiman [Wim] in 1896.

• The alternating group A5 of order 60 (= icosahedral group) also occurs as the
stabilizer of a degree six curve. Dolgachev, Farb, and Looijenga [DFL], following
Edge, have described a pencil of degree six curves, first studied by Wiman, such
that the generic element is smooth, with A5 as stabilizer.

Another noteworthy example, of order 216, is the automorphism group of the
Hesse configuration, which can be described as a singular curve consisting of 12 lines
which intersect in the nine flex points of an elliptic curve. (Compare [BM, Figure
7].)

Proof of Theorem 9.4. Let Γ be a finite subgroup of G = PGL3(C) with m ele-
ments. Since the case m = 1 is taken care of by Theorem 9.3, we may assume
that m > 1. It is easy to construct a singular curve in C4m which has Γ as stabi-
lizer: According to Theorem 9.3, a generic curve C1 ∈ C4 has trivial stabilizer. Let
C Γ
1 ∈ C4m be the union of the translates g(C1) by the elements g ∈ Γ. Then it is

not hard to see that the stabilizer of C Γ
1 is precisely the group Γ.

In order to find a smooth example, we will use Bertini’s Theorem,39 which asserts
that a locus of the form α1Φ1 + · · · + αkΦk = 0, where the Φj are homogeneous
polynomials of the same degree, is nonsingular for a generic choice of the coefficients
αj , provided that the common zero locus

Φ1 = · · · = Φk = 0

is empty. To apply this theorem, choose three curves Ci ∈ C4 which are generic in
the sense that the triple (C1, C2, C3) is a generic point of C4 × C4 × C4. Then each

39See for example [Harr] or [Nam]. We thank Robert Lazarsfeld for suggesting this argument.
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pair C Γ
i and C Γ

j will intersect transversally in (4m)2 distinct points, but the 3-fold

intersection C Γ
1 ∩ C Γ

2 ∩ C Γ
3 will be empty. Now let Φj = 0 be the equation of C Γ

j .
Then for a generic choice of coefficients αj the locus C(α1 : α2 : α3) defined by
the equation

(37) α1Φ1 + α2Φ2 + α3Φ3 = 0

will be a smooth Γ-invariant curve. We will prove the following.

Lemma 9.6. For (α1 : α2 : α3) in a small neighborhood of (1 : 0 : 0) the curve
C(α1 : α2 : α3) has stabilizer precisely equal to Γ.

Proof. Since C1 is a generic curve, the intersections between C1 and its translates
by elements of Γ must all be transverse. It follows that C Γ

1 , which is a union of
m translates of C1, is smooth except for 42

(
m
2

)
= 8m(m − 1) simple self-crossing

points.
Since C Γ

1 has only simple self-crossing singularities, we know by Theorem 7.13
or by Corollary 7.18 that there exists a G-invariant neighborhood U of C Γ

1 in C4m

on which the action is proper. Therefore we know by Lemma 2.5 that the order of
the stabilizer is upper semi-continuous as a function of the parameters, and hence
is less than or equal to its value at the point (1 : 0 : 0) for all points sufficiently
close to (1 : 0 : 0). Since the stabilizer is equal to Γ at (1 : 0 : 0) and contains
Γ for all parameter values, this shows the stabilizer is equal to Γ throughout some
neighborhood of (1 : 0 : 0). This proves the lemma. Since a generic C(α1 : α2 : α3)
in this neighborhood is smooth, it also completes the proof of Theorem 9.4. �

Remark 9.7. With a little more work we can prove that the curve C(α1 : α2 : α3)
has stabilizer Γ for a generic choice of (α1 : α2 : α3). The proof will be based on
the following.

Let H be an arbitrary finite group of order h > m, and let Hom(H, G) be the
set of all group homomorphisms (or representations) ρ : H → G = PGL3. Then
Hom(H, G) is an algebraic subset of the h-fold cartesian product GH consisting
of all functions from H to G. (Of course this set is not compact, since G is not
compact.)

The subset Hom inj(H, G) consisting of injective homomorphisms (= faithful
representations) is a closed algebraic subset. In fact it is both open and closed
in the classical topology, as a subset of Hom(H, G). (If a sequence of injective
homomorphisms ρj converged to a noninjective homomorphism, then the images
ρj(hj) of some nonidentity elements of H would have to converge to the identity
element of G. But this would imply the the order of ρj(hj) tends to infinity, which
is impossible. Compare the proof of Lemma 2.25.) Since every irreducible set is
connected in the classical topology, it follows that Hom inj(H, G) is also a Zariski
closed algebraic subset of Hom(H, G).

Let P2
par be the parameter plane consisting of all (α1 : α2 : α3) , and let

X(H) ⊂ P2
par × Hom inj(H, G)

be the algebraic set consisting of all pairs
(
(α1 : α2 : α3), ρ

)
in P2

par×Hom inj(H, G)
such that the curve of equation (37) is invariant under ρ(H). Finally, let Y (H) ⊂
P2
par be the image of X(H) under projection to the first factor. By a theorem of

Chevalley, this image is constructible, meaning that it can be obtained from Zariski
open and closed sets by taking finite unions and finite intersections. In particular,
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if Y (H) is Zariski dense in P2
par, then it must contain a Zariski open subset of P2

par.
(Compare [Gor] or [Harr, Lem. 3.17] as well as the proof of Lemma 6.2 above.)

It follows that this image Y (H) has dimension at most one. For if it had dimen-
sion two, then there would be a Zariski dense and open subset of P2

par for which
the corresponding stabilizer contains a copy of H. In particular, this would be true
for almost all points in a small neighborhood of the point (1 : 0 : 0). But Lemma
9.6 shows that this is not possible. Therefore, the dimension of Y (H) is at most
one, so that a generic curve C(α1 : α2 : α3) does not admit H as an automorphism
group.

Finally, note that only finitely many groups H need be considered, since accord-
ing to Hurwitz there is an upper bound on the orders of possible automorphism
groups of smooth curves. (Compare Remark 9.8.) This proves that a generic
C(α1 : α2 : α3) must have stabilizer precisely equal to Γ.

Remark 9.8 (The Hurwitz theorem: Conformal automorphisms of Riemann sur-
faces). The group of all conformal automorphisms of a compact Riemann surface
of genus g ≥ 2 has been much studied since the time of Hurwitz [Hur], who proved
that such a group has at most 84 (g − 1) elements. The cases in which the group
has exactly 84 (g − 1) elements are particularly interesting since they correspond
to tessellations of the curve by hyperbolic triangles, each with angles π/2, π/3,
and π/7 and with area 2π/84. (For more on this see [Co].) There are now many
examples of groups which realize this Hurwitz maximum. As an extreme example,
Wilson [Wi] has shown that the “monster group” of order roughly 8 × 1053 is one
such group.

In Theorem 9.3 we proved that for n ≥ 4, a generic real or complex curve of
degree n in P2 has no projective automorphisms other than the identity map. The
corresponding statement for arbitrary Riemann surfaces is that a generic Riemann
surface of genus g ≥ 3 has no nontrivial conformal automorphism. (See [Ba] as well
as [Po].) However, every Riemann surface of genus two is hyperelliptic, and hence
has an automorphism of period two. Of course any surface of genus zero or one has
automorphisms of all orders.

Theorem 9.9. Given a genus g ≥ 2 and a prime p, there exists a compact Riemann
surface with an automorphism of period p if and only p has the form

(38) p = 1 +
2(g− g0)

Δ
,

with g0 ≥ 0 and Δ ≥ 1, where the expression

f = Δ + 2 − 2g0

must satisfy f ≥ 0 with f �= 1 .

Here g0 is the genus of the quotient surface in which each orbit of the auto-
morphism has been collapsed to a point. (Compare [HKKO].) Evidently it follows
from (38) that g > g0 in all cases. The denominator Δ has no direct geometric
interpretation; however, f can be described as the number of fixed points of the
automorphism.

To understand this result, first consider the case Δ = 1. The conditions f ≥ 0
and f �= 1 then require that g0 = 0, yielding p = 2g + 1. Thus whenever 2g + 1 is
prime, there exists an automorphism of period 2g+1. In all cases, since Δ ≥ 1 and
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g0 ≥ 0, it follows easily that p ≤ 2g + 1 for any p which satisfies (38). (Compare
[Bars].)

Next consider the case Δ = 2. Then g0 can be either 0, 1, or 2. Correspondingly,
the expression 1+2(g−g0)/2 will be either g−1 , g, or g+1. Thus whenever one of
these numbers is prime, there is a corresponding automorphism of this prime order.
In some extreme cases such as g = 6 or 18 or 30, all three of the numbers 2g + 1
and g± 1 will be primes. At the other extreme, for g = 25 none of the numbers g,
g± 1, and 2g + 1 is prime.

In all of the remaining cases, with Δ ≥ 3, it is easy to check that p ≤ 1 + 2g/3,
which is strictly smaller than g− 1 when g > 6.

Now consider small primes. The primes 2 and 3 can occur in any genus:
For p = 2 we can choose

g0 = 0 and Δ = 2g so that f = 2 + 2g.

For p = 3,

g0 = 0 and Δ = g so that f = 2 + g.

The case p = 5 is more delicate. Equation (38) implies that g − g0 = 2Δ. If we
choose g0 to be 0 or 1 according as g is even or odd, then the necessary inequality
f = Δ + 2 − 2g0 ≥ 0 is certainly satisfied; with f > 1 when g �= 3. However, in
the special case g = 3, the only possible choice is g0 = 1 with Δ = 1. But then
f = Δ + 2 − 2g0 = 1, which is not allowed.

Thus there exists a surface of genus g with an automorphism of
period five if and only if g �= 3.

Table 5 shows the possible choices for curves of genus 2 ≤ g ≤ 12 and for primes
p ≥ 7. (For these particular values of g and p, there is at most one choice of the
quotient surface genus g0, and hence at most one choice for f and Δ. However this
is certainly not true for all g and p. Even for the prime 5, there are two possible
choices for g0 when the genus is 6, 10, or 11.)

Table 5. Showing the possible primes p ≥ 7 which can occur for
each genus between 2 and 12. The auxiliary numbers g0, f , and Δ
are also shown. The primes 2, 3, and 5 are not listed here, but are
discussed in detail above.

g 2 3 4 5 6 7 8 9 10 11 12
p ≥ 7 7 11 7, 13 7 7, 17 7, 19 7, 11 11, 23 11, 13

g0 0 0 0, 0 1 2, 0 0, 0 1,0 1, 0 2, 0
f 3 3 4, 3 2 0, 3 5, 3 3, 4 2, 3 0, 4
Δ 1 1 2, 1 2 2, 1 3, 1 3, 2 2, 1 2, 2

Remark 9.10. Chang [Ch] has proved the following.

Any conformal isomorphism between smooth plane projective
curves of degree at least four is actually a projective isomorphism.

(In fact he proves the same even for birational isomorphisms.) In particular, the
conformal automorphism group for such a curve can be identified with its projective
automorphism group. It follows that the primes which occur in Table 1 for degree n
must also occur in Table 5 for genus g =

(
n−1
2

)
. Any primes which occur in Table 5
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but not in Table 1 must correspond to Riemann surfaces which cannot be smoothly
embedded in P2. As examples, a surface of genus six with an automorphism of
period seven, or a surface of genus ten with an automorphism of period eleven,
cannot be embedded into P2.

Proof of Theorem 9.9. The basic tool is the Riemann-Hurwitz formula for a
branched covering map S → S0 of degree p, which states that:

the number of branch points, counted with multiplicity, is equal to
p χ(S0) − χ(S),

where χ is the Euler characteristic. (See for example [Mi2, Theorem 7.2].) In the
case of a cyclic p-fold branched covering S 	→ S0 with f fixed points, there are just
f branch points, each with multiplicity p − 1, so the formula takes the form

(39) (p − 1)f = p χ(S0) − χ(S).

Solving for p, we obtain

p =
f − χ(S)

f − χ(S0)
=

f + 2g− 2

f + 2g0 − 2
.

Here the numerator is positive if g ≥ 2, so the denominator must also be positive.
Denoting this denominator by

Δ = f + 2g0 − 2,

we can solve for f = Δ+2−2g0. Substituting this expression for f in the numerator,
we obtain the required formula,

p =
(Δ + 2 − 2g0) + 2g− 2

Δ
= 1 +

2(g− g0)

Δ
.

Here g0 ≥ 0 and f ≥ 0 by definition.

Lemma 9.11. Such a branched covering exists except in the following special cases:

(1) It cannot exist if f = 1, or if f = g0 = 0.
(2) In the case p = 2, it exists only under the extra condition that f is even.

Proof. Choose a surface S0 of genus g0, and choose a finite subset K ⊂ S0 consist-
ing of f points. A p-fold cyclic covering of S0�K is determined by a homomorphism
from the fundamental group π1(S0�K), or equivalently from the abelianized fun-
damental group H1(S0�K), onto the cyclic group Z/p. (See [Li] or [Mun].) This
covering will extend to a branched covering S of S0, branched over each of the
points of K, if and only if a small loop around each one of the f points maps non-
trivially to Z/p. If f = 0, there is an additional requirement that g0 > 0 so that
S0�K is not simply connected. If f = 1, then a small loop around the single point
of K is homologous to zero, so no such homomorphism can exist. If p = 2, since
the sum of the elements of H1 corresponding to such small loops is zero, we must
have f even. However in all other cases, it is not difficult to construct the required
homomorphism. This completes the proof of Lemma 9.11; �

and hence the proof of Theorem 9.9. �

Whenever there exists a pair consisting of a Riemann surface S of genus g and an
automorphism α of period p with f fixed points, the proof shows that the space of
all isomorphism classes of such pairs is a finite covering of the moduli space Mg0, f .
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Remark 9.12. As a final question, we can ask which groups can occur as conformal
automorphism groups. This has a very easy answer.

Every finite group Γ can occur as the group of conformal automor-
phisms of some compact Riemann surface.

This can be proved as follows. Choosing some set of generators g1, . . . , gk for Γ,
we can form the associated Cayley graph, with one vertex for each group element,
and with one edge from g to gjg for each g ∈ Γ and each generator gj . Now replace
each edge by a cylinder [0, 1] × R/Z. Choose a smooth surface of genus zero with
2k boundary circles, and identify these boundary circles with the 2k cylinder ends
which are closest to the vertex corresponding to the identity element. It is not hard
to do this so that the result is C∞ smooth. Paste an isomorphic copy of this genus
zero surface around each other vertex of the graph, so that Γ acts transitively on
the resulting compact C∞ surface M . It is not hard to check that the resulting
surface has genus

g = 1 + (k − 1)m,

where m is the order of Γ. We need to have g > 1, but this can always be achieved
by enlarging the chosen list of generators if necessary. Assuming that g > 1,
the Uniformization Theorem asserts that M has a uniquely determined complex
structure, and hence a unique metric of constant curvature −1.

This surface clearly admits Γ as a group of isometries. However, it may well have
extra isometries. (For example this will be the case whenever there is an automor-
phism of Γ which preserves the list of generators.) For this reason, we need to make
the construction a little less regular. Perhaps the easiest way to do this is to pinch
each cylinder near one end to create a very short geodesic. Furthermore, we can do
this so that different generators correspond to short geodesics of different length.
Since every automorphism must map a short geodesic to another short geodesic of
the same length, we can guarantee in this way that the only automorphisms are
the elements of Γ.

10. Real curves: The Harnack-Hilbert problem

This section will be a digression, discussing a different kind of problem. Harnack
in 1876 proved that40

The number of connected components of a smooth curve of degree
n in the real projective plane is at most g + 1 where g =

(
n−1
2

)
is

the genus.

As examples, for degree three the curve |C|R has most two components, and for
degree four at most four. (Compare Figure 29.)

The most famous question about such curves is the first part of Hilbert’s 16th
Problem (see [Hi1,Hi2]), which concerns real algebraic curves:

The maximum number of closed and separate branches which a
plane algebraic curve of the nth order can have has been determined
by Harnack. There arises the further question as to the relative po-
sition of the branches in the plane. . . .

40See [Harn]. Klein, who was Harnack’s advisor, later published his own proof, as described
below.
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Figure 29. Six examples. The first five panels above show repre-
sentative curves for the five connected components41of Ccs

4 (R) for
which the real locus |C|R is nonempty. Note that the various com-
ponents of |C|R always arrange themselves so that no line intersects
more than two of them. The sixth panel shows a configuration of
three components which cannot occur for any curve of degree less
than six, since a line through the two smaller circles crosses all
three circles, and hence has six intersection points.

Hilbert goes on to discuss real varieties of higher dimension (see [Kh]) and also
algebraic differential equations (see [Il]). However, we will discuss only his question
about real curves. For further information, see for example [Roh], [Pe], [Arn], [Gu],
[R1,R2,R3], [W], [V1,V2,V3] (listed in chronological order).

Real-smooth and complex-smooth curves. A curve C defined over R will be
called real-smooth if there are no singularities in the real zero-locus |C|R and
complex-smooth if there are no singularities in the complex zero locus |C|C. Thus
there are open subsets

Ccs
n = Ccs

n (R) ⊂ Crs
n = Crs

n(R) ⊂ Cn(R)

consisting of complex-smooth and real-smooth curves. It is somewhat easier to
construct examples if we work in the larger space Crs

n . For example, any union of
two or more disjoint circles or ellipses in P2(R) is real-smooth but not complex-
smooth. (Of course the number of components in such trivial examples is very
much smaller than Harnack’s upper bound.)

On the other hand, in the complex-smooth case we can obtain extra information
by considering the way that the real locus |C|R is embedded in the Riemann surface

41The classification in Figure 29 depends on Zeuthen’s proof that any two smooth curves
of degree four which are topologically isotopic are necessarily isotopic through a smooth one-
parameter family of projective curves and, hence, belong to the same connected component of Ccs

4 .

(See [Z] or [V3, p. 197].)
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|C|C. As Klein noted, this leads to a quite easy proof of Harnack’s theorem, as
follows (see [K]):

Any g+1 disjoint embedded circles in a Riemann surface necessar-
ily disconnect it. (Compare Remark 7.3.) If we choose a minimal
set of such disconnecting circles, then there must be exactly two
complementary components. Now suppose that each of these circles
is pointwise invariant under complex conjugation. Then complex
conjugation must interchange the two complementary components.
Therefore no further embedded circles can be invariant under com-
plex conjugation. It follows easily that there can never be more than
g + 1 disjoint circles which are invariant under complex conjuga-
tion.42

In fact, for Hilbert’s problem it does not matter whether we work with real-
smooth or complex-smooth curves:

Proposition 10.1. Every real-smooth curve can be approximated arbitrarily closely
by a complex-smooth curve. Furthermore, in the space Crs

n of real-smooth curves of
degree n ≥ 3, let Csing be the algebraic subset consisting of curves C such that the
complex zero-set |C|C is singular. Then Csing has codimension two. Therefore no
connected component in Crs

n is disconnected by this algebraic subset. In other words,
every connected component in Crs

n determines a unique connected component in the
smaller set Ccs

n .

Proof.

Step 1. The space of all curves of degree n in P2(C) has complex dimension d(n) =(
n+2
2

)
−1 = n(n+3)/2. Let Vn be the subvariety consisting of curves having singular

points at (0 : 0 : 1) and (0 : 1 : 0). Then the dimension of Vn is d(n) − 6. In fact
the curve defined by the equation43

Φ(x, y, z) =
∑

i+j+k=n

ai,j,k xiyjzk = 0

will pass through these two points only if a0,0,n = a0,n,0 = 0, and it will be singular
at these two points only if

a1,0,n−1 = a0,1,n−1 = a1,n−1,0 = a0,n−1,1 = 0.

Step 2. Given two (not necessarily disjoint) small open sets U1, U2 ⊂ P2(C), let
WU1,U2

be the set of triples (C, p, q) consisting of a degree n complex curve C
having a marked singular point p ∈ U1 and a marked singular point q ∈ U2, with
p �= q. It takes four parameters to specify p and q. We can choose a projective
transformation Tp,q depending on these four parameters which carries p to (0 : 0 : 1)
and q to (0 : 1 : 0). The equation Φ

(
Tp,q(x, y, z)

)
= 0 will then uniquely describe

the most general curve of degree n with p and q as singular points. It follows that
the dimension of WU1,U2

is

4 +
(
d(n) − 6

)
= d(n) − 2.

42The case of genus one provides an interesting elementary exercise. It is easy to describe an
involution of a torus with two invariant circles, but it is harder to visualize an involution with
only one invariant circle. (The two cases are topologically quite different, so it is impossible to
pass smoothly from one to the other)

43Here Φ should have no squared factor, so that this equation defines a curve rather than a
1-cycle.
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Since a curve can have at most finitely many critical points, it follows that the
projection map from WU1,U2

into Cn(C) is finite-to-one; hence, its image must be
a (d(n) − 2)-dimensional set W ′

U1,U2
. Now cover P2(C) × P2(C) by finitely many

U1 × U2, and let Wn be the union of the W ′
U1,U2

.

Step 3. Since the Zariski closure Wn is invariant under complex conjugation, it must
be defined over the real numbers. Therefore its intersection with Cn(R) has real
codimension two in Ccs

n (R). But every real-smooth curve with a complex singularity
must also have a complex conjugate singularity, and hence must belong to the
codimension two subset Wn ∩ Cn(R). �
Definition 10.2. A circle smoothly embedded in P2 = P2(R) will be called an
oval if it is two-sided, separating the projective plane into two components, and a
nonoval if it is one-sided, not separating the plane. (Note than an oval in this sense
need not be convex. For example, two of the ovals in Figure 29 are nonconvex.)

Equivalently, an embedded circle is an oval if and only if the associated homology
class in H1(P

2; Z/2) is zero. Every oval has a neighborhood which is an annulus.
Furthermore, one of its two complementary components must be a topological disk,
while the other must be a Möbius band. On the other hand, every nonoval has a
Möbius band neighborhood, and an open topological disk as complement. It follows
from this that any two nonovals must intersect each other, since it is impossible to
embed a Möbius band in a disk. Note that a generic line intersects an oval in an
even number of points and a nonoval in an odd number of points.

Now consider a curve C ∈ Ccs
n . The number of intersections between |C|R and

a generic line in P2(C) is always congruent to n mod 2. (In fact the complexified
line intersects |C|C n times; but an even number of these intersection points belong
to complex conjugate pairs.) Therefore the discussion above implies that the real
locus |C|R is a union of ovals if the dimension is even, but that it contains exactly
one nonoval if n is odd.

In order to distinguish between different configurations of topological circles, it
is convenient to introduce the dual graph, which is a combinatorial description of
the topological arrangement.

Definition 10.3. First consider a collection of N disjoint ovals O1, . . . , ON in
P2(R), as in Figure 30. The associated dual graph Γ is a rooted tree which has
N +1 vertices, one vertex vk corresponding to each connected component Uk of the
complementary region. The root point corresponds to the unique complementary
region U0 which is nonorientable. Two vertices are joined by an edge, which will be
labeled ej , if and only if the closures of the corresponding regions intersect in the
common boundary curve Oj . (We should think of this dual graph as an abstract
tree: It can be embedded in the plane for illustrative purposes, but the particular
choice of embedding is arbitrary.)

Now suppose that we are given a configuration consisting of N −1 ovals together
with one nonoval ON . The root point will now correspond to the complementary
region UN which surrounds ON . Since we cross from UN to itself as we cross ON ,
it is natural to define the resulting dual graph to be the rooted tree as constructed
above, but augmented by an extra edge eN which is a loop, with both endpoints
at the root point. Compare Figure 31, which shows five ovals plus one nonoval,
indicated schematically by a line segment, together with the corresponding dual
graph. (Of course, if we ignore the nonoval, then we get a rooted tree in all cases.)
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Figure 30. A collection of seven ovals in the plane, and the as-
sociated dual graph. Each numbered vertex corresponds to the
associated numbered complementary region, and each edge corre-
sponds to the oval which separates two such regions.
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Figure 31. A similar figure with five ovals plus one nonoval

It is not hard to check that one collection of embedded topological circles in P2(R)
can be deformed continuously into another if and only if they have isomorphic dual
graphs, where the isomorphism is required to preserve the root point.

However, we are interested in smooth algebraic curves in P2(R). If two curves
of degree n represent the same connected component in the space Crs

n or Ccs
n of

smooth curves, then it follows that they have isomorphic rooted graphs. However,
the converse statement is false.

One can learn much about a curve C ∈ Ccs
n by thinking of its real locus |C|R as

a collection of topological circles embedded in the smooth Riemann surface |C|C.
Following Klein, a curve is said to be of Type 1 if the Riemann surface |C|C is
disconnected by |C|R and of Type 2 if the difference set |C|C�|C|R is connected.
Rokhlin [R3] described an example of two connected components in the space Ccs

5

such that the real loci |C|R for curves in one component can be deformed continu-
ously to the real loci for curves in the other component, even though one of these
components has Type 1, while the other has Type 2. (Compare [V3, pg. 12].) For
curves of degree six, Rokhlin [R3] and Nikulin [Ni] showed that the space Ccs

6 has 64
distinct connected components, although there are only 56 distinct real topological
types. (Compare [KKPSS].)
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Perhaps Hilbert’s Problem should be reformulated in more modern terms as
follows:

Is it possible to find an algorithm which, for any specified degree n
and any rooted tree, will decide whether or not there is a curve in
Ccs
n (R) with the topological type corresponding to this tree? More

precisely, can it decide how many components in Ccs
n (R) have this

topological type, and can it decide when two given curves belong
to the same component? (Of course, to be really useful such an
algorithm would have to run in polynomial time.)

Of course, as Hilbert indicated, the special case of curves with a maximal number
of components would be of particular interest. These are often called M-curves .

It would also be interesting to find out what one can say about the topology of
the various components of Ccs

n (R). Perhaps, some components have a complicated
fundamental group? For even n there is one component which is easy to understand:
It is not hard to see that the component consisting of curves C with no real points,
so that |C|R is empty, is a convex subset of projective space.

Remark 10.4. One can also consider the moduli space Mcs
n = Ccs

n /G for real curves
which are complex-smooth, where G = PGL3(R). Since Ccs

n (R) is by definition a
subset of C sm

n (C), it follows easily from Corollary 6.9 that the action of G on Ccs
n (R)

is proper, and hence that the quotient space Mcs
n (R) is a Hausdorff orbifold. Since

this group G is connected, it follows easily that there is a one-to-one correspondence
between connected components of Ccs

n and connected components of Mcs
n .

Appendix A. Remarks on the literature

The moduli space M sm
n (C) for smooth curves of degree n has long been studied.

In many cases it is known to be a rational variety. (Compare [S-B] and [BBK].)
For the problem of compactifying M sm

n (C), compare [Hac].
The “Algebraic Geometer’s Bible” for studying moduli spaces is Mumford’s Geo-

metric Invariant Theory [Mu]. For other expositions of this theory, see for example
[New] or [Sim], and for the special case of PGLk+1 acting on hypersurfaces in Pk see
[Ne] as well as [Mu, Ch.4, §2]. The theory takes a simpler form in the very special
case where the reductive Lie group G acts on a variety X ⊂ Pk linearly , that is
by an embedding into PGLk+1 which lifts to an embedding into GLk+1. A point of
x ∈ X is then called stable if the stabilizer Gx of x is finite, and if the orbit of a
representative point x̂ ∈ Ck+1�{0} over x is closed and bounded away from zero.
If Xs is the open subset consisting of stable points, then the quotient Xs/G is well
behaved. The extension of this definition to more general group actions depends
on a study of suitably linearized line bundles over X. Particularly noteworthy are
the Hilbert-Mumford numerical criterion for stability [Mu, Ch. 2], and the related
Kempf-Ness criterion [KN].

Alternative definitions can be provided in a somewhat simpler way by introducing
symplectic structures. (Compare [GRS], or [MS2, Section 5.7].) Here is a brief
outline: Suppose that G is a complex reductive group with maximal compact
subgroup K (for example G = PGLk(C), with K = PUk), and suppose that G
acts on a manifold X, which is provided with a K-invariant symplectic structure.
In good cases, there is an associated moment map

m : X → L∗,
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where L∗ = HomR(L, R) is the dual vector space to the Lie algebra L = L(K),
considered as a real vector space. (Compare [GGK, Appendix B].) This map m

has two important properties: The given action of K on X corresponds to the
adjoint action of K on L∗. Furthermore, for each vector v ∈ L, if we think of
the map x 	→ m(x)(v) from X to R as a Hamiltonian function, then the solution
curves for the associated Hamiltonian differential equation on X are just the orbits
t 	→ exp(tv)(x) under the one-parameter subgroup t 	→ exp(tv) of K which is
generated by v. A point x ∈ X is called stable, with respect to this choice of m,
if the stabilizer Gx is finite, and if the intersection of the set m−1(0) with the G
orbit of x is nonempty.

In the case of interest, with G = PGLk(C) with k ≥ 2, there is a unique choice
of the moment map m; hence the open set Xs consisting of stable points is also
uniquely defined. Furthermore, the quotient space Xs/G is a well-defined orbifold
with a Hausdorff topology.

In §6 and §7 we describe open subsets of X with a Hausdorff orbifold quotient.
Perhaps these are contained in Mumford’s set of stable points, but we do not have
a proof.
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