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It is no exaggeration to say that in the past 40 years computer algebra systems
(CAS) have changed the everyday practice of mathematics immensely. In general
terms, CAS all deal with mathematical objects represented in symbolic form. Some,
but not all, also provide interfaces to routines for numerical computation; some,
but again not all, provide interfaces to graphical routines for visualization of math-
ematical objects. Almost all of them provide programming languages to allow users
to extend the packages’ functionality. All of them aim, in one way or another, to be
“systems for doing mathematics by computer” as Stephen Wolfram’s Mathematica
package [15] boldly proclaims.

1. Historical development of CAS

The following discussion is meant to illustrate the range of such systems that
have been created. It does not aim to be exhaustive, and the author apologizes in
advance to anyone whose contributions have been omitted or overlooked.

The first computer algebra systems in effect grew out of artificial intelligence
research starting in the 1960s, but connections with that side of computer sci-
ence have lessened over time. First-generation systems were focused primarily on
basic symbolic computation including expansion and simplification of expressions,
symbolic differentiation and indefinite integration of functions, symbolic solutions
of differential equations, and related operations. Among the earliest of the first-
generation systems was Macsyma, by Project MAC at MIT, which also included
well-known computer networking and artificial intelligence research groups. Mac-
syma became a commercial product in 1982, but the last version of MIT Macsyma
was made available to academic and government users and this version developed
into the open source Maxima system. Other well-known first-generation systems
were REDUCE, developed by Anthony Hearn, and the Axiom system developed by
Richard Jenks. All of these remain in use to this day.

The commercial potential of CAS came to the fore with the second generation
starting in the 1980s. The muMATH system, developed by Albert Rich and David
Stoutemyer of Soft Warehouse was the first such system designed to run on personal
computers. Derive, a system developed by the same company, was a successor to
muMATH. Maple [11], developed at the University of Waterloo, and Mathematica
are among the best-known commercial CAS. The Symbolic Math Toolbox for MAT-
LAB [12], incorporating the earlier MuPad system (developed at the University of
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Paderborn in Germany) also falls within this group. These packages generally pro-
vide more extensive numerical and graphical capabilities addressing the needs of a
wide range of users in research, industry, and education.

A number of other more specialized systems were also developed during roughly
the same period as the second generation of general CAS. They usually grew out
of the research efforts of mathematicians in areas where algorithmic and computa-
tional approaches were becoming more important. These systems generally do not
attempt to be all things to all users and typically do not include extensive numerical
facilities or graphics.

One such focus area was research in commutative algebra, algebraic geometry,
and their applications. There, computations founded on Bruno Buchberger’s algo-
rithm for Gröbner bases, plus new techniques for multivariable polynomial resul-
tants, implemented on the powerful computers becoming widely available through
the 1980s, created something of a revolution. One of the first widely used sys-
tems was the original Macaulay program developed by David Bayer and Michael
Stillman. Its successor, Macaulay2 [9], developed by Daniel Grayson and Stillman,
followed. Other programs with related functionality include CoCoA [1], developed
by a group at the University of Genoa in Italy, and Singular [5], developed by a
group at the University of Kaiserslautern in Germany. The more recent Bertini
system [2] takes an alternate numerical approach to algebraic geometry.

Other areas where the influence of computational methods have been especially
strong include number theory, group theory, and parts of combinatorics. The
PARI/GP system [13] is aimed primarily at applications in number theory and
was originally developed by a team led by Henri Cohen. The GAP system [7]
was originally developed at the Rheinisch-Westfällische Technische Hochschule in
Aachen in Germany and focuses on applications in group theory and combinatorics.

Another extremely powerful package that incorporates features of both of the
previous groups of systems is Magma [4], developed at the University of Sydney in
Australia. This system includes features for computation in many sorts of algebraic
structures. These include the polynomial rings and modules common in commuta-
tive algebra and algebraic geometry, groups, number and function fields, and many
related structures.

2. CAS in mathematical research

All of these CAS are potentially useful as tools for expert mathematicians. They
can be used to automate tedious and lengthy calculations and amplify researchers’
abilities to understand the range of behavior of structures. As a result, they have
facilitated a concrete and experimental approach to doing mathematics in a number
of areas.

In some cases we can even see a direct influence on the development of a research
area resulting from the availability of, or even the features of, this sort of software.
The Macaulay, Macaulay2, CoCoA, and Singular packages discussed above have
had a huge impact on the fields of algebraic geometry and commutative algebra.
Here is one example illustrating how even the way CAS have presented the results
of computations can provide a language for describing phenomena that then leads
to new theoretical results.

Let S be the polynomial ring S = k[x1, . . . , xn] (k a field) with the standard
grading. That is, the xi all have degree 1 and polynomials are considered as sums
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of elements of the Sd, the vector subspaces of homogeneous polynomials of degree
d (together with the zero polynomial). If M is a graded module over S, write Md

for its graded piece of degree d, and for convenience let M(−s) be the associated
module with shifted degrees, so that M(−s)d = Md−s. Since Hilbert’s famous 1890
invariant theory paper [10], it has been known that the Hilbert function of M ,
namely the function

hM (d) = dimk Md,

can be computed once one has computed a minimal graded free resolution

0 ← M ← F0 ← F1 ← · · · ← F�,

where each Fi is a graded free S-module. Moreover, the length � of the resolution
is at most n, the number of variables. Indeed hM (d) is the alternating sum

hM (d) =
�∑

i=0

(−1)i dimk(Fi)d.

The graded free modules Fi can be written as

Fi =
⊕
j∈Z

S(−j)βi,j ,

where the integers βi,j are known as the graded Betti numbers of the resolution.
For example, if M is the quotient ring M = k[x, y]/〈x2, xy, y3〉, then its minimal
free resolution can be written in the form

0 ← M ← S
A←− S(−2)2 ⊕ S(−3)

B←− S(−3)⊕ S(−4),

where the map A comes from the generators of the ideal

A =
(
x2 xy y3

)

and the map B comes from the first syzygies on those generators

B =

⎛
⎝

y 0
−x y2

0 −x

⎞
⎠ .

The shifted gradings are used so that both maps are graded of degree 0. The graded
Betti numbers of a resolution are of interest because they give finer numerical
invariants than the Hilbert function. For instance, it is not hard to see that M ′ =
k[x, y]/〈x2, y2〉 has the same Hilbert function as M above, but different graded
Betti numbers.

Since the original Macaulay system mentioned above, it has been possible to
compute graded free resolutions by computer (the packages Macaulay2, CoCoA,
Singular, and several others mentioned above can all be used for this). Moreover,
the original Macaulay package introduced a very useful convention for representing
the graded Betti numbers that the authors dubbed the “Betti table”. Instead of
representing the βij as entries of a matrix with i being the row number and j being
the column number, the Macaulay Betti table used the convention that βi,i+j is put
in row i column j of the table (this has the effect of reducing the number of rows
needed). Thus, for instance, the Betti table of the resolution given above would be
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presented as follows.

0 1 2
total: 1 3 2

0 : 1 . .
1 : . 2 1
2 : . 1 1

The total row gives the total ranks of the free modules in the resolution, and the
rows below give the graded Betti numbers as described above.

Apparently motivated at least in part by computing many of these diagrams
and also in part by an older conjecture about multiplicities of such modules due to
J. Herzog, C. Huneke, and H. Srinivasan, in 2006 M. Boij and J. Söderberg made
two rather amazing conjectures in [3] about the cone generated by the Betti tables
of resolutions of modules of codimension c with the shortest possible length � = c
(the Cohen–Macaulay modules) in the corresponding vector space over Q. First,
the extremal rays of this cone should come from the Betti diagrams of the so-called
pure resolutions—resolutions with only one nonzero entry in each column. Second,
the Betti diagrams of all Cohen–Macaulay modules are obtained as positive Q-linear
combinations of the diagrams of pure resolutions in a very specific and unique way.

The Boij–Söderberg conjectures immediately captured the imagination of many
researchers in this area, perhaps partly due to the fact that the Macaulay Betti
diagram was such a natural and easily manipulated object to describe resolutions.
Those conjectures were eventually proved by Eisenbud and Schreyer in their 2009
article [6]; the results were extended by them to non-Cohen–Macaulay modules,
and they provided a duality theory between Betti tables and cohomology tables of
vector bundles over projective space. A whole, very active, area of Boij–Söderberg
theory has been the result.

3. CAS in mathematics education

Almost from the start of the wide availability of CAS, some mathematics educa-
tors have sought to incorporate the use of these systems into mathematics teaching.
One interesting and quite successful model for the incorporation of a specific CAS
into the teaching of an advanced mathematical subject is the book A Singular
Introduction to Commutative Algebra by G.-M. Greuel and G. Pfister [8]. The au-
thors of this book are two of the original developers of the Singular CAS mentioned
above. There has also been interest in getting CAS into mathematics courses even
at the secondary-school level. The motivations for this are clear enough: Since
these tools can be so powerful, it is natural to want to provide students who are
learning mathematics with some of that power so that they too can investigate
examples that are more interesting and realistic than those found in traditional
textbook problems. Moreover, familiarity with these tools and skill at using them
well will undoubtedly be valuable if students go on in mathematics or in fields where
mathematics is used in a serious way.

However, it is not entirely clear that the mathematical community has figured
out, even now, how to incorporate the full power of these tools, or even the power
of graphing calculators (some of which now incorporate rudimentary CAS too) into
our teaching in a totally beneficial way. In a subject like mathematics, just learning
to use a tool should not be the end of the story. To give just one small example,
consider the role of curve sketching using information from the first and second
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derivatives of a function of one real variable in traditional Calculus 1 classes (a
topic very much on the reviewer’s mind when writing this review). It is very easy to
poke fun at this topic as a useless, outdated exercise, given the fact that a graphing
calculator can provide acceptable rough plots and a general-purpose CAS such as
Maple, Mathematica, or SageMath can draw publication-quality graphs—far better
graphs, in fact, than most of us can draw. However, unless serious care is taken to
ensure students are getting good intuition in other ways, some understanding of the
concepts of critical points and concavity can be lost if students never have to draw
a curve based on the signs of the first and second derivatives by hand. The graphs
themselves are not ultimately the point in the educational setting; the conceptual
understanding of calculus that is derived by drawing the graphs is the point.

4. SageMath and the book under review

The SageMath system [14] that forms the subject of the book under review is one
of the newest CAS, debuting in 2005. Its genesis came from the frustration that its
creator William Stein and others felt with the commercial systems such as Maple,
Mathematica, MATLAB, and the academic, but still expensive, Magma system.
The proprietary nature of basic components of those systems made it problematic
for researchers to use them in some cases, since there was essentially no way to check
exactly what the lower-level functions were doing. At the same time, the relatively
high cost of those systems was a barrier to wider use, especially in education.

Accordingly, from its inception, SageMath has been free, open-source software
with functionality comparable to Maple and Mathematica. It also rivals Magma
for algebraic computation, and it has many features useful for computations in
number theory. There is a large community of active users who contribute code
and constantly expand the scope of the system. (This is also true of several other
packages mentioned above.) The overall design of SageMath is also quite different
from that of its general-purpose competitors in that SageMath effectively serves as
a front end to many other established specialty systems, such as GAP, Maxima,
Singular, and the R statistical package. These are distributed with the SageMath

source.
The book under review aims to be much more than simply a reference manual

for the SageMath system. Part I is the section closest to a manual in that it deals
with available user interfaces, the syntax of commands for basic operations from
algebra and calculus, SageMath data structures and programming (based on the
relatively user-friendly Python programming language), graphics, and the object-
oriented paradigm that underlies the whole SageMath system. However, as the
authors say in the preface, “[t]his book provides another approach, by giving a
global and synthetic point of view, while insisting on the underlying mathematics,
the classes of problems we can solve, and the corresponding algorithms” (p. xiii).
Almost all of the examples deal with truly interesting mathematics.

Part II, titled “Algebra and Symbolic Computation”, deals with finite fields and
number theory, polynomials in one and several variables, and computational meth-
ods including Gröbner bases, linear algebra, plus solutions of differential equations
and recurrences. Part III deals with numerical computation and covers floating
point number systems, numerical solution of equations, numerical linear algebra,
and numerical integration. The final Part IV offers brief introductions to the use



520 BOOK REVIEWS

of SageMath in several areas within combinatorics—enumeration problems, graph
theory, and integer programming.

The authors clearly envision, and indeed aim to promote, extensive use of this
CAS in school and undergraduate mathematics, saying that “[s]tudents will be able
to replace pen and paper by keyboard and screen while keeping the same intellectual
challenge of understanding mathematics” (p. 17). Whether this was successful
would also depend on what students were asked to do with SageMath and how they
were expected to do it.

This book would be an excellent resource for instructors using SageMath and
a good supplement to other textbooks focused exclusively on the mathematics.
However, it would not really be suitable as the sole textbook for a course in any of
the areas it discusses since much of the book is addressed to someone who already
knows something about the mathematical theory involved and some discussions
are quite brief. Nevertheless, there are insightful and thought-provoking comments
sprinkled liberally throughout, such as, “We see here a general phenomenon of
computer algebra: the best data structure to describe a complicated mathematical
object (a real number, a sequence, a formal power series, a function, a set) is often
an equation defining the object. . . . Attempting to find a closed-form solution to
this equation is not necessarily of interest . . . ” (p. 334). This book undoubtedly
belongs on the bookshelves of serious users of the SageMath system, and it should
prove inspiring for teachers looking to use it in their classes.
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