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1. Introduction

The book under review [5] provides a masterful exposition of various mathe-
matical tools that are becoming increasingly common in the analysis of contempo-
rary statistical problems. In addition to providing a rigorous and comprehensive
overview of these tools, the author delves into the details of many illustrative ex-
amples to provide a convincing case for the general usefulness of the methods that
are introduced. The book is clearly written from a theoretician’s perspective, with
only a smattering of concrete applications from computer science and engineering.
However, the material can be appreciated by both theoretical and applied readers
who are interested in gaining a deeper understanding of the inner workings of the
statistical estimation procedures underlying many modern algorithms in machine
learning and data science.

1.1. High-dimensional statistics. Theoretical statistics is, at its core, the study
of convergence. As more data are acquired from a model, it becomes possible
to perform increasingly accurate inference about the underlying data-generating
mechanism. Much classical statistics focused on rigorously proving this intuition in
an asymptotic sense, i.e., characterizing the limiting behavior of various statistical
estimators as the number of data points tends to infinity [3]. However, a great
deal of attention has been devoted in recent years to understanding the behavior
of estimators when the amount of data available is not extremely large.

Of course, the size of a data set is relative; although the aforementioned results
were proved under the assumption that the number of data points tends to infinity,
such an assumption is clearly false in settings where the same statistical methods are
regularly applied. Students in an introductory statistics class are often taught the
“rule” that for a problem, such as hypothesis testing for a (univariate) population
mean, the Central Limit Theorem and its associated normal approximation can be
applied when the number of samples exceeds a threshold such as n ≥ 30. Of course,
this rule stems from the provable mathematical fact that for data distributions
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satisfying appropriately mild regularity conditions, the empirical distribution of
the samples is reasonably close to that of a normal distribution when n ≥ 30. Even
without delving into details, one can appreciate the fact that such a calculation
depends on the fact that the data generating distribution (and therefore also the
acquired samples) lies in one dimension. Indeed, if the data were 30-dimensional and
the goal was to infer the 30-dimensional mean vector of the underlying distribution,
it is hardly believable that only 30 samples would be sufficient—even if, as follows
from classical theory in multivariate statistics [1], a version of the Central Limit
Theorem indeed exists for the sample mean of 30-dimensional vectors as n → ∞.

The example above describes a “high-dimensional” setting, for which various
theoretical challenges arise in analyzing statistical estimators that are absent in
low-dimensional settings. Indeed, sometimes the same estimation procedures must
be altered in order to preserve their validity, e.g., constructing wider confidence
intervals than would be appropriate in classical settings due to magnified noise. In
other cases, high-dimensional considerations necessitate new classes of estimators
that must consequently be studied rigorously. Again, we emphasize that the “high”
dimensionality of a statistical problem is also a relative assessment, since the con-
clusion that the number of dimensions (which we henceforth denote by p) is large is
simply due to the fact that the number of data samples is not substantially larger.
Indeed, many contemporary statistical problems, which are motivated by real-world
scientific problems, either possess the complicating property that the dimensionality
of the data is relatively high (e.g., astronomical surveys of the night sky or genomic
data), or the number of samples is relatively low (e.g., medical records about a
rare disease)—or both. Concisely, we refer to such high-dimensional problems as
settings where p � n, to distinguish them from the “p fixed, n → ∞” setting of
classical statistics.

1.2. Nonasymptotic bounds. Returning to the topic of convergence, any study
of the p � n setting must account for the size of p when considering the behavior
of a statistical test or estimator as the sample size grows. Indeed, if n → ∞, then
p → ∞, as well; however, classical multivariate statistical analysis only applies
when p is a fixed quantity and n → ∞. Philosophically, it is also unclear what
would be meant by “sending both n and p to infinity” in this case: One can easily
grasp the concept of characterizing the accuracy of a statistical inference procedure
as more samples are acquired, but the dimensionality p is usually understood to
be intrinsic to the problem and should not be “sent to infinity” as the sample size
increases.

If we return to our original motivation of studying the p � n scenario, we can
remind ourselves that we are not actually interested in sending either p or n to
infinity; rather, we simply wish to understand the validity of statistical inference
procedures when p is large relative to n, possibly without imposing restrictions on
the magnitude of n. Nonasymptotic bounds are specifically designed to address
this problem: rather than providing statements about the limiting behavior of a
statistical quantity as n and/or p tends to infinity, nonasymptotic bounds quantify
the fluctuations of statistical quantities as a function of both n and p. Fixing p and
sending n to infinity often then recovers the results of classical statistics; however,
for the purpose of the contemporary problems mentioned earlier, we are primarily
interested in settings where both p and n are of finite, comparable size. (Note that
we measure “fluctuations” because the statistical quantity involved in an inference
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procedure is nondeterministic, since it is computed using random draws from the
data distribution. Thus, the nonasymptotic bounds will generally be guaranteed
to hold with a certain high probability. Bounds on the expected value of functions
of statistical estimators are also of interest, and they are similarly referred to as
nonasymptotic bounds if they explicitly depend on n and p.)

2. Applications

To make the above discussion more concrete, we briefly describe two examples.

2.1. Linear regression. Suppose we have pairs of measurements {(xi, yi)}ni=1,
where xi ∈ R

p and yi ∈ R. We assume that the measurement pairs are independent
and identically distributed (i.i.d.) and drawn from the linear model

yi = xT
i β

∗ + εi,

where β∗ ∈ R
p is the regression vector we wish to estimate. In other words, the xi’s,

also known as the predictors or covariates, are drawn i.i.d. from some distribution,
and the additive errors εi are drawn i.i.d. from a separate error distribution, giving
rise to the yi’s.

The ordinary least squares (OLS) procedure seeks to minimize the sum of squared
residuals

(2.1) β̂OLS = arg min
β∈Rp

n∑
i=1

(yi − xT
i β)

2,

and in the regime where p is fixed and n → ∞, classical statistics theory nicely

characterizes the convergence of β̂OLS to β∗. On the other hand, if p > n, the
solution to the minimization problem (2.1) will in general be nonunique, and the
set of minimizers will be an unbounded, infinite set of vectors in R

p.
One way to remedy this problem is to introduce a regularization term. Thus,

instead of minimizing the expression (2.1), we solve

β̂ = arg min
β∈Rp

{
n∑

i=1

(yi − xT
i β)

2 + λρ(β)

}
,

where ρ : R
p → R is an appropriately chosen function which encourages some

sort of desirable structure in the solution and also makes the minimizer unique.
The parameter λ > 0 controls the degree to which we enforce regularization vs.
minimizing the original cost function. The Lasso [2] is perhaps the most famous
example of regularization and corresponds to the choice ρ(β) = ‖β‖1. This choice

of regularizer encourages the minimizer β̂Lasso to be “sparse,” meaning it has a
relatively small number of nonzero coordinates.

Turning to nonasymptotic bounds, it is desirable to quantify the accuracy of the
regularization procedure when p � n. As mentioned earlier, the Lasso is used to
promote sparsity in the solution. Thus, the bounds derived in high-dimensional
statistics involve not only n and p, but also a third parameter k =

∣∣{j : β∗
j �= 0

}∣∣,
which counts the number of nonzero coordinates in the true parameter vector. The
following is an example of a nonasymptotic bound in the literature (cf. Wainwright’s
book [5, Theorem 7.13 and Example 7.14]):
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Theorem 2.1. Suppose xi ∼ N(0, Ip) and εi ∼ N(0, σ2), and suppose the regu-

larization parameter is chosen such that λ = C1σ

(√
2 log p

n + δ

)
, for some δ > 0.

Then the Lasso solution satisfies the nonasymptotic error bound

‖β̂Lasso − β∗‖2 ≤ C2

√
k

(√
2 log p

n
+ δ

)
,

with probability at least 1−2 exp(−nδ2/2), where C1, C2 > 0 are universal constants
which do not depend on n, p, k, or σ.

If we take δ =
√

2 log p
n in Theorem 2.1, we see that for the corresponding choice

of λ, we have a bound of the form

‖β̂Lasso − β∗‖2 ≤ C ′
2

√
k log p

n
,

which holds with probability at least 1−2 exp(− log p). Thus, the error incurred by
the Lasso can still be small when the dimensionality p is substantially larger than n,
provided the true sparsity level k is somewhat smaller than n (so that k log p � n).

Intuitively, if we knew a priori that the unknown vector β∗ was supported on a
specific subset of k coordinates, we could simply perform an ordinary least squares
fit of the data upon the relevant coordinates, which would be expected to succeed
as long as n is large relative to k. In our setting, we have knowledge that β∗ is
supported on k coordinates, but we do not know which coordinates. The theorem
above shows that by using the Lasso regularization technique, we can still perform
accurate estimation when n is large relative to k log p. Thus, although the sample
size needs to inflate by a factor of log p in comparison to the case where we know
the actual support set of β∗, the number of required samples is not nearly as large
as the ambient dimension p.

2.2. Covariance estimation. As a second example, we turn to the problem of
covariance matrix estimation. Suppose we have i.i.d. data {xi}ni=1, where xi ∈ R

p.
The goal is to estimate the covariance matrix Σ = Cov(xi) of the data-generating
distribution. Again, classical statistics theory studies the convergence of the sample

covariance matrix Σ̂ = 1
n

∑n
i=1 xix

T
i to Σ as n → ∞ (for simplicity, we assume

that the data have been recentered to have zero mean). However, situations may
arise when p is comparably large relative to n, so the convergence results that
assume p is fixed and n → ∞ no longer apply. It is therefore important to derive

nonasymptotic bounds on the deviations between Σ̂ and Σ as a function of both
n and p. Such deviation bounds would be useful, for instance, in analyzing the
behavior of principal component analysis (PCA), where the goal is to reduce the
dimensionality of data by projecting it onto the leading eigenvectors of Σ. Since

only the estimate Σ̂ is computable from the data set, we wish to determine how the
accuracy of the approximation will depend on the number of samples and/or the
ambient dimensionality of the data.

An example of a nonasymptotic bound on the sample covariance matrix is the
following (cf. Wainwright’s book [5, Theorem 6.1 and Example 6.3]):



BOOK REVIEWS 513

Theorem 2.2. Suppose xi ∼ N(0,Σ). For any δ > 0, we have

‖Σ̂− Σ‖2 ≤ ‖Σ‖2

(
2

√
p

n
+ 2δ +

(√
p

n
+ δ

)2
)
,

with probability at least 1− 2 exp(−nδ2/2), where ‖ · ‖2 denotes the matrix spectral
norm.

Taking δ =
√

p
n in Theorem 2.2, we see that the relative error satisfies the bound

‖Σ̂− Σ‖2
‖Σ‖2

≤ c

(√
p

n
+

p

n

)
,

with probability at least 1 − exp(p/2). In particular, the relative error can be
controlled by the ratio p

n .
As in the case of linear regression discussed in the previous subsection, more

sophisticated techniques may be employed to obtain tighter bounds under structural
assumptions on the unknown matrix. For example, suppose Σ is known to have at

most k nonzero entries per row. We can consider the thresholded matrix Tλ(Σ̂),

which simply replaces each entry of Σ̂ by 0 if it lies in the interval [−λ, λ]. Then
we have the following result (cf. Wainwright’s book [5, Theorem 6.23 and Corollary
6.24]):

Theorem 2.3. Suppose xi ∼ N(0,Σ), where ‖Σ‖2 ≤ σ2 and Σ has at most k
nonzero entries per row. If n > log p, then for any δ > 0, the thresholded matrix

Tλ(Σ̂) with λ = σ2

(
8
√

log p
n + δ

)
satisfies

‖Tλ(Σ̂)− Σ‖2 ≤ 2kλ,

with probability at least 1− 8 exp
(
−nmin{δ, δ2}/16

)
.

Taking δ =
√

log p
n in Theorem 2.3, we see that deviations of Tλ(Σ̂) from Σ can

thus be controlled by the ratio k2 log p
n , which may be considerably smaller than the

quantity p
n appearing in the bound of Theorem 2.2 (which holds more generally for

nonsparse matrices).

3. The book

Wainwright divides his book chapters into two rough categories: “Tools and
techniques” (Chapters 2–5, 12, 14–15) and “Models and estimators” (Chapters 6–
11, 13). Thus, the first third of the book effectively sets the stage by developing
key concentration results that will form the backbone of the derivations needed to
analyze the estimators presented in later chapters. The latter settings include linear
regression, matrix estimation, edge structure estimation for graphical models, and
nonparametric regression. In addition to demonstrating how the key technical tools
can be used to derive nonasymptotic bounds on the statistical error of various high-
dimensional estimators, the author closes the book in Chapter 15 by presenting
general methods for deriving minimax lower bounds for estimation, meaning a
minimal amount of error which must be incurred by any statistical estimator, due
to random fluctuations in the data.

In addition to well-organized and crystal clear exposition, the author provides
an extensive list of exercises at the end of each chapter. The exercises range from
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easy (filling in omitted details in the proofs) to quite difficult (pointing the reader
toward derivations of key technical contributions in research papers). Although a
casual reader can gain a fairly comprehensive understanding of the topic without
working through the exercises, a more serious reader will appreciate the fact that
the exercises will help them gain confidence in applying the key techniques to a
wider range of applications. The book is thus an excellent primary text for a
graduate-level course, and the author notes that drafts of the book have already
been used successfully in statistics curricula at various universities prior to printing.

Another nice feature of the book is the concluding section on “Bibliographic
details and background” included in each chapter. These sections contain historic
notes on where the ideas in the chapter first appeared in literature, as well as
citations for the proofs of the theorems presented, where appropriate. Many of
these sections also mention reference texts or survey papers for further reading.

It is worth mentioning the book [4], published one volume earlier in the same
Cambridge University Press series. The two books contain a fairly large amount
of overlap in terms of technical tools, in that they both begin with self-contained
introductions of the basic building blocks used to derive concentration inequalities
in high-dimensional statistics. The main difference between the two books lies in
the application areas used by the authors to illustrate the power of these tools,
in part influenced by the authors’ individual research interests. For instance, the
book under review provides a more comprehensive overview of statistical estimation
rates of vectors and matrices with various structural constraints, as well as minimax
lower bounds; in contrast, the book [4] covers topics such as community detection
in networks, graph cuts, and random projections, which are all of contemporary
interest in data science. Thus, an interested reader could benefit from reading both
books in conjunction, although some of the introductory sections and supporting
exercises might be skipped to avoid redundancy.
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