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1. History

If A is a self-adjoint matrix, or more generally a self-adjoint operator on a Hilbert
space of any dimension, we say it is positive, and write A ≥ 0, if 〈Av, v〉 ≥ 0 for
all vectors v; this is equivalent to the spectrum σ(A) lying in [0,∞). This notion
allows us to put a partial order on all self-adjoint operators acting on a given space,
namely

A ≤ B ⇔ B −A ≥ 0.

Loewner asked the question, “What functions preserve this order?” To make the
question precise, we must first decide what we mean by a function applied to a
self-adjoint operator. This is called functional calculus, and there are several ways
to do it; the good news is that all reasonable methods coincide.

To start, let us assume that the underlying Hilbert space is finite dimensional,
so A is a self-adjoint matrix, and let f be any real-valued function defined on the
spectrum of A. The easiest way to define f(A) is to choose a basis of eigenvectors of
A which diagonalizes the matrix and then apply f to each diagonal entry separately.
Alternatively, one can choose a polynomial p that agrees with f on σ(A) and define
f(A) = p(A). If now we let A be a bounded self-adjoint operator on an infinite
dimensional Hilbert space, we may no longer be able to diagonalize it exactly;
but the spectral theorem says we can essentially do this using measure theory
(see, e.g., [4, 13, 19] for an exact statement and proof), and define f(A) for any
bounded measurable function. In particular, if f is a continuous function on σ(A),
by Weierstrass’s theorem we can choose a sequence of polynomials pk that converges
uniformly to f on σ(A), and we can define f(A) to be the norm limit of the sequence
pk(A).

Let Mn denote the space of n-by-n complex matrices, and SAMn the self-adjoint
ones.

Definition. For each positive integer n and each nonempty interval (a, b) ⊆ R, let
Mn(a, b) denote the set of continuous functions f : (a, b) → R with the property
that if A and B are both in SAMn with σ(A) ∪ σ(B) ⊂ (a, b), then

A ≤ B ⇒ f(A) ≤ f(B).

The functions in Mn(a, b) are called n-matrix monotone. When n = 1 they are
just the increasing functions on the interval, a class studied extensively in one’s
first rigorous calculus class. In [15] Loewner characterized the n-matrix monotone
functions for n ≥ 2, showed that for each n

Mn+1(a, b) � Mn(a, b),

and furthermore characterized
⋂∞

n=1 Mn(a, b), the operator monotone functions.
(An approximation argument shows that

⋂∞
n=1 Mn(a, b) is precisely the class of
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functions that preserve order on the set of all self-adjoint operators with spectrum
in (a, b).)

Definition. For each positive integer n and each nonempty interval (a, b) ⊆ R, let
Ln(a, b) denote the set of differentiable functions f : (a, b) → R with the property
that, for any n distinct points x1, . . . , xn ∈ (a, b), the divided difference matrix

Lij =

⎧⎨
⎩

f(xi)−f(xj)
xi−xj

i �= j

f ′(xi) i = j

is positive.

Theorem 1.1 (Loewner’s theorem).

(i) For each n ≥ 2, the classes Mn(a, b) and Ln(a, b) coincide.
(ii) Moreover, a function f : (a, b) → R is in

⋂∞
n=1 Mn(a, b) if and only if

there is a holomorphic function F that maps the upper half-plane to itself
and such that limy→0 F (x+ iy) = f(x) for every x ∈ (a, b).

Using the theorem, one can see that the function x1/3 is n-monotone for all n,
but x3 is not 2-monotone on any interval containing 0. There are several intriguing
aspects of Loewner’s theorem. Part (i) is basically real analysis—the condition of
being in Ln(a, b) is related to concavity. When n = 2, this is made precise by the
following theorem of Donoghue [7]. (Donoghue attributes the theorem to Dobsch
[6], but Simon points out in his notes to Section 14 that he can find no mention of
2-by-2 matrices in Dobsch’s paper.)

Theorem 1.2 (Donoghue and Dobsch). A nonconstant real-valued function f is
in M2(a, b) if and only if

(i) f is C1 and f ′(x) > 0 for all x ∈ (a, b).
(ii) (f ′)−1/2 is concave.

Part (ii) of Loewner’s theorem, however, passes into complex analysis and gives
a testable condition for a function to have a holomorphic extension that maps
the upper half-plane to itself, namely all the divided difference matrices must be
positive. It ties into earlier work of Nevanlinna, who gave a complete description
of all such functions [16]; we shall use C+ to denote the upper half-plane.

Theorem 1.3 (Nevanlinna). Let f be a holomorphic function defined on C+. Then
the range of f is contained in C+ if and only if there is a constant A ≥ 0 and a
finite positive measure μ on R so that

(1.4) f(z) = �f(i) +Az +

∫
1 + tz

t− z
dμ(t).

Moreover, f is an analytic extension of a real-valued function defined on the interval
(a, b) ⊆ R if and only if μ puts no mass on (a, b).

2. Related results and generalizations

We shall say that a real-valued function f on (a, b) is n-matrix convex if whenever
A and B are both in SAMn with σ(A) ∪ σ(B) ⊂ (a, b), then

f(tA+ (1− t)B) ≤ tf(A) + (1− t)f(B) ∀ t ∈ [0, 1].
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The set of n-matrix convex functions is closely related to the n-monotone ones;
they were first studied by Loewner’s student Kraus [12]. Define

f (1)
y (x) =

⎧⎨
⎩

f(x)−f(y)
x−y x �= y

f ′(x) x = y.

Theorem 2.1 (Kraus). Let f be C2 on (a, b). Then f is n-matrix convex on (a, b)

if and only if f
(1)
y ∈ Mn(a, b) for all y ∈ (a, b).

Recently, Heinävaara proved [9] that n-matrix convexity is, like n-matrix mono-
tonicity, a local property—if a function f has the property on (a, b) and (c, d), and
a < c < b < d, then f has the property on (a, d).

Part (ii) of Loewner’s theorem describes when a function defined on an arc of the
boundary of C+ extends to a holomorphic map from C+ to itself. Fitzgerald and
Loewner asked an even more audacious question [8, 14], “When is this extension
univalent?”

Theorem 2.2 (Fitzgerald and Loewner). A function f : (a, b) → R extends to a
univalent function from C+ to C+ if and only if it satisfies f ′(x) > 0 for every x
and, for each divided difference matrix, the matrix obtained by taking the entry-wise
logarithm is positive.

Let SAMd
n denote the set of all d-tuples of matrices in SAMn, and let CSAMd

n

denote the set of d-tuples that pairwise commute. If A = (A1, . . . , Ad) and B =
(B1, . . . , Bd) are in SAMd

n, we say A ≤ B if Ar ≤ Br for each 1 ≤ r ≤ d. If
A ∈ CSAMd

n, the spectral theorem allows a functional calculus as before; we can
choose a basis of joint eigenvectors that simultaneously diagonalizes all of them,
so that Ar is the diagonal matrix with entries λr

1, . . . , λ
r
n. The spectrum of A,

again denoted σ(A), is the n-tuple of points λj = (λ1
j , . . . , λ

d
j ) in Rd. Then we can

define f(A) to be the diagonal matrix with entries f(λj). We could instead use
the polynomial trick from earlier, approximating f by polynomials; this method
also works to apply a continuous function of d variables to a commuting d-tuple of
self-adjoint operators.

Definition. Let R be an open box in Rd, and let f : R → R be a differentiable
function. We say f is locally n-monotone on R if, whenever S(t) is a differentiable
path in CSAMd

n with σ(S(0)) ⊆ R and S′(0) ≥ 0, then

d

dt
f(S(t))

∣∣∣∣
t=0

≥ 0.

We say f is globally n-monotone on R if, whenever A and B are in CSAMd
n with

σ(A) ∪ σ(B) ⊆ R, then
A ≤ B ⇒ f(A) ≤ f(B).

When d = 1, locally and globally monotone are the same, because if A ≤ B, then
S(t) = (1 − t)A + tB is an increasing path from A to B, and by the fundamental
theorem of calculus,

f(B)− f(A) =

∫ 1

0

d

dt
f(S(t))dt.

In several variables, however, the d-tuple ((1− t)A1 + tB1, . . . , (1− t)Ad + tBd) is
not in general commutative, so it is not clear how to make sense of f(S(t)).
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Loewner’s theorem generalizes completely to the locally monotone case [2]. The
requirement that F maps C+ to C+ becomes that F maps every d-tuple of commut-
ing operators with positive imaginary parts to an operator with positive imaginary
part. For d = 1 or 2, this is the same as requiring that F : Cd

+ → C+, by the Cayley
transform of the von Neumann inequality [22] and Andô inequality [3], respectively;
but it is a strictly stronger requirement when d ≥ 3 [5, 21].

Theorem 2.3. Let R be an open box in Rd, and let f : R → R be differentiable.

(i) For each n ≥ 2, f is locally n-monotone on R if and only if for any n
distinct points x1, . . . , xn in R, there are d positive n-by-n matrices Γr, 1 ≤
r ≤ d, with Γr

ii =
∂f
∂xr |xi

so that

(2.4) f(xj)− f(xi) =

d∑
r=1

(xr
j − xr

i )Γ
r
ij .

(ii) Moreover, f is locally n-monotone for every n if and only if there is a holo-
morphic function F that maps Cd

+ to C+, such that limy→0 F (x+iy) = f(x)
for every x ∈ R, and such that F maps d-tuples of commuting operators
with positive imaginary parts to operators with positive imaginary part.

Observe that when d = 1, condition (2.4) is the same as requiring the divided
difference matrix to be positive. Whether locally and globally monotone are the
same in several variables is an open question: it is shown in [2] that a rational
function of two variables that is locally n-monotone for all n is also globally mono-
tone, but whether this is true more generally is unknown. Simon calls the forward
direction of part (ii) of Loewner’s theorem the hard direction and calls the reverse
implication the easy direction. In this parlance, for globally monotone functions in
d > 1 variables, the hard direction is true, and the easy one is unknown.

Another possible way to generalize Loewner’s theorem to several variables is
to use noncommuting functions. A noncommuting function of d variables is a
function that sends d-tuples of n-by-n matrices to an n-by-n matrix and preserves
direct sums and similiarities. The domain of such a function is a subset of

⋃
n M

d
n

that is closed with respect to direct sums. J. L. Taylor realized that these were
the key properties to abstract from noncommutative polynomials to get something
akin to a noncommutative holomorphic function [20]. Interest in noncommutative
functions has grown dramatically; see the monograph [11] for a detailed account or
[1] for a brief survey.

A noncommutative analogue of Loewner’s theorem has been proved by Pascoe
and Tully-Doyle [17]. Let

Πd =
⋃
n

{Z ∈ Md
n : �(Zr) > 0, 1 ≤ r ≤ d}.

Theorem 2.5 (Pascoe and Tully-Doyle). Let R = (a1, b1) × · · · × (ad, bd) be an
open box in Rd, and let

D =
⋃
n

{A ∈ SAMd
n : σ(Ar) ⊂ (ar, br), 1 ≤ r ≤ d}.

A noncommutative function f that maps D to self-adjoint matrices is matrix mono-
tone for all n if and only if f analytically continues to a noncommutative function
from Πd to Π1.
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3. The book

Simon’s book studies Loewner’s theorem in one variable, and gives eleven differ-
ent proofs of the hard direction. As he puts it, the book is a love poem to Loewner’s
theorem.

Part I of the book is called Tools, and here he introduces Nevanlinna’s theorem,
which he calls the Herglotz representation theorem (since it follows from a 1911
theorem of Herglotz for functions on the disk [10]), and he uses it to prove the
easy direction. He then proves part (i) of Loewner’s theorem and follows with an
extensive treatment of matrix convex functions.

Part II starts by giving 4 different proofs of Pick’s theorem (and later a fifth), a
theorem first proved by Pick in 1916 [18]. Pick’s theorem describes when a function
mapping the upper half-plane to itself and satisfying given interpolation conditions
exists; part (ii) of Loewner’s theorem is a boundary value version.

Theorem 3.1 (Pick). Let z1, . . . , zn and w1, . . . , wn be points in C+. A necessary
and sufficient condition for the existence of a holomorphic function F : C+ → C+

satisfying F (zj) = wj , 1 ≤ j ≤ n, is that the Pick matrix

Pij =
wi + wj

zi + zj

be positive.

The author’s first proof of Loewner’s theorem is as a limiting case of Pick’s the-
orem. He goes on to give Loewner’s original proof, a proof using moment theory
by Bendat and Sherman, a Hilbert space proof due to Koranyi, and Krein–Milman
based proofs by Hansen–Pedersen and Hansen, Sparr’s proof using positive func-
tions, Ameur’s proof using quadratic interpolation, the Wigner–von Neumann proof
using continued fractions, a new proof by the author also using continued fractions,
a Hardy space proof by Rosenblum and Rovnyak, and a Mellin transform proof by
Boutet de Monville.

In Part III, applications to three areas are discussed: operator means, quantum
strong subadditivity, and unitarily invariant norm inequalities.

The book is very carefully written. For each proof, the author gives all the
necessary background material and includes detailed historical remarks. It is an
impressive tour-de-force.

I would consider this book a mathematics lounge book—the sort of book that
should be left lying around the lounge, so that one can dip into it over coffee, read
a section, and then go back to work. It is accessible and is a delight to read.
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