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THE RESOLUTION OF THE SENSITIVITY CONJECTURE

ROHAN KARTHIKEYAN, SIDDHARTH SINHA, AND VALLABH PATIL

ABSTRACT. The sensitivity conjecture is a long-standing problem in theoret-
ical computer science that seeks to fit the sensitivity of a Boolean function
into a unified framework formed by the other complexity measures of Boolean
functions, such as block sensitivity and certificate complexity. After more
than thirty years of attacks on this conjecture, Hao Huang (2019) gave a very
succinct proof of the conjecture. In this survey, we explore the ideas that in-
spired the proof of this conjecture by an exposition of four papers that had the
most impact on the conjecture. We also discuss progress on further research
directions that the conjecture leads us to.
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1. INTRODUCTION

Boolean functions map a sequence of n bits to a single bit vector 0 or 1, rep-
resented as False and True, respectively. Some of the simplest Boolean functions
are the AND function z - y, the OR function (nonexclusive) « + y, and the NOT
function Z = 1 — z. An important problem in Boolean function complexity—the
circuit lower bound problem—is

How many of these simplest functions do we need to calculate the
value of a given Boolean function on all input vectors?

The main challenge lies in the nature of the circuit, where small circuits may work
counterintuitively, thereby making it difficult to ascertain the answer quickly. Nev-
ertheless, the answer to the above question is called the circuit complexity of the
Boolean function f.

There are several useful measures to describe the complexity of a Boolean func-
tion that can be stated mathematically. Two such measures are sensitivity and
block sensitivity.

Definition 1.1. The sensitivity, s(f), of a Boolean function f : {0,1}" — {0,1}
on n variables is defined to be the largest number for which there is an = such that
there are at least s(f) values of i = 1,...,n with f(z +¢;) # f(x). Here ¢; is the
Boolean vector with exactly one 1 in the ith position.

Definition 1.2. The block sensitivity, bs(f), is defined to be the maximum
number of disjoint subsets of By,...,B; of [n] = {1,...,n} such that for all 1 <
j < t, f(x) # f(xP), where 25 is the Boolean string which differs from x on
exactly the bits of B;.

Block sensitivity is known to be polynomially related to a number of other com-
plexity measures of f, including the decision-tree complexity and the certificate
complexity (see section [2 for definitions). A long-standing open question that ex-
isted was whether sensitivity also belonged to this equivalence class. A positive
answer to this question is commonly known as the sensitivity conjecture first pro-
posed by Nisan and Szegedy [3].

Conjecture 1.3 (Sensitivity Conjecture). There exists an absolute constant C > 0,
such that for every Boolean function f,

bs(f) < s(f)°.

It may be useful to think of the sensitivity of a Boolean function in the following
way: Take an array of n switches, with some wiring for a single light bulb. For
different configurations of switches flipped on or off, the light bulb is either on or
off. Then the circuit is said to be sensitive, with respect to the ith switch if, for
some configuration of the states of the switches, flipping the ¢th switch changes
the state of the light bulb from on to off, or vice versa. For that configuration,
there may be more than one switch for which the circuit is sensitive. If we count
the number of such switches at which the circuit is sensitive and do so for every
configuration of the switches, then the greatest number of switches for which the
circuit was sensitive for some configuration, is the sensitivity s(f), where f is the
Boolean function (ON/OFF) expressed by the circuit.

The sensitivity conjecture can also be seen as concerning whether sensitivity is
polynomially related to n, the number of input variables to the Boolean function.
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To resolve this, Gotsman and Linial [I] proved the equivalence between the following
two problems:

(1) Denote the n-dimensional cube by @,, = {—1,1}" and the maximal degree
of any graph G by A(G). For an induced subgraph G of @Q,, with strictly
greater than half the number of vertices, i.e., greater than 2"~ ! vertices,
find an effective lower bound for A(G) in terms of n.

(2) Let f: Q, — {—1,1} be a Boolean function, with sensitivity s(f). De-
noting the degree of the multilinear polynomial representation of f(z) by
deg(f), find an effective upper bound for deg(f) in terms of s(f).

It was previously established by Chung, Furedi, Graham, and Seymour [2] that
for an induced subgraph G of @),, with strictly more than half its vertices, the degree
of some vertex v in G is bounded above logarithmically in n (see section B2)). Hao
[] recently improved this logarithmic bound to a polynomial relation.

Theorem 1.4 (Hao). For every integer n > 1, let G be an arbitrary (271 + 1)-
vertex induced subgraph of Q.. Then

A(G) = Vi

This result proves that the sensitivity and degree of a Boolean function are
polynomially related, thereby confirming the sensitivity conjecture (see section [6.2]).

In the past three decades, a great amount of research has been done on resolving
the sensitivity conjecture, resulting in a wide-ranging body of knowledge. In this
survey, we could not hope to cover even a fraction of it. Our goal behind the
selection of this material has largely been to portray the historical development of
the results that have had the most impact on the development of the conjecture.
We would like to direct the attention of the interested reader to the surveys of
Buhrman and de Wolf [9], and Hatami, Kulkarni, and Pankratov [10] for more
in-depth discussions on the conjecture.

After defining complexity measures of Boolean functions, we look at Chung et
al.’s [2] result of finding the maximum degree of an induced subgraph of the cube
graph @, with strictly more than half its vertices. In a different direction, we
look at how Nisan and Szegedy [3] proposed the sensitivity conjecture which was
reduced to a question of finding a polynomial bound for the maximum degree of
an induced subgraph of @,, by Gotsman and Linial [I]. We then explain how Hao
[] proved this graph-theoretic question thereby positively resolving the sensitivity
conjecture, before finishing with recent progress on some open questions of Hao and
an application of the sensitivity conjecture to CREW PRAMs.

2. SOME COMPLEXITY MEASURES OF BOOLEAN FUNCTIONS

Consider the set Q,, = {—1, 1}". The hypercube of dimension n is the graph with
vertex set @, and an edge between x = (x1,x2,...,2,) and y = (y1,Y2,-..,Yn) in
@y, if there is exactly one i such that x; # y;. Let f be a function mapping @,, to

{~1,1}.

Definition 2.1. The sensitivity of f at z, denoted s(f,x), is defined as the
number of neighbors y of  for which f(z) # f(y), that is, the number of ¢ such
that

flxr, ooy miy e @n) # f(@1, 00y =Ty ooy Tp)e
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FIGURE 1. Decision tree of depth 3 computing majority on three variables

This local measure can be naturally extended to yield the value of the (global)
sensitivity of f, which we defined in Definition [Tl A natural generalization of
sensitivity is to flip blocks of bits rather than single bits. This leads us to the
complexity measure of block sensitivity of f, defined in Definition

In the decision-tree model, we compute the value of a given function at an
unknown input. Considering Boolean functions, we collect information about the
input by asking questions of the form, “What is the value of input z;?” Each
question asked depends only on the information gained so far.

A (deterministic) decision tree can then be defined as a rooted binary tree with
labels on each node and edge. Each inner node is labeled by a query. One of the two
edges leaving the node is labeled 0, the other is labeled 1. The two labels represent
the two possible answers to the query. Each leaf, labeled 0 or 1, gives the output
(Figure ). The Boolean function computed by the given decision tree takes the
label at this leaf as the value on the given input.

Define cost(A,x) as the number of queries asked when the decision tree A is
executed on input x. That is, it is the length of the computation path forced by
x. Also, max, cost(A, z) defines the worst case complexity of A, that is, the tree’s
depth.

Definition 2.2. The decision tree complexity of f, denoted by D(f), is given
by
D(f) = mjn max cost(4, x).
x

That is, it is the depth of the minimum-depth decision tree that computes f.
It is obvious that any function f : {0,1}"™ — {0,1} can be computed by asking n
questions.

Take a vector x € {0,1}™. A b-certificate (for b € {0,1}) is a subset S C [n] such
that f(y) = f(x) for all vectors y € {0,1}"™ such that y; = x; for all i € S.

Definition 2.3. The certificate complexity of a Boolean function f on z, de-
noted Cy(f), is the minimum size of a b-certificate for x.

The certificate complexity of f, denoted C(f), is defined as
c(f)= C:(f).
(f) = max Cu(f)
To visualize this, one can think of a Boolean function as coloring the vertex on a

n-dimensional hypercube using just two colors. Then, the certificate complexity is
n minus the dimension of the largest monochromatic hypercube in @,,.
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3. CHUNG ET AL.’S RESULT

In this section, we expound Chung et al.’s result [2]: an induced subgraph of
the n-dimensional cube graph @), with strictly more than half of its vertices has
a maximum degree of at least o(logn). We will also look at the construction of a
(2771 4 1)-vertex induced subgraph whose maximum degree is [/n .

Definition 3.1. Let G = (V, E) be a graph. For S C V, an induced subgraph
G|S] is the graph with vertex set S and edge set E’, where E’ consists of all edges
in F that have both endpoints in S.

Definition 3.2. The maximum degree A(G) of a graph G = (V, E) is defined
as

A(G) = s degq(v).

In section Bl we construct a subgraph G of Q,, with A(G) < y/n + 1, proving
[@); in section B2] we show the logarithmic lower bound for deg(v) given by ([d)):

Theorem 3.3. Let G be an induced subgraph of Q, with at least 2"~ 4+ 1 vertices.
Then for some vertex v of G, we have

1 1 1
(1) degq(v) > ilogn—iloglogn+ 3

Moreover, there exists a (2"~ + 1)-vertex induced subgraph G of Q,, with
(2) A(G) < vn+1.

3.1. Existence of a subgraph with maximum degree [\/n]. Denote that
{1,2,...,n} := [n]. Consider a family of sets 2["}, that is, the set of all subsets
of [n]. Observe that the natural bijection between the set of n-bit vectors {0,1}"
and 21" is the map v : {0,1}" « 2["] such that the vector x = (z1,zo,...,2,) is
mapped to T = {i | ; = 1,1 < i < n}, and vice versa.

Extending the bijection between the n-bit vectors and 2", partition Q,, into
two vertex-disjoint subgraphs G and G’ where G has 2"~ ! + 1 vertices. Define the
family of sets X over a finite collection of subsets F C 2" as

X(F)={Sc|[n] :|S|=even,3F € FwithF C S}
U{ScCin]:|S|=o0dd,F\S # ¢for all F € F}.
That is, X(F) is the collection of all even sets which contain some F € F along
with all odd sets which contain no F' € F.
Consider F as the partition of [n] given by [n] = Fy U F5 U --- U F}, such that

|k —v/n| < 1and |[|F;| —vn| < 1,1 < i < k. We prove the existence of such a
partition:

Proof. Let k = [v/n] = |k — /n| < 1. Denote u := v/n = u? =n. It is easy
to see that there exists an € with 0 < e < 1 so that [\/n] = v/n—¢e¢ =u—¢€ and

[Vnl=vn—e+1l=u—e+1.
For the above partition to exist, we need to show that 3x,y € Z* such that
z|vn] +y[v/n] =nwithz+y=[y/n] =u—e+1. Note that

(3) zw(u—e) +y(u—e+1)=u?
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must have integer solutions. Observe that
(3) = z(z+y—1)+ylz+y) =u?
= 22 +y? + 20y — 2 =u?
— (z+y)? =u?+u

Clearly, this has integer solutions as we may fix ©? and z and so vary y to get a set
of solutions. |

For such a partition of [n], we wish to see if the following claims are true.
Claim 3.4. |X| =271 4 1, according to whether n + k is odd or even.
Claim 3.5. A < k for the subgraph induced by X(F) and 2" \ X(F).

Define the rank of F, denoted r(F'), as the largest size of an element in F. Denote
t(F) to be the largest size of the disjointly representable subsystems of F. That is,
t(F) is the maximum value of ¢ such that one can find Fy, Fs,..., F; € F and
xz; € Iy, 1 <4<t such that x; € F; <+ i = j, for all 1 <14,j <k, that is, no F; is
contained in the union of the others.

In the partition chosen for F such that we had k disjointly representable sub-
sets of F, note that t(F) = k and r(F) is either [\/n] or [v/n]. The maximum
degree A(G(F)) is either bounded by r(F) or ¢(F), since the degree of a vertex
corresponding to some S € X(F) is the number of S; € X(F) such that S and S;
differ by only one element. We can then easily see that A(G(F)) < v/n.

Lemma 3.6. A(G(F)) < max{r(F),t(F)}.
Remark 3.7. The same result also holds true for A(G'(F)).

Proof. An interesting thing to note is that this result holds for any family of sub-
sets of 2[". To see this, consider the sets corresponding to the vertices (11011),
(11010), (01011) of G(F) for some F C 2[". The subsets {1,2,4} and {2,4,5}
belong to X(F) so long as no subset of either belongs to F. Therefore, there are no
even subsets in F which are contained in odd sets of X(F).

Consequently, (11111) cannot belong to G(F) as it would contain some F' € F.
Consider again the vertex (11011). It can have maximum degree 4 (in the 5-cube
graph) if (01011), (10011), (11001), and (11010) belong to G(F). However, if
no subsets of the vertices adjacent to (11011) belong to F, then only the singleton
elements (10000), (01000),...,(00001) may belong to G(F), each with degree
at most 1.

Therefore, for any edge of Q,, corresponding to (.5, S’), where S, S’ € X(F) and
S is even, the odd set S’ is a proper subset of S. Since, S and S’ differ by the
inclusion of precisely one element of [n], and the exclusion of that element from S
results in a subset not contained in F, then

(4) deg(S) < |[{{F: FeF ,FcCS} <rF).

Taking S as the odd set, we instead get S C S’, and by the construction of
G(F), there exists a F' € F such that F C S" and F' ¢ S. Suppose, we have the sets
51,85, ..., 8 such that there is an edge between S and S}, 1 < i < a. Then, there
must also be some sets Fy, Fy, ..., F, € F which do not belong to S, but F; € S..
Since, S and S} differ by the inclusion of exactly one element, Fy, Fs, ..., F, must
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be disjointly representable. Hence, a < ¢(F). Since the quantity a gives the number
of adjacent vertices, this proves the lemma. (Il

The cardinality of X(F') can be found using the principle of inclusion-exclusion
(also called the sieve formula) and is given as

(5) X(F)—2n1+(1—26){21—z Zpr...}

F;eF F;,eF FJ ceF
|Fil=n |F; U Fjl=n
where € = 0 when n is even and € = 1 when odd.
Denote by f(F) the bracketed expression on the right-hand side of (). Taking
F as the partition of [n] into Fy, Fy,..., Fy, f(F) equals (—1)**1. And, because
(1 —2¢) = (—1)™ we have

X(F)[ =271+ (=),

thus proving Claim [3.4]
Now, to prove Claim

Lemma 3.8. Suppose f(F) # 0. Then, max{r(F),t(F)} > /n.

Remark 3.9. We choose the maximum of r(F) and ¢(F) since the degree is bounded
by both values, and the greater value is the one that dominates the bound.

Proof. Note that there are 2"~! possible n-bit vectors such that every one of them
has their jth component as 0. Since, we are taking 2" ' 41 vertices, by the pigeon-
hole argument, there is at least one vector in every direction, that is, has a nonzero
value for the jth component. This provides the motivation for taking f(F) # 0.
Since vertices of G(F) correspond to the subsets of 2", this implies that ’U F‘ =n.

Choose a subfamily {F, Fy,..., Fs} of F such that this family has the small-
est number of sets with |J;_, F; = [n]. Now, r(F) < /n, else the inequality
max{r(F),t(F)} > /n is trivial for |F| > y/n. Then, we must check if ¢(F) > \/n
in such a case. Since, s is the minimum number such that (J;_, F; = [n], so
{F\, F,,...,Fs} must be disjointly representable, else there would be a contradic-
tion to the minimality of s.

Since | F;| cannot exceed y/n, observe that if max |F;| < /n, and if s < y/n, then
s -max{|F;|} < |[n]| = n, which is a contradiction, since | J;_, F; = [n]. Therefore
s> /n, and so

Vi < max{r(F), t(F)}.

Since v/n < m for n > 1, the maximal degree A(G) < /n, and since both A(G)

and /n are bounded above by max{r(F), ¢(F)}, we can have a partition G(F) such
that A(G) < v/n. This proves (2)). O

3.2. A logarithmic lower bound for A(G).

Lemma 3.10. Let G be a subgraph of Q,, with average degree d. Then, |V (G)| > 2.

Proof. Let us use induction on |V(G)|. Split @, into two (n — 1)-dimensional
subcubes @1 and Q2 such that Vi = Q1 NV(G) # ¢ and Vo = Q2 NV (G) # ¢.
Also, assume that |V2| > |V;| and that there are s edges between Vi and V; in G.
Because no more than one edge can come out of any vertex in V7, this would mean
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that |V4]| > s. Let the restriction of G to V; (i = 1,2) be denoted by G;. Then, the
induction hypothesis gives us

Villog, [Vi| > ) “degg, (v) = Y degq(v) — s

veV;

(6) = |Vi]logy |V1| + | V2| log, |Va2] + 25 > Z degq(v).
veV(G)

Using log, arithmetic and the fact that |V3| > |V4|
(IVa] + [Va]) logy ([Vi] + [V2]) = [Va|logy [Vi| + [Va|log, [V2| + 2|VAl,

thus proving the lemma. |

Lemma 3.11. Suppose G is a (2"~ ')-verter induced subgraph of Q, containing
edges from all the n directions. Then, A(G) > %logn — %log logn + %

Remark 3.12. Observe that this proves a result stronger than ().

Proof. Let i € [n] be an arbitrary but fixed dimension. Construct three sets of
vertices:
(1) X; = {z € V(G) : 2 € V(G)}, the set of endpoints of the edges of G in
direction i;
(2) Yi={y ¢ V(G):yD ¢ V(G)} ={y € V(Qu \ G) 1y € V(Qu \ G)}; and
(3) A; = V(Qu)\ Xi \ Vi
Let A = A(G), and consider a pair =, z(?) € X;.

Claim 3.13. x has at least n — 2A 4 1 neighbors in Y;.

Proof. Let y € A;. Using the definition of A(G) and the fact that either one of y
or y is in V(@), we have the following.

(1) There are at most A — 1 neighbors of = in A; (because we know 2 and z(¥)
are adjacent). Let us denote them by {z() : #{j} < A —1}.

(2) There are at most A — 1 neighbors of () in A;, denoted by {z(¥) : #{;} <
A — 1}, where z(19) agrees with z in every dimension except i and j.

(3) Consequently, there are at most 2(A — 1) neighbors of  in A;.

(4) There are at least n —1 —2(A — 1) =n — 2A + 1 neighbors of z in Y;. O

Observe that |V(G)| = 2""! = |V(Q, \ G)| = 2"7! and that if G contains
edges from all n directions, then @, \ G also contains edges from all the n directions.
Consequently, | X;| = |Y;|, and it is obvious that they must be greater than 0. Using
these facts, we obtain

1 1
IB(G(X: UY)| 2 51Xl + 5%+ (n = 28 + )| X,

from adding the edges within the graphs X;, Y; and also between them. After some
calculations and using the fact that | X;| = |Y;], we get

dG(X;UY;) > n—2A +2,

which when used with Lemma BI0 yields |X;| > 2724+,
Thus, there are at least 27~ 22F! edges in direction 7 in the graph G. Summing
over all dimensions, we observe that at least n - 272211 edges are in the graph G.
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On the other hand, this number cannot exceed A-2"~1. Since n-2"~2A+1 < A.2n—1,
a straightforward computation shows that

1 1 1
> - - + =
A(G) 5 logn 5 loglogn 5

This proves (). O

4. NISAN AND SZEGEDY’S RESULT

In this section, we will look at Nisan and Szegedy’s results [3] that formulate the
sensitivity conjecture. This is done by establishing a polynomial relation between
the decision-tree complexity of a Boolean function f, the degree of the multilinear
polynomial representing f, and the smallest degree of the polynomial approximating
I

A multilinear polynomial over variables x1,...,x, has 2" terms, one for each
monomial [ [, g z;, where S C [n] (here [[;, z; denotes 1). Observe that it has no
variables squared, cubed, etc. If we define a Boolean function f as f: {F,T}" —
{F, T}, then we can encode T as 1 and F as 0, thus creating a mapping from a
subset of R™ to a subset of R.

Definition 4.1. A real multivariate polynomial p : R™ — R represents f if for
all z € {0,1}", f(z) = p().

Definition 4.2. The degree of a Boolean function f, denoted by deg(f), is the
degree of the unique multilinear real polynomial that represents f exactly.

Definition 4.3. The polynomial p approximates f if for every z € {0,1}", we
have that

(7) p(e) — (@) < 5.

The approximate degree of f, that is, deg(f) is defined to be the minimum, over
all polynomials p which approximate f, of the degree of p.

In section [£.2] we establish the following lower bound on the degree of a Boolean
function f in terms of the number of variables n.

Theorem 4.4. Let f be a Boolean function that depends on n variables. Then,
(8) deg(f) > logy n — O(log log n).
In section 4.3 we prove the following inequalities:

Theorem 4.5. For every Boolean function f,

(9) deg(f) < D(f) < 16deg(f)".

Theorem 4.6. There exists a constant ¢ such that for every Boolean function, we
have

(10) deg(f) < deg(f) < D(f) < c- deg(f)",

where D(f) is the decision tree complexity of f (see Definition 2.2).



624 ROHAN KARTHIKEYAN, SIDDHARTH SINHA, AND VALLABH PATIL

4.1. Some Fourier analysis. In this subsection, we state some results needed for
our discussion from [5]. Consider the Fourier transform representation, that is,
viewing the Boolean function f as f : {—1,1}" — {—1,1}. Interpret the domain
{=1,1}" of f as 2™ points lying in R™ and think of f as giving a £1 labeling to
each of these points. See [5] for a method to interpolate such data points using the
indicator polynomial. One obtains the following lemma.

Lemma 4.7. FEvery function f : {—=1,1}" — R can be expressed uniquely as a
multilinear polynomial,

(11) fo) = 3 es[[ o
SCin] ies
where each cg is a real number.
This expression ([l is precisely the Fourier expansion of f. It is a convention

to write the coefficient c¢g as f(S) and the monomial [Licg @i as xs(x). Thus, we
finally have

(12) fl@)= > f(S)xs(x).
scm

Denote by x = (X1,...,Xn) a uniformly random string from {—1,1}", where
each x; is a random variable. We can generate such an x by choosing each bit x;
independently and uniformly from {—1,1}. The result we will need is (see [B, section
2.1)):

Theorem 4.8 (Parseval). For any f:{-1,1}" — R,
> F(9) = Ex[f(x)?).
SCn]

For Boolean functions f : {—1,1}" — {—1,1}, we have f(z)? = 1 for every x,
and hence,

Corollary 4.9 (Parseval’s equality). If f: {—1,1}" — {—1,1}, then
S fsp -
S Cn]

4.2. A logarithmic lower bound for deg(f).

Definition 4.10 (Kahn, Kalai, and Linial [7]). For a Boolean function f on n
variables and a variable x;, the influence of x; on f, denoted by Inf;(f), is defined
to be ‘

Inf;(f) = Prob[f(z) # f(«')],
where (¥ denotes the string = € {0,1}" with the ith bit flipped and z is chosen
uniformly in {false, true}™.

In words, Inf;(f) is the probability that flipping the ith coordinate flips the value
of the function. We observe that:

Lemma 4.11. For any Boolean function f on n variables, using the Fourier trans-
form representation of f, we have

(13) > Infi(f) =) ISI£(5)*.
i=1 S
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Combining this lemma with Parseval’s equality, we can conclude that:

Corollary 4.12. For any Boolean function f,

(14) > Infy(f) < deg(f)
i=1
Lemma 4.13 (Schwartz and Zippel). Let p(x1,...,2,) be a nonzero multilinear
polynomial of degree d. If we choose x1,...,x, at random in {—1,1}, then
(15) Prob[p(z1,...,x,) # 0] >27%

Remark 4.14. Lemma T3] can be proved by induction on n and by writing p as a
linear combination of two polynomials on (z1,...,Z,—1).

Proof of Theorem &4l For each i define a function f* on n — 1 variables as follows:
fi(xlv sy L1y Lig 1y - - 7xn)
:f(xlu"'7_1>xi+l>“‘7$’n) _f(xlu"'717$i+17"'7xn)'

From the definition of influence, it is clear that
Inf;(f) = Prob[f (1, ..., Ti1,Tiy1,...,2Tn) 7 0],

where x1,...,2;—1,%iy1,...,x, are chosen at random in {—1,1}.

Since f depends on all the variables, we have that for every 4, f is not identically
zero, and thus we can use Lemma and conclude that for all 4, Inf;(f) > 279,
On the other hand, from (I4)) it follows that ), Inf;(f) < d. Combining these two
bounds gives us (8. O

4.3. Two inequalities concerning deg(f), El?e_g/(f) and D(f). We now return to
the representation of true = 1 and false = 0.

Definition 4.15. A polynomial f(z1,z2,...,2,) is symmetric if
[y, an) = f(@oq), - To(n))
for any permutation o of [n] = {1,...,n}.

Definition 4.16. The symmetrization of a multivariate polynomial p : R” — R
is
EUES" p(xa(1)7 ceey xo’(n))

n! '

P (2, .., ,) =

Since, the number of permutations of [n] is n!, we get a sum of n! terms where
each term is either 0 or 1.

Example 4.17. Consider a polynomial p : {0,1}2 — R given by p(z1,22) =
21 + 2122. Then 1 + 2129 = 21(1 4+ 22) = 1. So
1+ 2o

psym(ﬂﬁl,@) = 5 .

Hence, the important point to note here is that if we are only interested in inputs
x € {0,1}", then p™ turns out to depend only upon z; + - - + z,,. We can thus
represent it as a univariate polynomial of x1 + - -+ + x,:
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Lemma 4.18. Taking p: R™ — R to be a multivariate polynomial, then there exists
a unique univariate polynomial p : R — R such that for all x1,...,2, € {0,1}" we
have

PV M@y, ) = (T + -+ ).
Moreover, deg(p) < deg(p).

Proof. Let the degree of p®¥™ be d. Let P, denote the sum of all (Z) products
[I;cgzi of the [S| = k different variables. Since p*™™ is symmetric, it can be
shown by induction that it can be written as

PV (x) = o + 1 Pr(x) + caPa(xz) 4+ -+ + cqPa(x)
with ¢; € R. Observe that on x € {0,1}" with z := x1 + - - - + x,, ones, Py assumes
the value ( o )
z z2(z—1)---(z—k+1
Pile) = (k) - J! ’

which is a polynomial of degree k of z. Therefore the univariate polynomial p(z),

defined by
~ 4 z z
p(2) :=cO+c1(1) +cQ<2> +-~-+cd(d>,

has the desired property. O

As deg(p) is bounded below by deg(p), we wish to find a bound for deg(p). We
will therefore need to use a result from approximation theory (see, e.g., [27]).

Theorem 4.19 (Markov Inequality). Let p: R — R be a univariate polynomial of
degree d that for any real number a; < x < ag satisfies by < p(z) < by. Then, for
all a1 < x < ag, the derivative of p satisfies

2 _
() < T2 =0
a9 — a1

Because we have information on the values of p(z) only for integer x, we need
this next lemma.
Lemma 4.20. Let p be a polynomial with the following properties.

(1) For any integer 0 < i < n, we have by < p(i) < ba.
(2) For some real 0 < z < n, the derivative of p satisfies |p'(z)| > c.

Then
/ cn
d >
cg(p) 2 c+ by — by

Proof. Let ¢ = maxo<z<n |p/(z)|, which is greater than or equal to c. It is also
clear that for all real 0 < x < n,

Using the Markov inequality, we have

o< deg(p)*(c’ + by — b1)
n

dn cn
d 2> > . O
- eg(p) - C/—Fbg—bl - C+b2—b1
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Lemma 4.21. Let f be a Boolean function such that f(000---0) = 0 and for every
Boolean vector x of Hamming weight 1, f(x) = 1. Then

(16) deg(f) > @

and

a7) des(f) > @

Proof. We will prove the bound for &%( f). Let p be a univariate polynomial ap-
proximating f, and consider p the univariate polynomial giving its symmetrization.
p satisfies the following properties.
(1) By Lemma 4.18 deg(p) < deg(p).
(2) For every Boolean vector x, the function p(x) is within § of a Boolean value
(by equation (i), so for every integer 0 <i < n,—1 < p(i) < 3.
(3) Since, f(000---0) =0, we get p(0) < & by equation (7).
(4) Since for all Boolean vectors x of Hamming weight 1, f(x) = 1. Using
equation (7)) once again, we get p(1) > %

By properties (3) and (4) above and by using the mean value theorem (MVT)
for derivatives, we obtain for some real 0 < z < 1, the derivative p'(z) > % We can
apply Lemma to obtain the lower bound for deg(p). We can also get a similar
bound for deg(p) by using 0 < (i) < 1 along with Lemma and the MVT for
derivatives. (]

Example 4.22. There exists an (explicitly given) Boolean function f of n variables
satisfying f(0) =0 and f(e;) = 1 and deg(f) = n® for « = log32 = 0.631 - - -.

We can show this by considering a function on three variables that is true if
exactly one or two of the input bits are true. Then, we define a Boolean function
fm on n = 3™ variables obtained by building a complete ternary tree of depth m.
Analyzing deg(f) gives the required result.

Nisan [6] had previously established a polynomial relation between the block
sensitivity and the decision-tree complexity as

(18) bs(f) < D(f) < bs*(f).
Lemma 4.23. For every Boolean function f,

(19) aca(f) = /2
and

(20) aea(f) = /20

Proof. We refer to [28, Theorem 14.11] for the proof of this lemma.

Let f(x) be a Boolean function on n variables, and let ¢ : R” — R be the
multilinear polynomial of degree d representing f. By Lemma [£21] we know that
every Boolean function f of n variables, which rejects the zero vector and accepts
all n vectors with Hamming weight 1, has deg(f) > \/g . It is therefore enough to
construct a multilinear polynomial p of ¢t = bs(f) variables satisfying the conditions

of Lemma [L.2T] to prove ([9).
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Let t = bs(f), and let a and Sy, ...,S; be the input and the sets achieving the
block sensitivity. Assume without loss of generality that f(a) = 0. We transform

q(z1,29,...,2,) into a multilinear polynomial p(y1,ya,...,y:) of t new variables
by replacing every variable z; in p as follows. Define a function f/(y1,...,y:) as
Yi ifa; =0and j € 5;
xj:=41—y;, ifaj=1and jecs;
a; ifj¢51U~'~USt.

That is, for y € {0,1}" we have that

p(y)=qla®yS1 & SySy),
where
Si
—
yiSi = (07 '507y1a"'7yi707" 70)
We can easily verify that p is a multilinear polynomial of degree at most d and
satisfies the conditions of Lemma [£.2Il We can therefore conclude that

= deglo) > deg(p) > /£ = |/ 22L0)

The proof of the other part is analogous. |

Since deg(f) < D(f) is obvious (note that the tests along paths to 1-leaves define
a multilinear polynomial), by combining (I8) and the results of Lemma [£.23] we

have (@) and ([I0Q).

5. GOTSMAN AND LINIAL’S RESULT

In this section, we look at Gotsman and Linial’s result [I] that reduces the
sensitivity conjecture to answering a “simple” question about cubes of different
dimensions: If you choose any collection of more than half the corners of a cube
and color them red, is there always some red point that is connected to many other
red points?

5.1. Reformulating the sensitivity conjecture. Consider a Boolean function
f:{-1,1}" = {=1,1}. Let g be the same function as f except that we flip the
value on all odd vertices. Notice that the sensitivity of f on x is the number of ¢
such that
91,y Ty o ) = g(X1, 0oy =Ty oy Ty).

This can be easily visualized as follows. Take a Boolean function f and for any
x € Qn, calculate f(z), marking the vertex blue if f(z) = 1 and red, otherwise.
Thus, the sensitivity of f on x is the number of neighbors of x in @,, that have a
different color than x.

Take G to be the induced subgraph on the set of = such that g(z) = —1 if the
node x was colored blue and H to be the induced subgraph on the set of x such
that g(x) = 1 if the node x was colored red. The sensitivity of f, using this new
notation, is nothing but the maximum number of neighbors of any vertex in G or
H. Recall the representation of f as a multilinear polynomial over the reals that
we saw in section 4l The sensitivity conjecture states that there is some o > 0 such
that if f has degree n, then f has sensitivity at least n®.
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Let us denote I'(G) = max(A(G), A(Qn \ G)). Gotsman and Linial proved the
following equivalence that helps in forming an upper bound for d(f) in terms of

s(f)-
Theorem 5.1. The following are equivalent for any function h : N — R.

1. For any induced subgraph G of Q, such that |V (G)| # 2"~ 1, T\(G) > h(n).
2. For any Boolean function f, h(d(f)) < s(f).

Remark 5.2. Szegedy [I4] proved a tight lower bound for d(f) in terms of s(f) as
a(f) = v/s(f)-

Remark 5.3. In graph-theoretical terms: Suppose you have a partition of the hy-
percube graph @, into sets A and B such that |A| # |BJ, and let G and H be the
induced subgraphs of A and B. Then, there is some constant o > 0 such that there
is a node of A or B with at least n® neighbors.

Remark 5.4. Hao proved that given any subset A of the vertices of a hypercube
with [A] > 277! the induced subgraph has a node of degree at least \/n. Since
either A or B in the Gotsman-Linial assumption has size greater than 27!, Hao’s
result proves the sensitivity conjecture.

Proof. Let us convert statement 1 of Theorem [B.I] into a statement on Boolean
functions. Associate with the induced subgraph G a Boolean function g such that
g(x) = 1iff x € V(G). One way to do this would be to use Karnaugh maps.
Observe that deg(z) = n — s(g, z) for x € V(G), and the same relation also holds
in Q. \ G for z ¢ V(G).

Denote by E(g) = 27" )" g(x) the average value of g on @,. Now, statements
1 and 2 of Theorem [B.1] are equivalent to:

Lemma 5.5. Theorem 511 can be reformulated as
I. For any Boolean function g, E(g) #0 = 3z : s(g,x) <n — h(n).
II. For any Boolean function f, s(f) < h(n) = d(f) <n.

Proof. Proving 1 — L.
[(G) = max(A(G), A(@n \ G)) = h(n) = A(G) = h(n

)
= max dega(x) > h(n)
) >

zeV(G) i
h(n)
= Jdz:n—s(g, ) > h(n)
= Jz:s(g,x) <n—h(

= Tz :degg(x

n),

where the first implication is done assuming that A(G) > A(Q,, \ G).

Proving I — 1. The requirement of E(g) # 0 corresponds to |V (G)| # 2" 1. Re-
versing the implications of the previous result prove the necessary result.

Proving 2 — II. Given d(f) < h=!(s(f)), the result follows naturally if s(f) < h(n).
Proving II — 2. To prove the reverse implication, let f be a Boolean function of
degree d. Fix a monomial of degree d of the representing polynomial of f. Assume
without loss of generality that the monomial is xy - - - x4. Define g(x1,...,zq) :=
f(z1,...,24,0,...,0). Then, g has full degree d, so it follows that s(f) > s(g) >
h(d) = h(deg f), as desired. O
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To see the equivalence of 1 and II, define

g9(x) = f(z)p(z),

where p(z) = (—1)X % is the parity function (note that we take the range of Boolean
functions to be {—1,+1}). Since the parity function is sensitive to all n variables,
observe that Vz € @,

(21) s(g,x) =n—s(f,x),
and for all S C [n],

(22) gS)=2""> g@) [Tei=2">_ @) [[ 2 = F(In]\ 9).

1 €S T i ¢S
In particular,
(23) E(g) = §(¢) = f(In),
where f (S) is the highest order Fourier coefficient in the polynomial representation
of f.

Proving I — II. Assume that d(f) = n, i.e., f([n]) # 0. By @3), E(g) # 0 and by
L

Jz: s(g,2) <n—h(n) = Jz:s(f,x) > h(n),

a contradiction.
Proving IT — 1. Assume

Vo :s(g,x) =n—s(f,z) >n—h(n) = s(f) <h(n)
as s(f) = maxgeq, s(f,z). Then by II,
d(f) <n = f(n)) = 4(¢) = E(g) =0,

a contradiction. O

5.2. Consequences. Gotsman and Linial’s result translates a Boolean function
with a polynomial gap between degree and sensitivity into a graph with the same
polynomial gap between I' and n, and vice versa. For example, observe that Rubin-
stein’s function (section[5.2.1]) can be used to obtain a graph G with the surprising
property I'(G) = ©(y/n). Also, we constructed a graph G with I'(G) < v/n+ 1 in
section 3.l Theorem (.1l implies that the following conjecture is equivalent to the
sensitivity conjecture.

Conjecture 5.6. There is a constant € > 0 such that for every induced subgraph
G of Q, with |V (G)| # 2", we have T'(G) > n®.

5.2.1. Rubinstein’s function. The following function was constructed by Rubinstein
[1): Take n = k? variables (k even), divided into k blocks of k variables each. The
value of the function is 1 if there is at least one block with exactly two consecutive
1’s in it, and 0 otherwise.

The block sensitivity of Rubinstein’s function is equal to n/2 (hence, the certifi-
cate complexity and the decision-tree complexity is at least n/2) and the sensitivity
is \/n; this can be verified by a direct computation of f([n]). Hence, one can es-
tablish for this function that

bs(f) > s(f)?/2.
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6. HAO’S RESULT

In this section, we expound Hao’s result [4] which shows that every (277! + 1)-
vertex induced subgraph of the n-cube graph @,, has maximum degree at least y/n,
hence proving the sensitivity conjecture.

Rubinstein’s example (see section [(2.1)) is still the best-known lower bound on
bs(f) in terms of s(f). But no one had proven anything better than an exponential
upper bound until Hao’s result, from which it follows that: For all Boolean functions

/s

bs(f) < 2s(f)".
Observe that this concrete bound is the combination of two quadratic bounds. From
(@), we conclude that

(24) bs(f) < 2deg(f)*.
The other is the conjecture (take h(z) = \/z in Theorem [B.TI),
(25) deg(f) < s(f)?,

which is what Hao proves (Theorem [[4]).

6.1. Cauchy’s interlace theorem.
Lemma 6.1. All eigenvalues of a Hermitian matriz are real numbers.

Proof. Let A be an arbitrary eigenvalue of a Hermitian matrix A with corresponding
eigenvector x. Then

Ax = x = xTAx =xT(\x) = xTAx = \x"x = )\|x||.
Take the conjugate transpose on both sides to get (note A is Hermitian)
xTATx = N|x|| = M|x|| = xTATx = xT Ax = xT\x = \||x]|.

Hence, A|[x|| = Al[x||. Being an cigenvector, x cannot be the zero vector. So,
A=A = AelR (]

If f and g are polynomials with real roots 1| < ro < -+ <rjpand sy < s9 < --- <
Sn—1, we say that f and g interlace if and only if 1 < s1 <719 <--- <51 < 7Ty

Lemma 6.2 ([29, chapter 6]). The roots of polynomials f and g interlace if and
only if the linear combinations f + ag have all real roots for all o € R.

Corollary 6.3. If A is a Hermitian matriz and B is a principal submatriz of A,
then the eigenvalues of B interlace the eigenvalues of A.

Proof. We will need another definition.

Definition 6.4. Given a real n X n matrix A, a principal submatrix of A is
obtained by deleting the same set of rows and columns of A.

By simultaneously permuting rows and columns, if necessary, we may assume
that the submatrix B occupies rows 2,...,n and columns 2,...,n, so that A has

the form
B ¢
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where * signifies the conjugate transpose of a matrix. Choose o € R, and consider
the equation that follows from the linearity of the determinant,

B -zl c B—=xl c B—-zI c
(26) c* d—z+a| | c* d—=x 0 ’
Using Lemma 6] on the right-hand side of (26) implies that |A —xI|+«|B—xI|
has all real roots for any «, so the eigenvalues interlace. O
Consequently,

Theorem 6.5 (Cauchy’s Interlace Theorem, Fisk [12]). Let A be a symmetric nxn
matriz, and let B be a m X m submatrix of A for some m < n. If the eigenvalues
of A are \y > X > -+ > A\, and the eigenvalues of B are pig > g > -+ > i, for
all1 <i<m,

Ai 2> i > Nign—m-

6.2. Proving the sensitivity conjecture. Our discussion of Hao’s proof of the
conjecture is inspired by [30]. One can show that the degree d(G) of a graph G
is always at least as great as the largest eigenvalue A; of the adjacency matrix
Ag. Take an m-vertex subgraph H of @Q,, and let its top eigenvalue be \;(H).
We know that the entries of the adjacency matrix Ay are either 0 or 1. Hao’s
insight was to realize that if one flipped the signs of some 1’s in Ay, thus creating a
so-called pseudo-adjacency matrix, the relation between the degree and the largest
eigenvalue of the adjacency matrix still holds.

Lemma 6.6. Suppose H is an m-vertex undirected graph and A is a symmetric
matriz with entries in {0,+1} and whose rows and columns are indexed by V(H),
the vertex set of H. Also, let A, ., = 0 whenever u,v € V(H) are nonadjacent.
Then,

Proof. Let v be the eigenvector corresponding to A;. Then, A\;v = Av. Choose an
index 7 that maximizes the absolute value |v;|. Then

Aroi = [(AV)i| = [ Aigos | S 1D Aigl-ul < Y0 1Au) - foil < d(H)wil
J J (4,7)€EE(G)

from which the result follows. O

Observe that a key idea in Lemma [6.6] was the introduction of —1 entries in the
adjacency matrix Agy. What would happen if we try to use the original (unmodified)
adjacency matrix in LemmalG.6F One readily observes that although this matrix has
its top eigenvalue at least y/n, the interlacing bound is too lossy to prove this with-
out modification. Take for example, the three-dimensional cube @3, in which case,
the eigenvalues of the unmodified adjacency matrix are {—3,—1,—-1,—1,1,1,1,3},
giving the trivial bound A; > 0. In general, the eigenvalues of the adjacency matrix
of @, will be the integers —n,—n+2,—-n+4,...,n.

We now want to find conditions that force Ay = y/n, particularly when m > % +1
with N = |V(Q,)| = 2". Hao does this by making A sit inside a matrix Ay (whose
construction is discussed in section [6.3]) with at least % eigenvalues with value /n.

For realizing this, construct Ay_; as a principal submatrix of Ay by deleting its
last row and column. Since Ay and An_; are both real and symmetric matrices,
they have real eigenvalues, and so we can order them as A1,..., Ay and pt1,..., un—1
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in nonincreasing order. Note that their eigenvalues always interlace following from
the property outlined before Lemma

Observe that this process can be repeated; that is, we can construct Ax_o by
knocking off another row and its corresponding column. Denoting the eigenvalues
of Ax_2 by v;, we can easily see that

(27) H1 >V 2> flg > Vg 2> i3 => A 2> V1 > A3,

Repeating this procedure gives us another matrix whose top eigenvalue is still at
least as big as \4.

Generalizing this, if we repeat this process % —1=2""1—1 times inside Ay,
the resulting matrix’s largest eigenvalue is still at least as large as A N (An), which

we assign the value of y/n. This means the size of the resultant (square) matrix
will be m = % +1=2""1 41, and consequently

A(AN) 2 M(Am) > Ay (An) = V7,
which when used with Lemma yields

d(H) > v/n,

thus proving Theorem .4

6.3. Constructing the matrix. As noted earlier, Hao showed that there exists
a N x N matrix Ay with entries in {0,4+1} whose nonzero entries correspond to
the edges of the Boolean cube and such that all the N eigenvalues of Ay are +/n.
As a result, these eigenvalues sum up to zero, meaning that the trace is zero. This
would then imply that A% = nl.

We would have ideally wanted Ay to be the adjacency matrix of the n-cube
but that does not work—because each (i, ) entry of the square of the unmodified
induced adjacency matrix of @),, counts all paths of length 2 from node 4 to node
7, and that number is nonzero.

This is where the introduction of —1 on edges comes in handy. We arrange that
every 4-cycle of the n-cube has exactly one edge with —1. Then, the pairs of paths
from one corner to the opposite corner will always cancel, leaving A?ﬁ ; = 0 whenever
1% j. And Afl = n because there are n ways to go out and come back along the
same edge, always contributing 1-1 or (—1) - (—1) either way.

Subsequently, Hao defines the needed labeling exactly by the recursion,

A% 1
I —A%

1

As = {(1) O] and Ay = for (N > 2).

One can easily verify that A%, = nl by induction. A nice exposition of the physical
interpretation of this pseudo-adjacency matrix, using physics concepts such as the
Jordan—Wigner transformation and Majorana fermions, is given in [13].

7. FURTHER DISCUSSION

In this section we provide comments on the open problems posed by Hao [4].

Definition 7.1. An automorphism of G is a bijection f : V(G) — V(G) sending
edges to edges and nonedges to nonedges.
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Denote by H = Aut G the full automorphism group of G. Roughly speaking,
the more symmetry a graph has, the larger its automorphism group will be, and
vice versa.

Definition 7.2. The graph G is vertex-transitive if H acts transitively on V(G),
that is, for all u,v € V(G), there is an automorphism f € H such that f(u) = v.

Intuitively, a graph is vertex-transitive if there is no structural (i.e., nonlabeling)
way to distinguish vertices of the graph. Some examples include the complete graph
K, and the cycle C,, on n vertices. For a not-so-obvious example, let GG be a group,
and let S C G be a generating set for G such that 1¢ ¢ S and S is closed under
taking inverses.

Definition 7.3. The (right) Cayley graph I' = T'(G, S) is given by
(28) V(I)=G; E®T)={{g,h}:9g *heS}.

Thus, two vertices are adjacent if they differ in G by right multiplication by a
generator. The Cayley graph of a group is always vertex-transitive.

7.1. Three notions of symmetry.

7.1.1. Distance-transitive graphs. In a connected graph G, define the distance
d(u,v) between u,v € V(G) as the length of the shortest path from u to v.

Definition 7.4 (Gray [I5]). A graph is distance-transitive if for any two pairs of
vertices (u,v) and (v/,v") with d(u,v) = d(u’,v"), there is an automorphism taking
u to v and v to v'.

It is seen that distance-transitivity implies vertex-transitivity. The Hamming
graph H(n, k) is defined by the vertex set

70 =7y x - % Ly,
—_———
n times

where Zy, = [k — 1] = {0,1,...,k — 2,k — 1} and two vertices u and v are adjacent
iff they differ in exactly one coordinate. The d-dimensional hypercube is defined
to be H(n,2) := Qg. It is observed that Hamming graphs are a family of distance-
transitive graphs (see [16, Chapter 5]).

A connected, acyclic graph is called a tree. A regular tree T, (r € N), where
all vertices have degree r, is an example of an infinite locally finite (all vertices
having finite degree) distance-transitive graph. Macpherson’s theorem [I7] gives a
necessary and sufficient condition for a locally finite infinite graph to be distance-
transitive.

7.1.2. Homogeneous graphs.

Definition 7.5 ([I5]). A graph G is called homogeneous if any isomorphism
between finite induced subgraphs extends to an automorphism of the graph.

Homogeneity is the strongest possible symmetry condition we can impose. Gar-
diner’s result [I8] gives a concrete classification of finite homogeneous graphs, and
for the infinite case we cite an example of a random graph R constructed by Rado
[19].
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7.1.3. Connected-homogeneous graphs.

Definition 7.6 ([I5]). A graph G is connected-homogeneous if any isomor-
phism between connected finite induced subgraphs extends to an automorphism.

This helps us define an intermediate class of graphs between the homogeneous
and distance-transitive graphs. Gardiner [20] gives yet another concrete classifica-
tion of finite connected-homogeneous graphs. A result of Gray and Macpherson
[21] helps us to classify the countable connected-homogeneous graphs.

7.2. Problems.

Problem 7.7. Given a graph G with high symmetry, what can we say about the
smallest maximum degree of induced subgraphs of G with a(G) + 1 vertices, where
(@) denotes the size of the largest independent set in G

Definition 7.8. A set of vertices in G is an independent set if no two vertices
in the set are adjacent.

Definition 7.9. A maximal independent set is an independent set to which
no other vertex can be added without destroying its independence property. The
number of vertices in the largest independent set of G is called the independence
number, o(G).

Chung et al.’s result (see section [3)), that the smallest maximum degree of @,
is at most [v/n ], has been generalized in [22] for Hamming graphs H(n, k) for all
n,k > 1. It has been observed that the same result holds true for these graphs also,
giving a bound independent of the value of k.

It would be interesting to find whether the classes of symmetric graphs described
above yield analogous results.

Problem 7.10. Let g(n,k) be the minimum ¢ such that every ¢-vertex induced
subgraph H of @,, has maximum degree at least k. Hao showed that g(n,/n) =
27~1 + 1. Can we determine g(n, k) (asymptotically) for other values of k?

We are unaware of any prior work that has considered the quantity g(n,k).
However, Agnarsson [23] analyses the maximum number of vertices of degree k in
an induced subgraph on n vertices of Q.

Problem 7.11. The best separation between the block sensitivity bs(f) and the
sensitivity s(f) is bs(f) = 2s(f)? — £s(f), which is quadratic (see [24]). Hao proves
a quartic upper bound. Is it possible to close this gap by directly applying the

spectral method to Boolean functions instead of to the hypercubes?

One might try to see what happens if we tweak bs(f) = O(s(f))*, which was the
upper bound proved by Hao, to say, O(s(f))?. To check its validity, we first look
at the two results used by Hao to show bs(f) = O(s(f))*. The first one, shown by
Hao, which essentially proved Gotsman and Linial’s conjecture (see ([25)) was that
for all Boolean functions f : {0,1}" — {0, 1}, the inequality s(f) > y/deg(f) holds.
This is seen to be a tight bound for the AND-of-ORs function:

Definition 7.12. The AND-of-ORs function is defined on n blocks of n variables

each as
n

Ve

i=1 i=1

=

f(l'llv cee 7x7m) =
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This inequality is combined with Nisan and Szegedy’s result (see (I9))) stating
that for all f : {0,1}" — {0,1}, deg(f) > 1/3bs(f). From Hatami’s survey [10], it

is known that this bound cannot be improved beyond bs(f) > (deg f)'°8:6, where
log; 6 ~ 1.6309. So, the use of deg(f) is not feasible to try to get a quadratic
sensitivity upper bound on the block sensitivity.

It is still open as to whether exploring the techniques of interlacing eigenvalues
of signed matrices on different objects may lead to sharper bounds.

Note 7.13. It would be instructive to mention the connection of Hao’s proof to
Clifford algebras as shown in [25]. This concept has been used to extend Hao’s
result for a Cartesian power of a directed I-cycle in [26].

8. SENSITIVITY AND CREW PRAMS

In this section we discuss how the sensitivity conjecture is related to CREW
PRAMs.

A PRAM (parallel random access machine) is the standard model for parallel
computation. It consists of a set of processors Py, P;,... which communicate by
means of cells Cy, C1, . .. of shared memory. Each step of computation (of a function
f) consists of three phases: read, compute, and write phases. In the read phase,
each processor may choose one cell to read from. In the compute phase, an arbitrary
amount of local computation can take place. In the write phase, each processor may
choose one cell to write into.

In the CREW (concurrent read exclusive write) PRAM variant, simultaneous
read access is permitted, but not simultaneous write access. That is, several proces-
sors may read from the same location at the same time, but two or more processors
may never attempt writing into the same location at the same time.

A key result bounding the power of ideal CREW PRAM:s is by Cook, Dwork, and
Reischuk [8] where they show that CREW(f) = Q(log(s(f))) is a lower bound on the
number of steps required to compute a function f on a CREW PRAM. After this,
Nisan [6] tweaked the definition of sensitivity and introduced the notion of block
sensitivity to obtain CREW(f) = O(log(bs(f))). Now, one would ask naturally
whether CREW(f) = O(log(s(f)))? Proving this is the sensitivity conjecture.
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