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CONVEX INTEGRATION CONSTRUCTIONS
IN HYDRODYNAMICS

TRISTAN BUCKMASTER AND VLAD VICOL

ABSTRACT. We review recent developments in the field of mathematical fluid
dynamics which utilize techniques that go under the umbrella name convex
integration. In the hydrodynamical context, these methods produce paradox-
ical solutions to the fluid equations which defy physical laws. These counter-
intuitive solutions have a number of properties that resemble predictions made
by phenomenological theories of fluid turbulence. The goal of this review is
to highlight some of these similarities while maintaining an emphasis on rig-
orous mathematical statements. We focus our attention on the construction
of weak solutions for the incompressible Euler, Navier—Stokes, and magneto-
hydrodynamic equations which violate these systems’ physical energy laws.

1. INTRODUCTION

We experience turbulent fluids on a day-to-day basis. The plume rising from a
lit candle starts off as smooth and well organized (laminar) and quickly becomes
wildly irregular, or chaotic. The air flow around a car in motion is typically laminar
around the front of the car and becomes chaotic (turbulent) in the wake of the car.
Hydrodynamic turbulence has received a tremendous amount of attention over the
past century, both within the physics and mathematics literature. This has resulted
in a number of phenomenological theories which have been very successful in
making predictions about the statistics of turbulent flows. Nonetheless, to date,
we do not have an unconditional, mathematically rigorous bridge between these
phenomenological theories and properties of the solutions to the underlying partial
differential equations (PDEs) which are meant to describe the fluid: the Navier—
Stokes equations and their infinite Reynolds number limit, the Euler equations.

A slightly less ambitious goal, which nonetheless would offer tremendous insight
into the nature of turbulent flows, is to start from experimental factsE translate
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1Some of these phenomenological theories may be traced back to the works of O. Reynolds,
L. Prandtl, T. von Karman, G. 1. Taylor, L. F. Richardson, W. Heisenberg, A. Kolmogorov,
A. Obhukov, L. Onsager, L. Landau, E. Hopf, G. Batchelor, R. H. Kraichnan or P. G. Saffman,
and many others. The topic is too vast to review here, and we refer the reader to [953L74}[82133]
for further references.

2By this we mean quantitative predictions about hydrodynamic turbulence, which are con-
firmed experimentally both in a laboratory setting and in computer simulations to the point that
these predictions are undoubted in the physics community. Examples of such experimental facts
include the anomalous dissipation of energy in the infinite Reynolds number limit [I58|[172] or

(©2020 American Mathematical Society


https://www.ams.org/bull/
https://www.ams.org/bull/
https://doi.org/10.1090/bull/1713

2 TRISTAN BUCKMASTER AND VLAD VICOL

them into mathematical properties for solutions of the fundamental fluids PDEs,
and then prove that there exist classes of solutions to these PDEs which exhibit
the desired properties. In this process a certain degree of mathematical idealization
is inevitable, and thus one should view such a program as showing that the PDE
models are consistent with the physical reality of turbulent flows, justifying their
predictive usage in computer simulations.

The remarkable outcome of such attempts is that sometimes beautiful and deep
mathematical connections are revealed when trying to translate experimental facts
into rigorous questions about PDEs. This article is about one such program, which
has brought the method of convez integration (which has its roots in classical prob-
lems in geometry) into the hydrodynamic context, where it played the key role in
the resolution of Onsager’s conjecture [20,93], the mathematical manifestation of
an experimental fact in turbulence.

Building upon the seminal works of Scheffer [147] and Shnirelman [I52,[153], De
Lellis and Székelyhidi Jr. developed in [5558] a systematic framework for applying
convex integration in fluid dynamics. Since then, the mathematical techniques have
evolved, in part by taking into account more detailed physical properties of the fluids
equations, and this mathematical evolution has been the subject of a number of
review papers [221[57,[60,GTL[162). The goal of this article is to put in perspective
some of the more recent results in this program, such as the nonuniqueness of
distributional solutions to the Navier—Stokes equations [I6L23], and the existence
of weak solutions to the ideal magneto-hydrodynamic (MHD) equations which do
not conserve magnetic helicity [10].

We discuss the three flavors of convex integration encountered in hydrodynam-
ics, which originated in the works [55], [58], and [23], respectively. The first is the
classical Ly convex integration in which one relaxes the equation, constructs a
suitable notion of subsolution, to which one then adds high frequency plane wave
corrections of suitable amplitudes. Through a powerful abstract functional analytic
machinery originating in the field of differential inclusions, this procedure may be
shown to produce a sequence of approximate solutions which converge weak-* to a
bounded weak solution. The second flavor is the C}", convex integration scheme,
which is both motivated and also resembles the earlier schemes of Nash and Kuiper
for the isometric embedding problem. In this scheme, the approximate solutions
are built by incrementally adding oscillatory perturbations of higher and higher
frequencies. The oscillations themselves to leading order are exact stationary so-
lutions of the underlying PDEs. The convergence to a limiting continuous weak
solution holds because the error converges to zero in the uniform norm, and the
approximating sequence converges absolutely in Holder spaces. The third flavor of
convex integration, intermittent convex integration, builds on the aforementioned
Nash-type scheme, but the analysis is performed in Lebesgue spaces. This scheme
explores the fact that if the building blocks are to leading order exact solutions of
the underlying PDEs, then some of the most dangerous error terms in the iteration
are linear in terms of the highest frequency perturbation, and thus via a decou-
pling argument these terms are smaller than initially expected when measured in
the correct Lebesgue space. In this intermittent convex integration scheme, the

Kolmogorov’s 4/5 law [82,[I59]. In contrast, quantifying the intermittent nature of fully devel-
oped turbulent flows, for instance by measuring the scaling of the pth-order structure functions
for p # 3, is well known to exhibit variations depending on the experimental setup [82,I57].
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cancellation of errors of smaller frequencyﬁ is achieved in an average sense, rather
than pointwise, as is the case for the L{5, and Cy, variants of convex integration.
One way to emphasize the different types of results that may be obtained via these
three approaches, is to consider hydrodynamic PDEs with more than one conser-
vation law such as the ideal MHD equations. For this system, it is easy to discern
the type of results which may be obtained via the the various flavors of convex
integration [I0}[78], as they relate to the conservation laws of the model.

It is fair to say that the limitations of convex integrations schemes in fluid dynam-
ics are not yet known, emphasizing the power and the flexibility of the machinery
that De Lellis and Székelyhidi have developed. A large number of physically mo-
tivated, mathematically very interesting challenges remain to be explored, and we
have mentioned a number of open problems and conjectures in Section [B.6] Sec-

tion [£.4] and Section [5.3]

2. ENERGY EQUALITIES AND THEIR VALIDITY

In this section, we discuss the energy balance relations for the Navier—Stokes, Eu-
ler, and MHD equations, which are the fundamental models governing the motion
of incompressible homogenous viscous, inviscid, magnetically conducting fluids, re-
spectively. Throughout this survey, we focus on the space dimension three (3D),
on occasion making reference to two dimensional (2D) models. The physical do-
main in which the hydrodynamical models are considered is the periodic box T3,
putting aside the many interesting physical phenomena and the mathematical diffi-
culties which arise when considering these models in domains with solid walls. For
all PDEs considered, the initial data, the forcing terms, and thus solutions satisfy
periodic boundary conditions, have zero mean on T?, and are incompressible.

2.1. The Navier—Stokes equations and the zeroth law of turbulence. The
PDEs governing the motion of homogenous incompressible viscous fluid flows are
the Navier—Stokes equations, a manifestation of Newton’s second law of motion
and the conservation of mass. The unknowns are the velocity v: T2 x R — R? and
pressure p: T2 x R — R, satisfying

(2.1a) ov+ (v-Vo+Vp=vAv+ f,
2.1b dive =0.
(

Here v > 0 is the kinematic viscosity of the fluid and f is a zero mean incompressible
forcing term. We abuse notation and write »~! for the Reynolds number. The
system (2] is supplemented with an initial datum vy which has zero mean, is
incompressible, and is square integrable. Note that one may rewrite the nonlinear
term in (213 in divergence form as

(v-V)v=diviv ®v),

which is important for defining distributional solutions to the system (see Defini-
tions 2.1l and below). The literature concerning these equations is vast, and we

3The cancellation of the previous error (Reynolds stress) in convex integration schemes es-
sentially happens through an infinite range backwards cascade, very much like how 2 cos?(nz) =
1 + cos(2nz) produces a contribution of amplitude 1 at frequency 0, no matter how large n is!
The weak solutions constructed via convex integration schemes essentially retain the memory of
an O(1) access to frequency infinity. In contrast, it is known that in 3D turbulent flows, kinetic
energy mostly travels from low to high frequencies, and that the energy transfer is very local, due

to (2I12) below.
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refer the interested reader to the books [421/67, 811 T4LI43L[I70,171] for an overview
of the field.

2.1.1. The energy balance and weak solutions. Fix v > 0, an initial datum vy,
and a forcing term f which are smooth. Consider a smooth solution v € C}C?
of the Navier—Stokes system (ZI]) with this datum, and take an inner product of
the forced momentum equation (ZIa) with v. Since v is smooth, we obtain the
pointwise energy balance
2 2 2

v v v
(2.2) 3tu—|—div v u—|—p —1/Vu =f-v—v|Vo|]%

2 2 2
Integrating (2.2)) over T? and using that the divergence of a smooth periodic function
vanishes, we obtain the kinetic energy balance

d
(2.3) —E—i—u/ |Vv\2:/f-v,
dt T3 T3
where we have denoted the kinetic energy by
1
W)=y [ (0P,
T3

Note that the second term on the left side of (23) is signed, and it physically
represents the energy dissipation rate; the term on the right side denotes the total
work of the force. We emphasize that in deriving ([23]) the following cancellation
played a key role:

(2.4) /Wv.((v.wva)_/Tsv-v(@ﬂ)) ——/ngi\\;g<g+p> ~0.
=0

For f € L,?H; L the energy balance ([Z3)) implies that

v [* I
(2.5) ew+y [ Ivelly <26+ 5 [ 1l

for any ¢t > s > 0. The inequality (2.5 is the only known coercive a priori estimate
for the 3D Navier—Stokes equations, and it gives an a priori bound for the solution
v in the so-called energy space L{°L2 N L?HL, solely in terms of the input vy €
L? and f € LfH; 1. We emphasize however that the knowledge that v lies in
L°L2 N L2H] is not sufficient to establish that the cancellation relation (Z4) holds
(weakly in time). This point is important to keep in mind, and it will be revisited
in Section below.

Using (2.3)), along a sequence of approximate solutions for which (2.3)) is justified,
Leray [I15] (and later Hopf [89] in the case of domains with boundary) proved that
for any finite energy initial datum there exists a global weak solution to the Navier—
Stokes equation. More precisely, Leray proved the global existence in the following
class of weak solutions.

Definition 2.1 (Leray—Hopf weak solution). A vector field
v € Cuea([0,00); LA(T?)) N L*([0, 00); H' (T%))

is called a Leray—Hopf weak solution of the Navier—Stokes equations if for any
t € R the vector field v(-,t) is weakly divergence free, has zero mean, satisfies the
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Navier—Stokes equations distributionally:
(2.6) // v-(Op+ (v- V) +vAp+ fdxdt +/ v(-,0) - (-,0)dz =0,
RJ T3 T3

for any divergence free test function ¢ € C§°([0,00), C>°(T?)), and satisfies the
energy inequality (23] for ¢ > of

While Leray—Hopf weak solutions are known to enjoy certain desirable properties
such weak-strong uniqueness [I15,142,[A50,176] (if a smooth solution exists, then
any Leray—Hopf weak solution with the same initial datum is equal to this smooth
one) or epochs of reqularity [115] (intervals for which the solution is smooth, leading
to partial regularity in time [ITTL[1441[145]), their uniqueness to date remains open.
Regularity, and hence also uniqueness, is only known to hold under the extra as-
sumption that the solution is bounded in a scaling invariant space, such as L¥ L4 for
2/p+3/¢ = 1, known as the Ladyzenskaja—Prodi-Serrin conditions [72}[103|[142]149].
In fact, it has been conjectured [O7L08[1T2] that the uniqueness of Leray—Hopf weak
solutions fails as soon as the Ladyzenskaja—Prodi—Serrin conditions are violated. In
spite of compelling numerical evidence [87], to date this question remains open.

Note that the distributional form of the Navier-Stokes equations (Z.0]) makes
sense as soon as v € L?L2, without requiring that v € L?H}. Thus, as in [I50] one
may define an even weaker notion of solution to (ZI]) as follows.

Definition 2.2 (Weak/mild solution). A vector field v € C?_ ([0, 00); L*(T?)) is
called a weak or distributional solution of the Navier—Stokes equations if for any ¢
the vector field v(-,t) is weakly divergence free, has zero mean, and (Z.6]) holds for

for any smooth divergence free test function .

As shown in [75], the weak solutions of Definition satisfy the integral equation
t
v(-,t) = e’Au(-,0) + / e”A(t*S)]P’div(v(-7 s)®@u(-,s))ds,
0

and are called mild solutions [IT14, Definition 6.5]; here P is the Helmholtz pro-
jection. We emphasize that this class of solutions is weaker than the Leray—Hopf
weak solutions in Definition 2.1 because solutions need not satisfy the energy in-
equality (Z3)), and their energy dissipation rate need not be finite. Similarly to
Leray—Hopf ones, these weak solutions are known to be regular under the addi-
tional assumption that one of the Ladyzenskaja—Prodi—Serrin conditions is satis-
fied [75[84]85,[109,113LT20]. However, as opposed to Leray—Hopf weak solutions,
for the weak solutions of Definition it is by now known that uniqueness fails.
This was established by the authors of this review in [23] (see Theorem 1] below)
and then improved in a joint work with Colombo [I6] showing that uniqueness
fails even if partial regularity in time holds (see Theorem 3] below). The proofs
in [16L23] rely on a version of the convex integration scheme, called intermittent
convex integration, which will be discussed in Section Ml below.

4A stronger form of the energy inequality holds by Leray’s construction: (ZH) holds for a.e.
s > 0 and all ¢ > s. Moreover, an a priori stronger form of weak solution may be constructed
by modifying Leray’s proof. These so-called suitable weak solutions obey a version of the energy
inequality which is localized in space and time, which allows one to prove that they are smooth ex-
cept for a putative singular space-time set with one-dimensional (1D) parabolic Hausdorff measure
which is zero [25l[1451[146]; see also the more recent reviews [I14}[1401[143].
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2.1.2. Conditional proof of energy balance. We return to a question alluded to ear-
lier: Consider a weak/mild solution of the Navier—Stokes equations which is known
to lie in the Leray Hopf energy space L°L2 N L?H}. Does such a solution auto-
matically obey the energy equality/balance ([Z3))7 Currently, this question is open
and only conditional criteria are available. The issue lies in justifying the cancella-
tion (2.4) in the sense of temporal distributions. The classical results state that if
in addition to v € L{°L2 N LfH; one also knows that v € L} L% [118] or, more gen-
erally, v € LYLE with 2/p + 2/¢ = 1 [I51], then (Z3)) holds; see also [321[33L110,116]
for more recent refinements. We emphasize that these conditional results assume
less integrability on v than the Ladyzenskaja—Prodi-Serrin conditions, and this is a
common theme in hydrodynamics: the energy equality may be justified under much
weaker conditions than those required for establishing the uniqueness of solutions,
i.e., the energy equality is a weaker notion of rigidity than uniqueness [104].

We recall a modern proof of the classical result of [TI8[I51], namely that v €
LILANCO, .. [L2NL?H! implies ([23); for details we refer the reader to [2933L154).

weak,t
The point is that by interpolation, the assumption on v implies that v € L?B;{ 2071,

which means that lim,_ ﬁ fOT Jps (@ + 2,t) — v(2,t)[3dzdt = 0. The former
condition is known due to [29/[68] to imply (23)). The more detailed argument is
as follows.

Denote by P<,.v the projection of v to its Fourier frequencies which have modulus
less than k. Testing the Navier—Stokes equations with the smooth divergence free
function P<,v = P2 v, and using that P<, is self-adjoint on L2 and commutes
with space and time derivatives, similarly to (Z3)) we obtain that

2
4 de + u/ |VP< 0] = / Pepf - Popudr + 11,
dt T3 2 T3 - T -

where we have denoted by II,, the energy flux through frequencies ~ « by, i.e.,

I—[,i Z/ PS,{(’U@’U)Z V]P)SN’U.
T3

(2.7)

First, we note that as soon as v € Cgveak’tLi DL?H;, by the dominated convergence
theorem, the terms on the left side of ([27) converge as k — oo to the terms on
the left side of ([23]), when integrated in time. Second, if f € LfH;l, then also the
first term on the right side of ([2.7) converges to the term on the right side of ([2.3]),
when integrated in time.

The only question that remains is whether the time integrated flux term in (27,
fOT II.dt, vanishes as K — oo. In order to address this, one first uses that P<,v is
smooth, and thus the cancellation (Z4]) holds with v replaced by P<,v. This allows
one to rewrite

(2.8)
I0,.(v) = / (Pgﬁ(v ®v) — (P<pv ® Pg,ﬂ))): VPov= | Cu(v,v): VP<,0,
T3 T3
which reveals the importance of the quadratic commutator term
(2.9) Cr(v,w) =1 Pc(v@w) — Pcv @ Pyw.

As was shown by Constantin, E, and Titi in [41], we have

(2.10) Ca(o.w)ll a2 € 572 ol e hollpg -
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~

This may be combined with the bound |[|[VP<.v|[,5 <K' ||1)HB§ to yield

(2.11) ()] < R ol
which proves that as soon as v € L?Bgm@ for any o > 1/3, then IT, — 0 as kK — o0,
thereby proving that the energy equality holds. In fact, this is exactly the proof
given in [41] for the rigid side of Onsager’s conjecture; we discuss this in Section [2.2]
below.

Returning to our goal of proving the energy equality for the Navier—Stokes sys-
tem (2.3), we note that the assumption v € L} L1 was not yet used. Using standard
interpolation inequalities, the information that v € L} L3 N Cgveak7tL§ N L?H 1 gives

that v € L3W."" and thus that v € L?B;/zow and lim;_, o 2¢ |Pagiv]|3s =0,
where Proi = Pcoit1Psgi1; ie., v lies in the space L?B;’/io’x. This information

is not good enough to apply (ZI1]) since v = 1/3; it is however just good enough
to prove that the flux vanishes as kK — oo. To see this, we recall a more detailed
estimate on the commutator term C, (v, v), and thus for the flux II,;, which was ob-
tained in [29] by using the Bony paraproduct decomposition from Littlewood—Paley
analysis:

(2.12) Iy (v)] <37 27091 Ppin

i=1

|3
L3 -

Besides showing that the energy transfer from one dyadic scale to another is mainly
local, the above estimate shows that v € L?B;{zo’m implies limy_ o0 fOT I, = 0,
thereby completing the conditional proof of (Z:3]). We note that estimate (212))
gives the best-known condition on v which ensures that the total energy flux van-
ishes, and this condition is sharp in the case of the 1D Burgers equation [154]. We

revisit these ideas in Section

2.1.3. Anomalous dissipation of energy in the infinite Reynolds number limit. We
have seen in the previous section that the energy equality ([2.3]) is not necessarily
satisfied for weak solutions of the Navier—Stokes equations, even if they lie in the
Leray—Hopf space. The identity (Z7]) does however show upon passing x — oo that

d

(2.13) -

E= [ fu+lo@) —v [ |Vof

T3 T3
holds in the sense of distributions in time, and I1,(v) = limy o I, (v) may or may
not be equal to 0. It is thus natural to define the average energy dissipation rate
on the time interval [0, 7] as

T T
(2.14) v = ,,][ |Vol® — ][ oo (v) .
0 JT3 0

It is clear from the above definition that if the Navier—-Stokes solutions maintain a
certain degree of regularity uniformly in v < 1, for instance if at fixed v > 0 we
have v € L}L% and if v ||v||2L§H1 — 0 when v — 0, then for any 7" > 0 we have
limy_m Ev,T = 0. ’

The vanishing of the energy dissipation rate for turbulent solutions as v — 0
(equivalently, as the Reynolds number goes to co) contradicts an experimental fact
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known as the zeroth law of turbulence, which loosely speaking states that

(2.15) liminfe, oo =€ >0,
v—0

for an € € (0,00). The anomalous dissipation of energy postulated in ([2I0) is
the fundamental ansatz of Kolmogorov’s 1941 theory of fully developed turbu-
lence [I05HIOT], and it has been verified experimentally to a tremendous accu-
racy [99,T411[158]. The literature on this topic is vast, and we refer the interested
reader to [22][74l[82[154] for references.

To date it remains open to prove that (2I5) is a manifestation of the statisti-
cal behavior of solutions to the Navier—Stokes equations in the infinite Reynolds
number limit. Nonetheless, (2.I0) provides unquestionable physical evidence that
in the limit ¥ — 0, one should expect that Navier—Stokes solutions do not re-
main uniformly smooth, and that (at best) they converge to nonsmooth, possibly
nonunique, weak solutions of the Euler equations. Thus, in an attempt to translate
predictions made by turbulence theories into mathematically rigorous questions,
such as Onsager’s conjecture which we discuss next, it is natural to work within
the framework of weak solutions of the Euler equations.

2.2. The Euler equations and Onsager’s conjecture. The classical model for
the motion of an incompressible homogenous inviscid fluid are the Euler equations,
obtained by formally letting v = 0 in (2]

(2.16a) O+ (v-Viv+Vp=0,
(2.16b) divo =0.

As with the Navier—Stokes equations, the literature concerning the incompressible
Euler equations is immense, and we refer the interested reader to the books [28]
TT9l[1241[125] for an overview of the standard results in the field.

2.2.1. The energy equality and weak solutions. In direct correspondence to the dis-
cussion presented in Section 2.I.]] for the Navier—-Stokes equations, one may show
that smooth solutions v € C}C} of the Euler equations conserve their kinetic energy

d
(2.17) ZE=0.

Indeed, ([ZI7) is nothing but [Z3) with » = 0 and f = 0. Thus, any reasonable

notion of solution to the Euler equations should at least have a finite L{°L2 norm.
On the other hand, as mentioned in Section the zeroth law of turbulence

motivates the study of weak solutions to the FEuler equations, defined as:

Definition 2.3 (Weak solution). A vector field v € L>(I; L*(T?)) is called a weak
solution of the Euler equations on an open I C R if for any ¢ € I the vector field
v(-,t) is weakly divergence free, has zero mean, and v satisfies (2.I6]) in the sense
of distributions; that is,

/]R/ﬂ‘s v (Oup + (v V)p)dadt =0

5Here, as in laboratory experiments, we consider the long (infinite) time average of the energy
dissipation rate, €,,00, to signify that the solution has reached a stationary regime. For the sake
of brevity we avoid the important and subtle discussion about ensemble averages with respect to
probability measures on L? that encode the statistics of the flow [791180], and about the impromptu
ergodic hypothesis which is classical in statistical mechanics. We refer the interested reader to [82]
or other texts in turbulence.
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holds for any divergence free test function ¢ € C§°(I; C°°(T?)). The pressure can
be recovered by the formula —Ap = divdiv(v ® v) with p of zero mean.

2.2.2. Onsager’s conjecture and its variants. The validity of ([2I7) for weak (in-
stead of smooth) solutions of the Euler equations is the subject of Onsager’s conjec-
ture, one of the most celebrated connections between phenomenologies in turbulence
and the rigorous mathematical analysis of PDEs arising in fluid dynamics. In [I3§],
Onsager considered the possibility that energy dissipation in the infinite Reynolds
number limit is not caused by a remnant of viscous effects (i.e., from the term
—v||Vu||3, present on the right side of (ZI3)), but instead, because the solutions
of the limiting equation at ¥ = 0, namely the Euler equation, are not sufficiently
smooth to ensure that II,, = 0. As explained in [73], the argument that the en-
ergy equality (ZI7) holds for a finite energy solution v of the Euler equations if
and only if the total energy flux vanishes (i.e., lim,_,o I, (v) = 0 when time inte-
grated) is essentially already contained in [I38]. Onsager’s remarkable analysis (see
also [74]) went further and made a precise statement about the threshold regularity
of v which is necessary in order to justify (2I7); in modern mathematical terms
Onsager’s Conjecturdﬁ is now a theorem due to [20,[41.93]:

Theorem 2.4 (Onsager’s conjecture in Holder spaces).

(a) Any weak solution v belonging to the Hélder space Cf'y for o > 1/3 conserves
its kinetic energy.

(b) For any o < 1/3 there exist weak solutions v € Cy, which dissipate kinetic
energy, i.e., the kinetic energy E(t) is a nonincreasing function of time.

The rigidity, part (@) of Theorem 241 is discussed in Section 23] while the
flexibility, part (), is presented in Section B

Remark 2.5 (Onsager’s conjecture on other Banach scales). In Theorem 4] the
threshold between rigidity and flexibility is measured here on the Holder C}', scale,
with threshold value o = 1/3. However, since the energy flux II,; is trilinear in v
(see ([Z8)), it is most natural to measure this dichotomy on an L? based space,
such as the scale of spaces LfBg‘i s+ The bound ([ZIT) again suggests that the
threshold value on the L3-based Banach scale is a = 1/3, and indeed the proof
of Theorem 2.4 establishes this fact. Lastly, we note that the threshold between
rigidity (@) and flexibility (b)) may alternatively be measured on L? based spaces
in z, such as the L} HY, with o > 0. These spaces are classically related to Fourier
analytic measurements of energy spectra (such as the Kolmogorov—Obhukov 5/3
power spectrum) and to the scaling of second-order structure functions in turbu-
lent flows [82]. On this Sobolev scale, however, the value of the threshold exponent
is unclear. It is known for a while [32,[160] that the kinetic energy is conserved
if v € L}H® with a > 5/6. However, as a byproduct of the proof of the flexibil-
ity part (B) of Theorem [Z4] we only have the existence of weak solutions which
violate the energy equation for a < 1/3. Based on physical considerations and on
the experimentally measured anomalous scaling of second-order structure functions
in fully developed turbulent flows [82], it is safe to conjecture that the threshold
exponent on the L3 HS is strictly larger than 1/3; it is, however, not clear whether it

SFor a discussion of Onsager’s conjecture for the 2D Euler equations, we refer the reader
to [29,[30144].
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should be equal to 5/6 or another smaller value[d Conservatively, we conjecture (see
also Open Problem 5 in [22]) that Onsager’s threshold exponent on the L? based
Sobolev scale is strictly larger than !/3:

Conjecture 2.6 (Deviation from the Kolmogorov—Obhukov power spectrum).
There exists an o € (1/3,5/6) and infinitely many weak solutions v € CLHY of
the 3D Euler equations [216), which dissipate kinetic energy.

2.2.3. The proof of rigidity in Onsager’s conjecture. Part (@) of Onsager’s conjec-
ture was partially established by Eyink in [73] and later proven in full by Con-
stantin, E, and Titi in [41]. Indeed, the commutator bound ([2II]) established
in [41] shows that if v € L3CY with o > 1/3, then automatically by embedding we
have v € LEO’B:?’OO’I, and so
T
lim I, (v)| £ lim &
0 K—00

1-3a HU
K—00

3
HL3(0,T;B§OC) =0,

thereby proving (ZI7). The argument in [4I] was further refined in [68], where
the energy dissipation measure was introduced, in [29] where the bound (2.I12)
is proven, and in the more recent paper [156], which discusses several geometric
constraints which ensure the conservation of energy for the threshold value oo = 1/3.
We note that the proof of rigidity on the L? based scale (i.e., for v € L;HS with
a > 5/6) also follows from the bound ([2I2) established in [29] by additionally using

the Bernstein inequality [|[Pasiv||zs < 22 |Pasiv| 2.

2.2.4. Helicity. We mention that besides the kinetic energy &, the 3D Euler system
also posses one more nontrivial invariant [7I] which is not coercive but has deep
geometric meaning [131]; this is the helicity

Hoalt) = [ o)1)

where w = V x v is the vorticity. Here we use the generalized helicity notation [4]

(2.18) Hyy= [ (V% (=8)71f) - gda.

which will appear several times in Section [Z3l As opposed to the kinetic energy,
which is well defined for weak solutions in the sense of Definition 23], the fluid
helicity requires a minimal regularity of v € LfH;/ ® to be well defined, via the
duality pairing between H'/2 and H~"/2. However, it is not known whether for any
weak solution v € L?H;/Q we have

d
EHW’W =0.
Due to [29], we know that if v € L3 (B;/zow N H;/z), then the fluid helicity for that

weak solution is a constant function of time. In terms of rigidity, this condition is
expected to be sharp. An alternative condition in which velocity and vorticity obey
different assumptions was obtained in [63].

On the other hand, in terms of flexibility we note that for the weak solutions
constructed for part (b)) of Theorem 2] the helicity is not well defined, as c's

"For a dyadic shell model of the 3D Euler equations, for which the energy flux is unidirectional,
it was shown in [3I] that the threshold oo = 5/6 is sharp.
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does not embed into H'/2. In fact, to date the following question remains widely
open:

Conjecture 2.7 (Helicity flexibility). There exists a weak solution v of the 8D
Euler equations [210), with v € CLHZ for some o > 1/2, such that the helicity
Hew 5 not a constant function of time.

The difficulty is that on the one hand for the weak solutions obtained from the
convex integration constructions in Section Bl the kinetic energy can be always
made to be a nonconstant function of time; on the other hand, if one works on the
Holder scale C* and wishes to have a well-defined helicity, then one has to take
« > 1/2; but in turn this implies that the kinetic energy must be conserved due to
part @) of Theorem 24l Tt is conceivable that in order to attack Conjecture [27]
one has to work on the L? based Sobolev scale L HS, and that the intermittent
convex integration which we will describe in Section H] should be employed instead.
Even so, Conjecture 27 is strictly harder than Conjecture

2.3. The MHD equations and Taylor’s conjecture. The incompressible MHD
equations are the classical macroscopic model coupling Maxwell’s equations to the
evolution of an electrically conducting incompressible fluid [12/[52]. The unknowns
are the velocity field v, the magnetic field B, and the scalar pressure p, which we
take to have zero mean on T3. The ideal (i.e., inviscid and nonresistive) version of
these equations is

(2.19a) ov+ (v-V)v—(B-V)B+Vp=0,

(2.19b) B+ (v-V)B—(B-V)uv=0,

(2.19¢) dive = div B = 0.

The viscous (v > 0) and resistive (u > 0) MHD equations are given by
(2.20a) O+ (v-V)v— (B-V)B+ Vp=vAv,

(2.20b) B+ (v-V)B—(B-V)v=uAB,

(2.20¢) dive = divB = 0.

Setting B = 0 in (ZI9)) we recover the Euler equations (216, while letting B =0
in (220) we arrive at the Navier—Stokes equations ([ZII). As such, the local-in-time
theory for smooth solutions of the MHD equations, as well as the global-in-time
theory for weak solutions, closely mimics the one for the Euler and Navier—Stokes
systems; see [69,[148].

2.3.1. Ideal MHD conservation laws and weak solutions. The ideal MHD equa-
tions ([ZI9]) posses a number of global invariants [I01], two of which are obtained
via a direct analogy with the Euler equation, namely the total energy and the
cross helicity, and one more which is intrinsic to the Lie transport of the magnetic
field (2I9al), namely the magnetic helicity. The fact that these conservation laws
are not defined at the same level of spatial regularity, makes the analysis in a sense
more challenging than for 3D Euler.
The total energy

(2.21) &0 =5 [ WGP + 1B
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gives the only known coercive conserved quantity (and in fact the Hamiltonian [10T],
173] of the system), for smooth solutions of (ZI9). In order to verify that £(¢) is a
constant function of time, it is convenient to rewrite ([2I9]) in terms of the Elsdsser
variables

(2.22) zy =v+ B and z_=v—B,

so that the system ([ZI9) becomes

(2.23a) Oz + (25 - V)2 + Vg =0, qg=p+ g ,
(2.23b) divzy =0.

Testing the momentum equation for z4 with 24, integrating over T3, and using that
both z; and z_ are incompressible, similarly to (ZIT) we obtain that if v, B € C}C}
(and thus z4 € C{C}), then

d o  d
it s 24(+5 1) =it )

On the other hand, from ([2.22]) we have that

(2.25) £() = / GO + |G

which combined with (Z24]) shows that £ is conserved for smooth solutions.
Besides the total energy, the MHD system possesses one more Elsdsser invari-
ant [2], the cross helicity

226)  Hup= [ olt)Bea) =7 [ eGP - (0P

Here and throughout the paper we use the notation in (ZI8). Again, [2:24) shows
that H,, p is conserved for smooth solutions.

We note that both £ and H,, 5 are bounded functions of time as soon as v, B €
L$°L2, and in view of the positivity of the total energy, any meaningful notion of
solution for (2I9) should at the very least assume this amount of regularity. This
motivates the notion of weak solution for the ideal MHD system (in analogy to

Definition 23] for Euler):

(2.24) lz_ (1) =0.

Definition 2.8 (Weak/distributional solution). We say (v, B) € L>(I; L*(T?)) is
a weak solution of the ideal MHD system (ZI9) on an open interval I C R, if for
any ¢t € I, the vector fields u(-,t) and B(-,t) are divergence free in the sense of
distributions, they have zero mean, and (2I9) holds in the sense of distributions;
ie.,

/ Op-v+Vy:(v@v—B® B)dzdt =0,
rJT3
/ Op-B+Vy:(v®B—B®u)dzrdt =0
rJT3

hold for all divergence free test functions ¢ € C§°(I; C>°(T?)).

The validity of [224]) for weak solutions of the ideal MHD system gives rise to
an Onsager-type analysis, which we discuss in Section 2.3.2] below.
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As alluded to at the beginning of the section, the ideal MHD system has one
more conservation law, the magnetic helicity, which is defined as

(2.27) Hp p(t) = /TJ A(-t) - B(- )

(see [IBTITTI7Y]), where A is a vector potential for B, i.e., a zero mean periodic
field such that curk A = B. As we work on the simply connected domain T3 and
B is incompressible, the value of Hp p(t) is independent of the gradient part of
A; thus A may be chosen without loss of generality such that div A = 0, so that
A =V x (=A)"!B. Thus, the definition ([Z27) is consistent with the definition
[2I8) introduced earlier.

In order to see that for smooth solutions (v, B) of ([219) we have

d
2.2 — =
(2.28) dtHB,B 0,

one may proceed as follows. Since the Biot—Savart operator B — A = Vx(—A)"'B
is self-adjoint, and since for divergence free v and B we may rewrite B-Vv—v-VB =
V x (v x B), we have

d
—Hp B = 2/ (V x (-A)'B)-o,B
dt ’ T3

- 2/ (V x (~A)"'B) - (V x (v x B))
'JIS

=2 Vx(Vx(=A)'B):(vxB)
'JTS

(2.29) =2 B-(vxB)=0.
TST

In the second to last equality we have used the identity Vx(VxB) = V(V-B)—AB.

We emphasize that as opposed to the total energy and the cross helicity which
require (v, B) € L{L2 in order to be well defined, the magnetic helicity is well
defined as soon as B € LtOOHx_ K ’, a negative level of regularity. This difference
is manifested in the context of reconnection events in magneto-hydrodynamic tur-

bulence, via a phenomenon whose mathematical aspects are described by Taylor’s
congecture [T1L132,[168,169], see Section 234 below.

Remark 2.9 (2D Euler and Surface Quasi Geostrophic). This situation encountered
here in which the hydrodynamic model has conservation laws at different levels of
regularity (£ vs Hp p) is not uncommon. Another occurrence is in the context
of the 2D Surface Quasi Geostrophic (SQG) and 2D Euler equations. For both of
these equations smooth solutions conserve the L? norm (in fact all the LP norms
with 1 < p < c0) of the temperature 6 (vorticity for the potential velocity [21]) for
SQG (resp., the scalar vorticity w = V+ -u for 2D Euler). With respect to these so-
called Casimirs, the respective Hamiltonians of these systems lie at a negative level
of regularity: ||0]| ;-1 for SQG (resp., ||w|| -1 = ||ul/;2 for 2D Euler). As such,
much of the discussion presented in this paper concerning the MHD system has an
analogue in the context of the SQG [211[94.96] and 2D Euler equations [29[30].
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2.3.2. Onsager-type dichotomies. Similarly to Onsager’s conjecture for the 3D Euler
equations, it is natural to analyze the regularity threshold at which weak solutions
of 2I9) (in the sense of Definition 28] respect the ideal MHD conservation laws
for the energy &, the cross helicity H,, g, and the magnetic helicity Hp g [1L2].
Given a Banach scale used to measure the regularity of weak solutions, we wish to
identify a critical/threshold exponent, above which all weak solutions obey the given
conservation law (rigidity), while below this exponent there exist weak solutions
which violate it (flexibility)§

Conjecture 2.10 (Onsager-type conjecture for the Elsésser energies).

(a) Any weak solution (v, B) of the ideal MHD system (2I9) belonging Cg,
(resp., L?‘Bél,oo,m) for a > 1/3, conserves the total energy € and the cross
helicity H,, B.

(b) For any o < /3 there exist weak solutions (v, B) € Cg, (resp., L}B§ ., ),
which dissipate the total energy £, and for which the cross helicity H,, p is
not a constant function of time.

The statement of the corresponding dichotomy for the magnetic helicity is slightly
modified, to avoid spaces of negative regularity, which are not consistent with Def-
inition 2.8 In particular, in the flexibility statement, we relax the integrability
exponent not the regularity assumptions of the weak solutions.

Conjecture 2.11 (Onsager-type conjecture for the magnetic helicity).
(a) Any weak solution (v, B) of the ideal MHD system (Z19) belonging to L} L3
(resp., L}BY . ) conserves the magnetic helicity Hp p.
(b) For any p€(2,3), there exist weak solutions (v, B) € L}LE (resp., L} B . )
for which the magnetic helicity Hp p is not a constant function of time.

The rigidity parts of the above conjectures are discussed in Section 2:3.3] below,
while progress towards the flexibility parts is outlined in Section As opposed
to Omnsager’s conjecture for 3D Euler, which is by now a theorem, the flexibility
statements part (b)) of Conjecture 210 and part (B of Conjecture 2IT] remain to
date open. We only mention at this stage that for B = 0 and any v as constructed
in part (Bl) of Theorem [Z4] the resulting pair (v, B) is a weak solution with the
regularity required by the flexible part of Conjecture 2100 and for which the total
energy is dissipated. However, for any such solution the cross helicity and the
magnetic helicity are trivial since B is trivial (i.e., identically equal to zero) and
thus Hp,p = Hw,p = 0 are constants in time.

2.3.3. The proof of rigidity in Onsager-type conjectures for MHD. We start by dis-
cussing part @) of Conjecture Recall that the conservation of £ and H,, g is
equivalent to the conservation of the Elsésser energies, i.e., the validity of (2.24]).
Inspecting the momentum equation in (Z23]), we see that the only difference to
3D Euler is that 2+ appears as the transport velocity for the z1 evolution. With
this modification in mind, one may define two fluxes Il (for the z; evolution)
and II,_ (for the z_ evolution) in analogy to (Z8). The energy equality again

boils down to whether lim,,_, ., fOT II.+ = 0 or not. The former question has been

8See [104], where this question is posed for general nonlinear, supercritical, Hamiltonian evo-
lution equations.
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resolved by repeating the argument in [45], which gives a bound for the commu-
tator Cy(zs,z+) as in (ZI0). This proof was carried through in [26], where it is
shown that |IT,.4| < k'3 ||z+||SBg +rI73 |2 ||‘]333a and thus the conservation

of energy and cross helicity holds for any weak solutions (v, B) € LfBg"oo@ with
a > 1/3. We also refer the reader to [I00] where the methods of [29] and used to
establish the endpoint case for rigidity in Conjecture 210} namely v € LfB;(C?(’)J.
Concerning the rigidity part (@) of ConjectureZTIl we note that in the integrand
of (229) is zeroth order in B and v. This suggests that justifying ([229]) for weak
solutions of (2I9) should require less regularity on v and B than was required in
order to justify (2.24). Indeed, it is shown in [26] that Hp g is conserved by weak
solutions of (ZIJ) as soon as (v, B) € B, with a > 0, so that the threshold
regularity is @ = 0. The idea is as follows. We want to use a version of (2.29]),
with B replaced by P<,B. Then, the conservation in time of # g p is equivalent to
the vanishing as K — oo (integrated in time) of the magnetic flux term, defined in

analogy to (Z8) as
7T,.€(’U,B) = 2/ ]P)gnB . (PS,{(U X B) — (PS,{’U X PS,{B))
T3

Using the commutator estimate of [41] (see (2I0)), one then immediately obtains
-3 2
e (0. B)] S 575 oy IBI3s

which concludes the proof when a > 0, upon integrating in time and passing
k — 00. The endpoint case a = 0 was reached in [IL[76L[100], where it is proven that
magnetic helicity is conserved for any weak solution (in the sense of Definition [Z.8)
as soon as (v,B) € L3, NCY ., L2. The slightly sharper statement concerning
rigidity for the endpoint Besov space stated in part (@) of Conjecture ZI1] may be
achieved by repeating the argument of [29] to establish a bound for the magnetic
flux at dyadic scales: |mo;(v, B)] < >oio, 2*_2/3|J*Z|H1Pz2iv |13 ||Px2i B35, which is
nearly the same as ([2I2), except that the 2° term on the right side is absent.

We note that for the 2D MHD equations much stronger types of rigidity may be
established (when compared to the 3D case discussed in this paper), and we refer
interested readers to [76H7S].

2.3.4. Taylor’s conjecture for weak ideal limits. While turbulent low-density plasma
configurations are observed to dissipate the total energy £ [50,127], it is commonly
accepted knowledge in the plasma physics literature, and an experimental fact, that
the magnetic helicity Hp g is conserved [139] in the infinite conductivity limit. This
striking phenomenon manifests itself mathematically as Taylor’s conjecture [1T,132]
168I[169]. Here we discuss its rigorous foundations, following [261[77].

We start from the viscous and resistive MHD system (2:20), where v,y > 0. In
analogy to the energy inequality (2.1) for the Navier—Stokes equations, sufficiently
smooth solutions of (Z20)) satisfy the following energy inequality for the total energy

€ defined in 22)):
t t
(2.30) E(t) + u/ Vo2, +u/ |VB|2.ds < £(s)

for t > s. Based on (Z30)) it is classical [69] to build a theory of Leray—Hopf weak
solutions for (2.20); these are solutions with v, B € Ceveak’tLi N L?H] which obey
@30) for a.e. s >0 and all t > s. In physically realistic regimes, we are interested
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in v, u < 1; however, in the ideal limit (v, 1) — (0,0), (230) only gives bounds for
the L$° L2 norms of v and B. Following [77, Definition 1.1] we recall the definition:

Definition 2.12 (Weak ideal limit). Let (v, ;) — (0,0) be a sequence of vanishing
viscosities and resistivities. Associated to a sequence of divergence free initial data
converging weakly (vo j, Boj) — (vo, Bo) in L?(T3), let (v;, B;) be a sequence
of Leray—Hopf weak solutions of ([Z20). Any pair of functions (v, B) such that
(vj, B;) = (v, B) in L>=(0,T; L?(T?%)), are called a weak ideal limit of the sequence
(Uj7 B, )

Taylor’s conjecture states that weak ideal limits of MHD Leray—Hopf weak so-
lutions conserve magnetic helicity. This was proven recently in [77], and we recall
the statement:

Theorem 2.13 (Taylor’s conjecture; Theorem 1.2 in [77]). Suppose (u, B) € L{°L?
is a weak ideal limit of a sequence of Leray—Hopf weak solutions. Then Hp p is a
constant function of time. In particular, finite energy weak solutions of the ideal
MHD equations (219), which are weak ideal limits, conserve magnetic helicity.

At the heart of the proof of Theorem [Z T3] given in [77] (where they also consider
domains that are not simply connected) lies the observation that for p,v > 0, by
interpolation we have that MHD Leray—Hopf weak solutions lie in Li?f, which is a
stronger space than the L} , which is required in part @) of Conjecture 211l Thus,
in analogy to the proof of (IZ{I) discussed earlier, at fixed p;,7; > 0 one may justify

the magnetic helicity equality

t
(2.31) H, 5, (1) +2Mj/ / (V% By) B, = Hp, 5,(0).
0 JT3

The bounds provided by ([230) immediately imply that the second term on the left
side of (Z31) may be bounded by (t;)'/?€(0), and thus this term vanishes in the
ideal limit p; — 0. The proof of Theorem 213 is then concluded by showing that
due to the compactness of the embedding L? C H~'/2 for the subsequential limits
in Definition 212 we have B; — B strongly in CtH;1/2, and so A; — A strongly in

C.H.". By the definition of magnetic helicity in (2.27)), this information is sufficient
to show that Hp, p, — Hp,p uniformly in time, and thus letting j — oo in (2.31))
concludes the proofE

Remark 2.14. In closing, we note that Theorem 213 does not contradict part () of
Conjecture[ZTTl Theorem T3 does indeed show that if (v, B) is a weak ideal limit
(cf. Definiton [ZT2)) and also a weak solution of the ideal MHD equations (cf. Defini-
ton[28)), then it conserves magnetic helicity, although it may have regularity as weak
as L{°L2. This is far less spatial integrability than the L3L3 condition required
in part (@) of Conjecture 211l which points to the fact that weak ideal limits are

9Note however that a weak ideal limit (v, B) need not be a weak solution of the ideal MHD
equations in the sense of Definition 2.8 for the same reason that a vanishing viscosity limit of
Leray—Hopf weak solutions of the 3D Navier—Stokes equations need not be a weak/distributional
solution of the 3D Euler equations; only measure valued solutions are known to be achieved as
subsequential limits [66].

10We note that similar arguments were previously used to prove the conservation of the Hamil-
tonian for the 2D Euler [30] and 2D SQG equations [43], for weak solutions which arise from
vanishing viscosity limits.
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seeing a ghost of the energy inequality ([230). Nonetheless, the flexible part of
Conjecture 2.1l is that there may exist weak solutions of ideal MHD which do not
arise in the vanishing viscosity/resistivity limit, leaving open the possibility that
for such solutions Hp p is not constant in time. This specific result is established
in Theorem below.

3. CONVEX INTEGRATION AND NASH SCHEMES FOR THE EULER EQUATIONS

While the rigid part of Onsager’s conjecture (part @) of Theorem 2] has been
essentially understood since the 1990s, systematic progress towards the resolution of
the flexible part (b)) did not occur until the 2010s and the groundbreaking works [55,
58] of De Lellis and Székelyhidi Jr. These works have developed the mathematical
framework of the L7%, and the Cf, flavors of convex integration in fluid dynamics,
and have laid out some of the key ideas which have eventually led to the solution
of the flexible part of Onsager’s conjecture by Isett [93] (in the context of solutions
with compact support in time); and in a subsequent work by Buckmaster, De
Lellis, Székelyhidi, and Vicol [20] (for dissipative weak solutions). This sequence of
developments has already been discussed in great detail in the review papers [22/[57,
60,[61,[162], so in this section, we only give a succinct presentation. We emphasize
that the Lg%, convex integration scheme used to prove Theorems B and has
a number of key similarities to, but is also conceptually different from, the C}',
Nash-type convex integration method used to prove Theorems [B.3] [3.4] and

3.1. The flexible part of Onsager’s conjecture: First paradoxical exam-
ples. In the seminal work [147], Scheffer demonstrated the existence of nontrivial
weak solutions of the 2D Euler system (Z.I6]), which lie in Li’t and have compact
support in time and space! Strictly speaking the weak solutions of Scheffer are
not dissipative, as dissipative solutions are required to have nonincreasing energy;
nonetheless, [147] is considered to be the first result concerning the flexible part (),
of Onsager’s conjecture.

A different construction of a nontrivial weak solution to the 2D Euler equa-
tions, which are periodic in space and have compact support in time, was given by
Shnirelman in [I53]. The existence of dissipative weak solutions to the Euler equa-
tions was first proven by Shnirelman in [I52], where he constructs weak solutions
which lie in L$°L2.

These results, which were initially referred to as the Scheffer—Shnirelman para-
doz, represent not just a proof of nonuniqueness for weak solutions to the Euler
equations, but a drastic failure of determinism within this class of solutions.

3.2. The L5, results. The first example of a bounded in space and time, dis-
sipative weak solution of the Euler equations (one for which the kinetic energy
is a nonincreasing function of time), in any dimension n > 2, was obtained in a
groundbreaking work by De Lellis and Székelyhidi Jr. [55]. Their main result is:

Theorem 3.1 (Theorem 4.1 in [55]). For any open bounded space-time domain
Q C R™ x R, there exists a weak solution of the Euler equations [218) (v,p) €
L>(R™xR), in the sense of Definition 23], such that |v(x,t)| =1 for a.e. (z,t) € Q,
and v(x,t) = p(x,t) =0 for a.e. (x,t) € Q°. Moreover, there exists a sequence of
functions (vq,pq, fq) € CF°(Q) such that:

o 0wy +div(vg @ vg) + Vpg = fq, and V - v, =0,

e f, = 0in H! as ¢ — oo,
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o [|[vgll o + 1Pl is uniformly bounded in g,
o (vg,pq) = (v,p) in L" for any r < oo.

The first part of the theorem establishes the existence of a weak solution which is
compactly supported in space and time, while the second part is a manifestation of
the proof: the limiting weak solution (v, p) is obtained from a smooth approximating
sequence (vq, pq), which solves a relaxed Euler system, whose right side f, vanishes
in a weak sense as ¢ — oo. This paper also introduced the ideas of a subsolution
and of a Reynolds stress for the Euler system (2.16). Maybe more important than
the result itself, which was later improved by the same authors, is the fact that [55]
relates the construction of paradoxical weak solutions of the Euler equations with a
classical technique in geometry, convex integration, and the notion of h-principles
for soft partial differential equations.

The method of convex integration can be traced back to the work of Nash, who
used it to construct exotic counterexamples to the C'! isometric embedding problem
[135]. The method was later refined by Gromov [86], and it evolved into a general
method for solving soft/flexible geometric partial differential equations [70]. In the
influential paper [134], Miiller and Sverak adapted convex integration to the theory
of differential inclusions (see also [102]), leading to renewed interest in the method
as a result of its greatly expanded applicability. Inspired by the works [102][134],
and building on the plane-wave analysis introduced by Tartar [165,166] and Di
Perna [64], De Lellis and Székelyhidi Jr., in [55], applied convex integration in the
context of bounded weak solutions to the Euler equations.

We refer the interested reader to the review papers [57,611[162] for a detailed
discussion connecting convex integration in the context of differential inclusions,
and also h-principles, to the type of constructions that were initiated by [55]. In
particular, analyzing the toy example presented in [57, Section 5.1] is particularly
accessible, yet insightful.

The work [55], has since been extended and adapted by various authors to various
problems arising in mathematical physics, including [6L27,B36H39L 46147 561155161,
163L[174], just to mention a few. Here we single out the work [56] which considers the
question of whether imposing additional admissibility criteria on the weak solutions
of the Euler equations could rule out the construction of examples such as those
in Theorem Bl Physically motivated admissibility criteria, based on energetic
arguments such as those discussed in Section 2 (ordered by least restrictive to most
restrictive) include the following.

(i) Weak energy inequality: the kinetic energy satisfies £(t) < £(0) for all ¢ > 0.
(ii) Strong energy inequality: the kinetic energy satisfies £(t) < £(s) for all
t>s>0. ) )
(iii) Local energy inequality: the distribution 8,5% + div(v(p + %)), for v €
L?Oc7t7w, is nonnegative.

The main result of [56] may be summarized as follows.

Theorem 3.2 (Theorem 1 in [56]). For any dimension n > 2, there exists bounded,
compactly supported divergence-free initial data vo € LS° N L2, for which there exist
infinitely many weak solutions v € Lg% N CYL2 of the Euler equations, such that
the admissibility conditions ([I), @), and (@) hold.
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This result shows that “wild” weak solutions of the Euler equations (as con-
structed by Theorem Bl and Theorem B.2]) cannot be ruled by the local energy
inequality. Indeed, the Euler equations are not scalar conservation laws!

3.3. The ng result: A Nash-type convex integration scheme. The Lg%
constructions described in Section are based on writing the Euler equations as
a differential inclusion, and then applying a machinery from Lipschitz differential
inclusions, which either uses a Baire-category argument or, equivalently, an explicit
convex integration approach. These methods face a serious difficulty in constructing
continuous weak solutions of (216, since it seems impossible to extract a uniform
continuity estimate for approximating sequences (vq4,pq). The breakthrough was
made by De Lellis and Székelyhidi Jr. in their seminal papers [568[69], where they
developed a new convez integration scheme, motivated by and resembling in part the
earlier schemes of Nash and Kuiper [108[135]. In [58], De Lellis and Székelyhidi Jr.
prove the existence of continuous weak solutions v to the Euler equations satisfying
a prescribed kinetic energy profile, which in particular may be decreasing;:

Theorem 3.3 (Theorem 1.1 in [58]). Assume e: [0,1] — (0,00) is a smooth func-
tion. Then there is a continuous vector field v: T3 x [0,1] — R® and a continuous
scalar field p: T3 x [0,1] — R which solve the incompressible Euler equations ([2.10)
in the sense of distributions, and such that

1

(3.1) eft) =5 [, o)

for all t € ]0,1].

The proof of Theorem [3.3] departs from the arguments based on functional anal-
ysis, which were used to construct bounded weak solutions, and implements a hard
analysis scheme, in which the constructions of the building blocks are not plane
waves anymore, instead they are adapted to the geometry of steady states of the
Euler equations (Beltrami flows), and the estimates involve precise singular integral
bounds and Schauder estimates.

3.3.1. Overview of the proof of Theorem B3l and of Nash-type convex integration
schemes. The summary given here is similar to the one we have given in [22, Section
4.1].

For each ¢ € Ny by induction one constructs smooth functions (vg, ]%q), which
solve the Fuler—Reynolds system

(3.2a) Dyvg + div(vy ® v) + Vpg = div Ry,
(3.2b) divug =0.

The pressure p, is always given by p, = (—A) ™! div div(v, ®@v, — In%q). The stress ]D%q
is symmetric and has zero trace (since its trace is absorbed in to the pressure term).
The goal is to construct the sequence (vg, Io%q) such that }O%q converges uniformly to
0 as ¢ — oo, and that at the same time the sequence v, converges uniformly to a
Holder continuous weak solution to the Euler equations, which satisfies (BI)). The
iterates (v, ]%q) constructed via the convex integration scheme are approximately
the spatial averages of the final solution v at length scales )\;1, which are decreasing
with ¢. In view of the analogy to theories in fluid turbulence, one refers to the
symmetric tensor foiq as the Reynolds stress.
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At each inductive step, the goal is to design a perturbation
(3.3) Wg+1 = Vg+1 — Vq
such that the new velocity v441 and pressure p,11 solve the Euler-Reynolds system
B2) at level ¢ + 1, but with a smaller Reynolds stress Rqy1. Subtracting the

equations for v441 and vy, we obtain the following decomposition of the Reynolds
stress at level ¢ + 1:

(3.4) div éq+1 — V(pg+1 — Pq)

= div(wg1 ® wgt1 + Rq) + Owg i1 + Vg - Vg1 +wep1 - Vo,

oscillation error transport error Nash error

Note that not all the terms on the right side of ([B4]) are written in divergence form,
which necessitates the use of a negative one order linear Fourier multiplier operator
R which formally acts as div™! and outputs symmetric traceless matrices

For an increasing sequence of frequency parameters {A;},>0, the approximate
solutions at level (v, ]iZq) are essentially localized at Fourier frequencies < A;. On
the other hand, the perturbation wgy1 = vg+1 —vq is constructed as a sum of highly
oscillatory building blocks (denoted by We in (B3] below) which live at the high
frequency Ag41 > Aq.

Roughly speaking, the principal part of the perturbation, which we label as w((]i)l,

will be of the form
(3.5) w3 ag(Ry)We ,
13

where { ranges over a finite set, W, represents the building blocks oscillating at
frequency Aq441, and the coefficient functions a¢ are chosen such that

(3.6) > ai(R,) ]fr We@We = —R, .
3

Here & denotes the trace-free part of the tensor product. The amplitude functions

a¢ are designed in order to obtain a cancellation between the low frequencies of the

quadratic term w((ﬁr)l ®w¢(1p+)1 and the old Reynolds stress error ]%q, thereby reducing

the size of the low frequency part of the oscillation error. More precisely, if we
take into account that We ® W are chosen to have no low frequency (meaning
Ag) contribution when £ # ¢’, the need to minimize the low frequency part of the
oscillation error, ]%q + P<y, (wéﬂ)l ® w((zi)l), dictates the choice (B.6]).

To leading order, with respect to the large parameter A\ i1, the zero mean T3-
periodic building blocks W, are chosen to be solutions of the stationary Euler
equations, i.e., they satisfy div(We ® We) + VP = 0 for a suitable pressure P,
and div W¢ = 0. The importance of this choice becomes apparent when one takes

into account the ansatz ([B.3]), and uses it to compute the high frequency part of
the oscillation error on the right side of (B.4), namely P, (wéﬁ_)l ® wé’_’gl). The

building blocks used in [58[59], are the so-called Beltrami waves, which are families

11 For v of zero mean one may define

(Ro)* = A71(0pv" + 8pv%) — = (Oke + k0 A™1) div A~ Lo

N | =
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of complex eigenfunctions of the curk operator at the same eigenvalue, Agy1. Start-
ing with [51], the later works [20192L93] use the so-called Mikado flows, which are
straight pipe flows with pairwise disjoint supports (see Section[B]). These building
blocks are used in an analogous fashion to the Nash twists and Kuiper corrugations
employed in the C! embedding problem [108]135].

The principal part of the perturbation presented in (B.5]) needs to be modified
in order to minimize the transport error in (3.4, i.e., to ensure it is the divergence
of a small Reynolds stress. This is achieved by flowing the building blocks W¢
along the ODE flow generated by v, (we will return to this issue in Section B.4)).

Additionally, in order to ensure that wg41 is divergence free, one introduces a

corrector w((;gl which ensures that wy41 = wé’_’gl + wé‘f&l is divergence free. The

(@) (p)

size of this 1ncompr6551b1hty corrector w,/; is much smaller than the size of w, /'y,

roughly by a factor of /\q)\q 1, because the building blocks W are divergence-free
by definition, and the a¢ oscillate at the old frequency, A,.

In order to ensure that the inductive scheme converges to a Holder continuous
velocity v with Holder exponent > 0, the amplitude of the perturbation is required
to satisfy the bound

(3.7) qu+1||00 < >\q+1

for some 5 > 0. Here, we note that it is convenient to use a superexponentially
growing sequence of frequencies A\, which obeys A\ 41 ~ )\Z, for some b > 1. In view

of (3.6, this necessitates that the Reynolds stress Jilq obeys the estimate
(3.8) |72,

Consistent with the definition

(3.9) Vg = Vo + Z Wy

<\
Ctox (1+1

q'<q
and with the bound ), the scheme of [58] also propagates the estimate
(3.10) IVoglloe S 2577

It is not hard to see that if the bounds (B77)—(3I0) are propagated throughout the
scheme, then as ¢ — oo we have that (vq,}D{q) — (v,0) uniformly, where v is a
Hélder continuous weak solution of the Euler equations. Indeed, for any 6 € (0, 8),
the following series of increments is summable:

1-0 o
2 Nwesilleges £ lwanlley 1Vwenlley,

q=>0 q>0
—B(1-0) y0(1-5) 0—p
S Z)‘qﬂ q+1 S Z >‘q+1 SL
q>0 q>0

where the implicit constant is universal. Thus, we may define a limiting function
v = lim,_, o v, Which lies in C°([0, 1]; C%). Moreover, v is a weak solution of the
Euler equation (ZI0), since by ([BX) we have that lim, ;oo R, = 0 in C?,, and
Vg ® vg — v @ v strongly in Cf,.

The main work is now to prove that for a velocity perturbation wq41 of the form
B3), and with amplitude functions that satisfy ([B.6), the bounds stated in ([B.7])—
(BI0) are indeed attainable inductively for all ¢ > 1. We note that if the building
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blocks are normalized so that HW§||09 ~ 1, then it follows from B.H)-@.6) and

B3) that the principal part of the velocity increment already satisfies the bound
@BZ0). Since the incompressibility corrector is even smaller, (81) is expected to hold.
The difficult part is to prove (B8). In view of (3], this amounts to bounding the
oscillation error, the transport error, and the Nash error. This is the hard analysis
part of the construction.

As a demonstration of the typical scalings present in convex integration schemes
for the Euler equations, let us consider the Nash error. Heuristically, since wq41 is
of frequency Ag41 > Ay for every ¢’ < ¢, and by appealing to (33]), we have that
Wq+1 - Vg lives at frequency Ag11, and thus

||R (wq+1 : v“q)”cgw N Aq_-l}l qu+1||cgm va‘]HC?,w )

where we recall that R is a —1 order Fourier multiplier which inverts the divergence
operator. Applying B1) and (BI0), for 5 € (0,1) we obtain

i _ _9 _a_ 2
(3.11) IR (wqs1 - VUQ)HC?,I <A BA; B )‘q+§>‘; B—b(1+8)+2pb
by using that A\j41 ~ /\g. Thus, in order to ensure that ]iZqH satisfies the bound
B8) with ¢ replaced by g + 1, we require that for 8 € (0,1) and b > 1 we have

1—-B-b(1+p)+28b* = (1-b)(1—B—28b) <O0.

Thus, from this simple heuristic, we see that if b > 1 is taken to be arbitrarily close
to 1, then the Holder regularity exponent $ may be taken to be arbitrarily close to
the Onsager-critical Holder regularity exponent, i.e., 8 < 1/3.

The construction described above provides a clear enemy towards reaching the
desired Onsager 1/3 threshold: the transport and oscillation errors in (84]). Design-
ing a wy41 which minimizes these two errors simultaneously turns out to be a very
difficult problem. This realization stimulated a series of advancements, through
the works [I5LT7[I8,51L90], in which the authors incorporated more and more of
the specifics of the 3D Euler equation into the convex integration scheme (by de-
signing better W and ag¢), in order to obtain higher and higher Holder regularity
exponents. We mention a couple of these developments next.

3.4. Climbing the Onsager ladder. The first breakthrough after [58.59] was to
produce a dissipative weak solution of the Euler system with a Holder regularity
exponent S with 8 < /5. This was achieved by Isett [90] and later simplified in
[19] by Buckmater, De Lellis, and Székelyhidi, the two papers resulting in the joint
work [I7]. The main improvement comes from obtaining a better bound for the
transport error in ([34). In the proof of Theorem B3 one did not keep track of

o

precise estimates for the material derivative of the Reynolds stress (0y + ve - V)Ry.

Here v, is a mollification of v, at a length scale ¢ which lies in between )\q__&l and

)\;1 The realization of the 1/5 schemes is that material derivatives are better
behaved than either regular spatial or temporal derivatives: due to classical ODE

12 An inherent issue associated with convex integration schemes is that in order to control nth
order derivatives of the perturbation w41, one needs control derivatives on vg of an order strictly
greater than n. In order to avoid this loss of derivative, one replaces vq by a mollified velocity field

vy and the stress Io%q by a mollified stress Io%g, where the mollification parameter ¢ € ()\;Jil, )\q_l)

is to be chosen suitably. This argument was already required in the ngt schemes described in

Section B3]
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arguments, material derivatives should cost a factor proportional to the Lipschitz
norm of v, i.e., )\é_ﬂ in view of BI0). Compare this with a spatial derivative,
whose cost is Ay > )\éfﬁ. Taking advantage of this observation, one can improve

the estimate on the material derivative of ]iZq, and thus improve the bounds for the
transport error. Optimizing this new transport bound with the oscillation error
yields the improved 1/5-Holder exponent.

The 1/5-scheme is very versatile, and it was successfully used to construct weak
solutions of 3D Euler with compact support on the whole space [95], to establish
the nonuniqueness of weak solutions for the 3D quasi-geostrophic equations [137],
the 2D SQG equations [21,04], active scalar equations with nonodd constitutive
laws [96], and the hypodissipative Navier—Stokes equations [40] (this result was
later improved in [62] to take into account the techniques used to prove Theorem [3.5]
below).

In [15], the first author noted that one can construct infinitely many weak solu-
tions of (ZI6]) whose Holder regularity exponent with respect to the space variable
can be taken to be any 8 with 8 < 1/3, but only almost everywhere in time. This
new scheme concentrates the transport and oscillation errors on a zero-measure set
of times. By taking advantage of this idea and by using a delicate bookkeeping
scheme, Buckmaster, De Lellis, and Székelyhidi [I8] constructed nonconservative

solutions in the space L%C;/ >,

3.5. Resolution of the flexible side of Onsager’s conjecture. The flexible
side of Onsager’s conjecture was finally resolved by Isett in [93], who proved the
existence of nonconservative weak solutions of 3D Euler in the regularity class nyt,
for any 8 < 1/3:

Theorem 3.4 (Theorem 1 in [93]). For any B € (0,1/3) there exists a nonzero
weak solution v € CP(T3 x R), such that v vanishes identically outside of a finite
interval.

The proof of Isett builds upon the ideas in the above mentioned works, and
utilizes two new key ingredients. The first, is the usage of Mikado flows which
were introduced earlier by Daneri and Székelyhidi [51]. These are a rich family
of pressureless stationary solutions of the 3D Euler equation (straight pipe flows),
which have a better (when compared to Beltrami flows) self-interaction behavior
in the oscillation error, when they are advected by a mean flow. The second key
ingredient is that prior to adding the convex integration perturbation wgy1, it is

o -

very useful to replace the approximate solution (vq, Ry) with another pair (74, Ry),

which has the property that v, is close to v,, but more importantly that R,(t)
vanishes on every other interval of size ~ ||Vvq\|53 within [0, T]. The velocity field

Ty (and consequently also the stress R) is obtained by smoothly gluing together
exact solutions of the Euler equations, whose initial data are chosen to precisely
match v, at suitably spaced instances of time. A proto-version of this gluing scheme
may already be found in the work of Shnirelman [I53], who however works with
Dirac masses in time, which prodgce unacceptable errors. In turn, working with

the glued velocity and stress (Tq, Rq) results in a major improvement of the size
of the oscillation error in the convex integration step since different Mikado flows
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have disjoint supports, and thus do not interact on the time scale dictated by the
Lipschitz norm of the mean flow v,.

The weak solutions constructed by Isett [93] are not strictly dissipative. This
issue was resolved in the paper [20] by Buckmaster, De Lellis, Székelyhidi, and
Vicol, who prove the precise statement of part () of Onsager’s conjecture:

Theorem 3.5 (Theorem 1.1 in [20]). Let e: [0,T] — R be a strictly positive smooth
function. For any B € (0,1/3) there exists a weak solution v € CP(T3 x [0,7T]) of
the Euler equations [218), whose kinetic energy at time t € [0,T] equals e(t).

We note that in [92], Isett showed that one can further optimize the schemes of
[20,93] in order to construct nonconservative weak solutions to the Euler equations
that lie in the intersection of all Holder spaces C? for B < 1/3.

3.6. Some open problems in the context of 3D Euler. Although the weak so-
lutions constructed in Theorem B.5 may be constructed to satisfy both the weak (i)
and the strong () energy inequality mentioned earlier in Theorem B.2] they do
not satisfy the local in space and time version of the energy inequality (). In this
direction, the recent results [91] and [54] achieve the regularity exponents 8 < 1/15,
and 3 < 1/7, respectively. Extending these results to the full range 8 < 1/3 remains
open (see also [22] Problem 3]).

It is also an open problem to determine whether there exist nonconservative
weak solutions to the Euler equations that have Holder exponent ezactly equal to
1/3. Such a result would not be in contradiction with [29] (see also [22] Problem
4]).

At the moment of writing of this article, it is not known how to construct
nonunique weak solutions of the 3D Euler equations with C’fit regularity, for some
B € (1/3,1). Tt appears that such a result would require fundamental new ideas,
beyond the ideas provided by the convex integration schemed described earlier.
Lastly, we note that Conjectures and 2.7 remain open.

4. INTERMITTENT CONVEX INTEGRATION FOR THE NAVIER—STOKES EQUATIONS

In the previous section we have described various flexibility results obtained for
the 3D Euler equations via the LS, convex integration technique and the Cy, Nash-
type convex integration scheme. Both produce infinitely many weak solutions of
([2I8) which are bounded in space and time. For this reason, these methods cannot
be used to produce finite energy weak solutions of 3D Navier—Stokes equations
(cf. Definition 222)). Indeed, as discussed in Section 2ZT]0] if v is a weak solution
of ([Z.I)) such that v € L7, then it is automatically smooth and thus unique [75].
Thus, in order to extend the applicability of convex integration techniques to the
Navier—Stokes system requires a new approach.

Building on the Nash-type convex integration method in [58] and drawing in-
spiration from the experimental reality that fully developed turbulent flows are
intermittentd [82,[133], a new technique (which we call intermittent convex inte-
gration) was developed by the authors in [23]. In physical space, intermittency

13Broadly speaking, intermittency is characterized as a deviation from the Kolmogorov 1941
scaling laws, which were derived under the assumptions of homogeneity and isotropy. Experi-
mentally, it is seen that these assumptions need not hold at large Reynolds numbers. A common
signature of intermittency is that the pth order structure function exponents ¢, deviate from the
Kolmogorov predicted value of »/3 for p # 3 [3/99/[126}136].
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causes concentrations that result in the formation of intermittent peaks. In fre-
quency space, intermittency smears frequencies. Analytically, intermittency has
the effect of saturating Bernstein inequalities between different L? spaces [35]. In
the context of convex integration, intermittency reduces the strength of the lin-
ear dissipative term vAv in order to ensure that the nonlinear term div(v ® v)
dominates. We refer the reader to [22, Sections 2 and 7], where more heuristics
(and references) about intermittency are presented and the fine details of the proof
in [23] are given.

The goal of this section is to show how intermittent convex integration may
be used to prove the nonuniqueness of weak/mild solutions (cf. Definition 22)) to
the 3D Navier—Stokes and to present a number of variants and improvements of
the method from [23] which were recently obtained in [14]16148|[122]123]129[130].
The application of intermittent convex integration to the MHD system is given in
Section [ below.

4.1. Nonuniqueness of weak solutions with finite kinetic energy. In [23], we
have proven the existence of infinitely many weak /mild solutions v of the 3D Navier—
Stokes equations (2.1]), in the sense of Definiton[22] with a prescribed kinetic energy
profile:

Theorem 4.1 (Theorem 1.2 in [23]). There exists § > 0, such that for any non-
negative smooth function e(t): [0,T] — [0,00) and any v € (0,1], there exists a
weak solution of the Navier—Stokes equations

v e C7((0, T} HP(T?)) n C°([0, T); WA (%)),
such that § [rs [v(z,t)|?dx = e(t) holds for all t € [0,T].

We emphasize that the weak solutions constructed in Theorem [T are not Leray—
Hopf weak solutions, whose uniqueness remains famously one of the most challeng-
ing questions in fluid mechanics [95].

Theorem 1] shows in particular that v = 0 is not the only weak/mild solution
which vanishes at a time slice, thereby implying the nonuniqueness of solutions in
the sense of Definiton (note that within the class of Leray—Hopf weak solutions
0 is the only solution with 0 datum). Theorem [I1] also proves that weak solutions
may come to rest in finite time, a question posed in [I50, pp. 88]. Lastly, note that
the function e(t) may be taken to be monotone decreasing so that rigidity fails for
dissipative weak/mild solutions.

4.1.1. Outline of the proof of Theorem 1l and of intermittent convex integration
schemes. The summary given here is similar to the one the authors gave in [22]
Section 4.2]. For clarity of the presentation, we omit any discussion of the energy
profile e(t), and refer the reader to [23] and [22], Section 7] for details.

The structure of the proof resembles that of Nash-type convex integration
schemes, as described in Section B3l In order to construct weak solutions of (Z1])

we proceed inductively, and for every g € Ny we construct a solution (vy, R,) to the
Navier—-Stokes—Reynolds system,

(4.1a) Oyvg + div(v, ® vy) + Vg — vAv, = div Ry,
(4.1b) divy, =0,

where the stress R, is traceless symmetric, and p, = (—A) ™! div div(v, ® vy, — R,).
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As in Section B3Il we work with a superexponentially growing sequence of fre-
quencies A, which obeys Aj41 ~ )\g and Ag > 1, except that this time b > 1, so
we think of the frequency A,y as being much much larger than A,. Moreover, as
in (33)), we denote the velocity increment by v411 — vy = wg41, and we heuris-
tically view wq41 as a function whose Fourier support lies inside a ball of radius
proportional to Aq41 around the origin.

From experience with 3D Euler, we expect that P<y (wg+1 ®wq+1)—|—lf2q has to be
made as small as possible, so that if we wish the sequence of approximate velocities
Vg = Vo + Zq,<q wq to converge strongly in CYL2 as ¢ — oo to a weak solution of

o

the Navier—Stokes equations, then the sequence (vq, R,) has to be constructed such
that ]%q vanishes in CYL! as ¢ — co. This is a major difference when compared to
the uniform in space convex integration used for the Euler equations: here Reynolds
stresses (errors) are measured in L., whereas velocity increments and approximate
velocities are measured in L2; this is essentially because ]D%q is quadratic in wg41.
Thus, in analogy to (B7) and (B.8]), the inductive scheme is designed to propagate
the bounds

(4.2a) lwgsllonrz < Agth
o s
(4.2b) R, o <A

for some 8 > 0, which will be taken to be very small (in terms of the parameter b
in )\q+1 ~ )\2)

In order to streamline the notation, for the remainder of this section we omit
the C} from all norms and simply denote |H|C? p, as ||| g for any Banach space B,
because all norms are taken to be uniform in time. From the bound ([@2a) and our
heuristic about the Fourier support of w1, we may expect that

qu+1HHs S Zlfa
which is suggestive of the fact that v; — v = vy + Zq>0 w, strongly in C?Hf/
for 5’ < 8. Moreover, viewing the momentum equation in (@Il as a forced Stokes
system, from the maximal regularity of the Stokes equation we deduce that

o 2 °
1904l S g @ gl + | Ral], S Mol + B

with bounds that degenerate as v — 0. Thus, letting p > 1 be sufficiently close
to 1, we may deduce that Vv, — Vv strongly in COLLHA" for some 0 < 8" < B
Thus, using ([#2a) and (£2H) the regularity of the limiting weak solution v which
we claimed in Theorem F] follows, except that f is replaced with 8” > 0 (the
reader should not be confused by the fact that the 8 in Theorem [ET] is not the
same parameter as the one in ([£2a)) and (4.2D)).

Subtracting the equations (1)) at level ¢ + 1 and level ¢, similarly to ([B.4]), we
obtain

(4.3) div Rqul = V(Pgt1 —pg) = div(wgs1 @ wgy1 + éq) + Orwg1 — VAwg
+ div(vg @ wgt1 + w1 ® vg) -

In order to cancel the previous stress }O%q in the first term on the right side of ([@3]),

as in the proof of Theorem B.3] the principal part of perturbation, wgi)l, is taken
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to be of the form (B.3]), where the coefficient functions a (]D%q) are chosen to satisfy
the low mode cancellation identity (B.6]).

The main difficultly in implementing a convex integration scheme for the Navier—
Stokes equations is ensuring that the dissipative term vAwgy; on the right
side of (@3] can be treated as an error in comparison to the quadratic term
div(wg+1 @ wgt1). Note that the building blocks W from the Euler construc-
tion (in conjunction with the ansatz ([3.3])) do not have this desirable property,
as they satisfy the heuristic pointwise in space bounds vAwgy; ~ V/\g_;f and
div(wg+1 @ wyt1) = )\;36 (recall, 0 < B < 1 and Agy1 > 1).

The fundamental difference that the intermittent convex integration scheme
presents over the Euler LY and Cf', schemes is that the building blocks W are
chosen to be intermittent, by which we mean that the size of their LP norms differs
vastly for different values of p. In particular, in view of ([@2al) and (£2L) it is
natural to normalize

(4.4) Well. = 1,
and in order to control the term stress arising from vAwgq, it will immediately
become apparent that we need to ensure
—1—
(4.5) [Wellpr = Agir €

for some ¢ > 0. To see this, we use the —1 order linear operator R which inverts
the divergence, and heuristically estimate the contrlbutlon of the dissipative term
resulting from the principal perturbation VAwq ~/1 to the Reynolds stress error Rq+1

|R (vaw®))| | s VZ |Vac(i)||_IWellp. + |lacB) | I9Well,s
< qu+1 LA A
(4.6) S V)‘q+1(>‘3>‘;+1) ||W§||L1 )

where we have used the heuristic that Rq only contains frequencies < A,, whereas
We has frequencies as large as A\g41, and in the last inequality used (€20) and the
Sobolev embedding W41 C L*°. In order to ensure that the right side of (Z0)
produces an error which is compatible with the inductive stress assumption (4.2L)
at level ¢+ 1, and taking into account that v ~ 1, since A\g41 ~ )\g, we must ensure
that

2
(A7) AL IWellp < A28 & [Wellpn < 27070
The inequality (A7) justifies the need to ensure ([@3). The former condition is,
roughly speaking, also sufficient: first take b > 1 and then 8 < 1/b, in terms of the
e in (3.

The bounds (@A) and (1) justify the need to have building blocks We which are
intermittent. In Fourier space, this means that their Fourier support is spread out
(think, a Dirichlet kernel vs a plane wave), whereas in physical space this means that
the supports have very small measure, but that the W, have very high amplitude
on this support. We also note that in n dimensions, with the normalization (@),
based on a simple scaling argument one may deduce that the smallest the L' norm
of W¢ can be made is )\(1—:{2. In view of the requirement (LH), this shows that in
the two dimensional case n = 2, the proof breaks down, as it should. Moreover,
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this heuristic shows that the higher the dimension n is, the easier it is to achieve
@3).

With the above requirements in mind, intermittent Beltrami waves were intro-
duced [23] to serve as new W¢’s. These waves modify the usual Beltrami plane
waves used in the Euler constructions, by adding oscillations that mimic the struc-
ture of a three dimensional Dirichlet kernel, and they are compactly supported
in Fourier space. Based on an analogy with Mikado flows [51], in the joint work
with Colombo [16] intermittent jets were introduced to serve as We’s. These flows
achieve the same level of concentration in terms of (£3]) as intermittent Beltrami
waves, but have a number of advantageous properties since instead of being com-
pactly supported in Fourier space, they are compactly supported in physical space,
and as such may be chosen to satisfy supp We @ Wer = ) for £ # ¢'. This reduces
the number of error terms which have to be estimated on the right side of (@3).
Besides having a different scale of periodization and concentration (cf. the estimate
([@3) below), one of the major differences between intermittent jets and Mikado
flows is that intermittent jets are not anymore stationary solutions of the 3D Euler
equations (neither were the intermittent Beltrami waves). More precisely, in order
to obtain (@A) with ¢ > 0, we need to (slowly) cut the pipe flows in the direction
parallel to the pipe (in addition to the usual cutoff in the direction orthogonal to
the pipe). This turns out to cause a number of additional difficulties, as explained
in (@I3) below.

For the case of intermittent jets, in order to parameterize the concentration of
the W, we introduce two parameters | (a length in the direction parallel to the
pipe) and r, (a length in the direction perpendicular to the pipe) such that

(4.8) Krg L <1,

Aot

Each intermittent jet W is defined to be supported on & (r} A\g+1)® many cylinders
of diameter ~ )\L and length ~ ? In particular, the measure of the support
q+

of We is = r”r 4. We note that such scalings are consistent with the jet W¢ being of
frequency =~ Ag41. Finally, we normalize W¢ such that its L? norm is ~ 1. Hence
by scaling arguments, one expects an estimate of the form

2p 1 1p,1
(4.9) Wellyns S 7177 P20

for 1 < p <ooand N > 0. In particular, the smallness condition (€3] holds once
we require that

(4.10) m_rH ~ A

for some € € (0,1/2). Note that [@I0), together with the condition (S]), rules out
geometric growth of the frequency Ay, ie., b>> 1.
Next, consider the estimate (£2al). Using Holder’s inequality to naively estimate

the L? norm of the principal perturbation wé’fl, we obtain

< Z Hai(Rq)
3

In view of (£9]) with p = oo, we cannot however inductively propagate good esti-
mates on the L> norm of R,, and as such, the above naive estimate is not suitable

H g+1 oo
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in order to obtain ([{.2a]). To obtain a better estimate, we will utilize the follow-
ing heuristic observation: given a function f with frequency contained in a ball of
radius A and a (T/x)3-periodic function g, if £ > A, then

(4.11) 19l S f e lgllzo -

A precise statement for the above heuristic is given in [23] Lemma 3.7]. Hence using
that R, is of frequency roughly \,, and that Wy is (T/x)3-periodic with £ = Ag4171,
and since by ([8) we have Ag4171 > A4, we obtain from ([@II]) that

S Z Haﬁ(Rq)
3

where we have used (@2H]). This proves the feasibility of ([@2al), which is crucial if
we wish to obtain a finite energy weak solution in the limit.

We return to discuss the remaining terms in (@3). First, we note that the
last term on the right side of ({3]) may be bounded quite easily, by using v, =
vy + Zq'gq wy, the Sobolev embedding H? C L, and an argument similar to

(@I2) but in L

1/2
-8
q IR 5 /\q+1’

~

(p)
(4.12) qu+1 ,

2 [Well .2

Hw((]zi)l ®”q Well 1

Sl 3 Jocti] 1

S Ol 3 acto)|| , 1Wel 1

2/
SA b1>‘q+1)‘q+1 )

where we have used ([@2Zal), (4.2h), and ([&5]). Since b > 1 and 3 < 1/b, the above
estimate is easily seen to be < /\;fg, as is required by (£2H) at level ¢ + 1.

The only terms from (€3] are the high frequency part of the oscillation error, and
the temporal derivative term. We note crucially that in comparison to the Beltrami
or the Mikado waves used for the 3D Euler constructions, the intermittent building
blocks used in [I6L23] introduce addition difficulties in handling the oscillation error,
because the intermittent building blocks do not anymore solve stationary 3D Euler
(to leading order). For the intermittent jets of [16] we have

(4.13) div (w((;jr)l ® wé’jr)l + ]O%q) R~ Z ZaEWE - VW + (high frequency error).
3

Similar to how the Nash error for the Euler equations was dealt with (see (B11])),
the high frequency error in ([@I3]) experiences a gain when one inverts the divergence
equation. Note however that this high frequency is not A\, since the lowest active
frequency in We @ We — ng We @ We is &= Ag4171; nonetheless, A\g1171 > Ag as in
).

In order to take care of the main term in (£13]), the intermittent jets are carefully
designed to oscillate in time such that this term can be written as a temporal

derivative
D oW - VW = %at (Z \Wg|2§)
13 13
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for some large parameter ;. This error can absorbed by introducing, in addition to
the principal corrector, also a temporal corrector w((;_zl defined as

1 .
wfl)y =~ PPy (" a2thg)Wel¢) .
3

where Py is the Helmholtz projection and P is the projection onto functions
with mean zero. Thus pairing the oscillation error with the time derivative of the
temporal corrector, we obtain

div (wéﬁ_)l ® wéﬁ_)l + ]%q) +atwf;21 ~ (pressure gradient) + (high frequency error).

This identity is crucial for the intermittent convex integration scheme for 3D Navier—
Stokes to close. In essence, the intermittent building blocks we have chosen in the
construction do not solve to leading order the stationary 3D Euler equations, but
instead to leading order they solve the time-dependent 3D Euler equations.

Finally, analogous to the Euler case, we define a divergence corrector w((;gl to fix

the fact that w((ﬁr)l is not, as defined, divergence free. The total perturbation wq41
is then defined to be
t
Wqt1 = w((;jr)l + wgll + wéi)l .

Due to w((;_zl and wéﬁl, a number of new error terms arise on the right side of (43,
most of them being benign. The main new error term arises from the temporal
oscillation in the definition of the intermittent jets, which introduce an error from
the term 5‘tw,(ﬁ)1 which has a factor of p in front. On the other hand, the oscillation
error is inversely proportional to u, and thus one has to carefully choose p to
optimize between these two errors. We omit these technical details and refer the

reader to the summary given in [22] Section 7].

4.1.2. Vanishing viscosity limits of finite energy mild solutions. A natural question
to consider is whether the nonconservative weak solutions to the 3D Euler equations,
which were obtained in [201[93], arise as vanishing viscosity limits of weak solutions
to the Navier—Stokes equations. In this direction, as a direct consequence of the
proof of Theorem[4.]] one obtains that the answer is yes, at least when one considers
a sufficiently wide class of weak solutions to ()

Theorem 4.2 (Theorem 1.3 in [23]). For § > 0 let v € Cﬁz(TS x [=2T,2T]) be
a zero-mean weak solution of the 8D FEuler equations. Then there exists B > 0, a
sequence v, — 0, and a uniformly bounded sequence v(v») € C2([0,T]; HZ(T?)) of
weak solutions to the Navier—Stokes equations in the sense of Definition 2.2, with
v — v strongly in C?([0, T); L2(T?)).

The above result shows that being a strong C L2 limit of weak solutions to the
Navier—Stokes equations, in the sense of Definition [Z2] cannot serve as a selection
criterion for weak solutions of the Euler equation. Theorem however does not
rule out a selection criterion based on vanishing viscosity limits of Leray—Hopf weak
solutions; we refer the reader to [BLI7L8LI75] where this question is discussed in the
context of convex integration, symmetry breaking, and in the presence of solid
boundaries.
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4.2. Nonuniqueness of weak solutions with partial regularity in time.
As mentioned above, intermittent jets were introduced in the joint work of the
authors and Colombo [16]. The main goal of that paper was to give an example
of a mild/weak solution to the Navier-Stokes equation whose singular set of times
Y7 C (0,7T] is both nonempty and has Hausdorff dimension strictly less than 1,
i.e., it has partial regularity in time (a property that all Leray—Hopf weak solutions
possess [115]). The main result in [16] is:

Theorem 4.3 (Theorem 1.1 in [I6]). There exists 5 > 0 such that the following
holds. For T > 0, let u® u® e CO([0,T]; H3(T?)) be two strong solutions of
the Navier-Stokes equations with initial data uM)(-,0) and u®(-,0) of zero mean.
There exists a weak solution v € CO([0,T]; H?(T?) N WLIHA(T3)) of @), in the
sense of Definition 2.2], such that

v=uV on [0,7/3], and v=u® on [27/,T].

Moreover, for every such v there exists a zero Lebesgue measure set of times Y C
(0, T] with Hausdorff dimension less than 1 — 3, such that

v e C®(((0,T)\ 2r) x T?).
In particular, the weak solution v is almost everywhere smooth.

Note that Theorem F3] establishes the nonuniqueness of weak/mild solutions
(cf. Defintion [Z2]) to the Cauchy problem for the 3D Navier-Stokes equation, for
any initial datum which permits the local-in-time solvability of @3) (e.g., vo € H'/?
or vy € L3). Indeed, for such vy one may uniquely define the solution u(") in
Theorem 3] for a suitable time T, and then all one needs to do is choose u(?) as
a shear flow whose kinetic at time T is larger than that of vy. Due to the energy
inequality, the weak solution provided by Theorem 3] is not the same as the
global-in-time Leray—Hopf weak solution with datum vy, yielding nonuniqueness.
In fact, this argument may be modified to hold for any incompressible vy € L2,
cf. [I6l Remark 1.4].

The proof of Theorem builds on the one of Theorem 1] but additionally it
inductively keeps track of good time intervals on which the approximate solutions
vq are in fact smooth solutions of ([21)) and are untouched in later inductive steps.
This is achieved by employing the method of gluing introduced in [20103]. Taking
the countable union of the good regions over each inductive step g a fractal set is
formed; on this set the solution is C*° smooth, and the complement of this set has
Hausdorff dimension strictly less than 1.

4.3. Further developments of intermittent convex integration schemes.
The new flavor of convex integration introduced in [23] and [I6], has recently been
extended and improved, in order to obtain nonuniqueness and other flexibility-
type results for various models arising in hydrodynamics and PDEs in general.
We mention here a few of these results, as they present interesting applications
of the idea that flexibility may also be attained via low integrability, not just low
regularity.

o The transport equation. Using a version of the classical Mikado flows
but which also take into account spatial concentrations (called intermit-
tent Mikado flows), the authors of [128HI30] have established the existence
of nonrenormalized solutions, as well as Eulerian nonuniqueness, for the
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transport and continuity equations with Sobolev vector fields. These strik-
ing counterexamples point towards the sharpness of the classical results for
renormalized solutions [65]. We also refer the reader to [I4] where a num-
ber of new results (both in terms of uniqueness and nonuniqueness) were
obtained for positive solutions to the transport equation, and to [34] where
temporal intermittency and oscillation is introduced in the intermittent
convex integration scheme in order to extend the integrability range.

e Hyperviscous 3D Navier—Stokes. The authors of [122] and [I6] have in-
dependently proven that intermittent convex integration is also applicable
to establish the nonuniqueness of finite energy weak/mild solutions to the
fractionally dissipative 3D Navier—Stokes equations with dissipation (—A)%,
and a < 5/4 (the so-called Lions criticality threshold [I17]). We note that
similar results may also be established [121] for the hypoviscous 2D Navier—
Stokes equation o < 1.

e The stochastic 3D Navier—Stokes equations. Nonuniqueness in law for the
stochastic 3D Navier—Stokes system, with either an additive or a linear
multiplicative noise driven by a Wiener process, was recently obtained in a
remarkable paper [88]. See also the result [I79] which considers the stochas-
tic fractionally dissipative Navier—Stokes equation in the full supercritical
regime a < 5/4.

e Other hydrodynamic models. In [48], it is shown that intermittent con-
vex integration methods can be adapted to prove the nonuniqueness of
Leray—Hopf weak solutions for the 3D Hall-MHD system. We note that the
nonuniqueness result in [48] fundamentally relies on the presence of the Hall
term curk(curk B x B) which is dominant when compared to AB (see also
the recent result [49] for the electron-MHD system). Lastly, we mention
that the technique of convex integration was applied to obtain nonunique-
ness of distributional solutions for a model of non-Newtonian fluids called
power law fluids [24].

4.4. Some open problems in the context of 3D Navier—Stokes. To date it
remains open to show that the regularity parameter 8 in Theorems F1] or 3] may
be taken to be “significant”, for instance < 1/9. Due to [83], the results cannot hold
for B > 1/2. Note however that one may formally write the Navier—Stokes system
in arbitrary dimensions n > 2, and that in higher dimensions we have stronger
forms of intermittency/spatial concentration. Exploring this observation, in [123]
it was shown that for n = 4, the statement corresponding to Theorem [L.1] for time-
independent solutions holds for g < 1/200. Moreover, in [164, Theorem 29], it is
shown that as we send the dimension n — oo, one may prove Theorem [£.1] with
B =1k,

Equally challenging to increasing the regularity of the solutions in Theorems [4.1]
or 3] seems to be to improve their integrability from CPL2 to CPLE for some
p € [2,3) which “significantly” departs from p = 2. Note that due to [84] we
know that uniqueness holds for mild solutions in CLP with p > 3; establishing the
sharpness of this criterion via convex integration appears to be out of reach with
current methods; see [22] Problem 8§].
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The energy inequality (2.3 presents a formidable obstacle towards extending
the results of Theorems ] or to the class of Leray—Hopf weak solutions. How-
ever, what happens if we give up on the energy equality and only retain the reg-
ularity/integrability provided by the energy class? Recall the discussion in Sec-
tion The weak/mild solutions of Definition need not satisfy the energy
inequality (2.5]) even if they lie in the Leray—Hopf class Ceveak’tLi N LiH L as long
as they do not belong to Lf}?m or another space with similar scaling [I51]. This
leaves open an intriguing possibility:

Problem 4.4 (Nonuniqueness of mild solutions in the energy class). Is it possible
to prove a stronger version of Theorem AT, by additionally requiring that v €
L2((0,T); HY(T?))?

We again emphasize that Problem 4] does not require that the weak solution
v satisfies the energy inequality. Curiously, in terms of the parabolic scaling that
is natural for the 3D Navier-Stokes system, v(z,t) + vy(z,t) = Av(Az, A%t), the
space L,?H;; scales in the same way as the space L{° L2, which is already present in
Theorem [l To date, however, it is not known how to parabolically trade temporal
integrability for spatial regularity within the framework of an intermittent convex
integration scheme for 3D Navier—Stokes.

5. CONVEX INTEGRATION CONSTRUCTIONS FOR THE MHD EQUATIONS

As discussed in Section 2333 the rigidity parts (@) in Conjecture 2I0l and (@)
in Conjecture B.TT] have been established rigorously. In this section, we discuss

partial progress towards the flexible parts of these Onsager-type dichotomies for
ideal MHD (Z.19).

5.1. Bounded wild weak solutions of the MHD system. Concerning the flex-
ible part (b)) of Conjecture 210, we start with the example of Bronzi, Lopes Filho,
and Nussenzveig Lopes [I3]. The authors in [I3] impose a symmetry assumption
which embeds the ideal MHD system into a two-and-a-half dimensional Euler flow.
If v = (v1,v2,v3)(x1,x2) is a weak solution of 3D Euler independent of x3, then
setting the velocity field in (ZI9) to (v1,v2,0) and the magnetic field to (0,0, v3),
we obtain a weak solution of the ideal MHD system, which is independent of x3.
If v3 # 0, then such a weak solution has a nontrivial magnetic field. For v as in
part () of Theorem 4] the total energy £ (defined in ([2:21])) of these weak solu-
tions is dissipated, but both H.,, g = Hp,p = 0, and are hence constant functions
of time (recall the definitions (Z206) and ([Z27))). Thus, the additional flexibility
requirement of Conjecture 2ZI0that H,, p is not conserved—seems to cause new
difficulties when compared to the Euler case.

A more fundamental source of difficulties present in the analysis of the ideal
MHD system is that as soon as (v, B) € L}, the magnetic helicity g must be
a constant function of time [IL[76,[100]. But typically, convex integration schemes
are able to “break” all quadratic conservation laws which are well defined at the
regularity level of the weak solutions constructed. Thus, it is very nontrivial to
construct solutions which conserve the magnetic helicity but do not conserve the
Elsésser energies

140ne is faced with a similar difficulty in attacking Conjecture BT or in trying to establish
flexibility of the Casimirs for 2D SQG or 2D Euler; see Remark 2.0
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The first such result in the context of bounded weak solutions was recently ob-
tained by Faraco, Lindberg, and Székelyhidi [78] who use the L7, convex integration
scheme of [55] to construct bounded weak solutions of (2I9) which have compact
support in space and time. The authors of [78] also establish a number of rigidity
results for 2D ideal MHD, but in terms of flexibility, their main conclusion is the

3D result:

Theorem 5.1 (Theorem 1.1 in [78]). There exist bounded, compactly supported
weak solutions of ideal MHD in R3, with both v, B nontrivial, such that neither
total energy nor cross helicity is conserved in time.

Since the solutions constructed in Theorem [B.1] have compact support in time,
and since they conserve the magnetic helicity, we have that Hp p(t) must vanish
at all times t € R, even though B is not identically equal to zero.

Theorem [5.1] represents the first result towards the flexible part () of Conjec-
ture 2100 The analogous result in the Onsager program for 3D Euler would be
Theorem 3] from [55].

The proof of Theorem [5.1] uses the classical framework provided by the Ly,
flavor of convex integration of De Lellis and Székelyhidi [55] and the Tartar frame-
work [I67], as axiomatized in [163]. Broadly speaking, the additional rigidity pro-
vided by the conservation of magnetic helicity is a manifestation of the weakly
closed nature of the Maxwell equations for the magnetic field [I66]. As such, when
performing the plane-wave analysis, the interaction with the momentum equation
for the velocity field v, which has a large relaxation, has to be considered very
carefully. For instance, in an earlier work [76] Faraco and Lindberg show that there
exist nontrival smooth strict subsolutions of 3D ideal MHD, with compact sup-
port in space-time, but that the interior of the 3D A-convex hull is empty, which
makes it difficult to implement a convex integration scheme starting from this sub-
solution. The authors of [78] instead develop a variant of the convex integration
scheme directly on differential two-forms, retaining consistency with the phase space
geometry of the 3D ideal MHD system; see [78] Sections 3, 4] for details.

5.2. Weak solutions which do not conserve magnetic helicity. In order
to make progress on the flexible part (b)) of Conjecture ZI1] one has to be able
to construct weak solutions of ideal MHD (2.I9)) which have finite total energy
(as required by Defintion 2.§]), but do not lie in Liw, since otherwise they would
conserve Hp p. Moreover, in view of Taylor’s conjecture (cf. Theorem 2.13)), such
weak solutions cannot be constructed as weak ideal limits of MHD Leray—Hopf
weak solutions (the usual weak-compactness methods via smooth approximations
fail anyway, for the same reasons they fail in 3D Euler). Clearly, the uniform in
space convex integration developed in the proof of Theorem [5.]is not well suited to
achieve this goal. However, the intermittent convex integration scheme developed
in the context of 3D Navier-Stokes (see Section []) stands a chance, because it is
exactly designed to explore the low integrability of weak solutions, via a careful
choice of intermittent building blocks. This idea was explored by the authors and
Beekie in [10]:

Theorem 5.2 (Theorem 1.4 in [I0]). There exists 5 > 0 such that the following
holds. There exist weak solutions (v,B) € C([0,1], H?) of @ZIJ), in the sense

of Definition 2.8, which do not conserve magnetic helicity. In particular, there
exist solutions as above with 2|Hp p(0)] < Hp g(1) and Hp (1) > 0. For these
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solutions the total energy € and cross helicity H.,, g are nontrivial, nonconstant
functions of time.

Theorem provides the first result on the flexible part (0l of Conjecture 21T
by providing an example of a nonconservative weak solution to the ideal MHD
equations which lies in C)LP for some p > 2, for which £,H, p and Hp p are
all nontrivial. Besides establishing the nonuniqueness of weak solutions to (Z19)
in the sense of Definition 2.8 Theorem also gives an existence result for weak
solutions to (2I9) at this low integrability level. Lastly, we emphasize that in
view of Theorem 213 the weak solutions of 3D ideal MHD which we construct
in Theorem cannot be obtained as weak ideal limits from Leray—-Hopf weak
solutions to (Z.20).

The proof of Theorem builds on the intermittent convex integration schemes
developed in [16,23]. The main new difficulties arise from the specific geometric
structure of the nonlinear terms in 3D MHD so that the intermittent building blocks
used for 3D Navier—Stokes (intermittent Beltrami flows, intermittent jets, viscous
eddies) are not useful for the ideal MHD system.

Informally, the building blocks used in the 3D Navier—Stokes proof are designed
to handle the dissipative term Awv, and as such require more than two-dimensional
intermittency (e > 0 in (&H)); moreover, the high-frequency component of the
oscillation error div(v ® v) is handled by introducing a temporal corrector. For
ideal MHD, we do not have to worry about a dissipative term, and so the role of
intermittency is different. Here intermittency is needed in order to treat the high
frequency nonlinear oscillation errors arising from div(v®@v—B® B) and div(v® B —
B ®v), which cannot be fixed anymore by adding temporal correctors, essentially
because the velocity intermittent building blocks W, and the magnetic intermittent
building blocks D¢/ have nontrivial overlap even if £ # ¢’. To see this, we first note
that the structure of the MHD nonlinearities requires the building blocks’ direction
of oscillation, &, to be orthogonal to two direction vectors & and &. These two
orthogonal direction vectors are needed in order to simultaneously cancel both the
previous velocity Reynolds stress, which is symmetric, and the previous magnetic
stress, which is antisymmetric. This only permits the usage of one-dimensional
intermittency in our building blocks, meaning the maximal smallness that can be
gained in ||[Wel| ;. HWgHZZI and || Del| ;. HDgHZzl is proportional to /\(;/12 (compare to
@A) and 3] for Navier—Stokes). This amount of gain is by itself not sufficient to
close the scheme.

The main idea in the proof of Theorem is to construct a set of intermittent
building blocks adapted to the MHD geometry, which we call intermittent shear
velocity flows We and intermittent shear magnetic flows D¢. Their spatial support
is given by thickened planes spanned by the two orthogonal vectors & and &s,
their support has volume ~ 7 (which plays a role akin to the v in [£J])); they are
periodized to scale Aq117 1, and their only direction of oscillation is given only by the
vector £ which is orthogonal to both &; and &;. Using these orthogonality properties,
the contributions to the oscillation errors from £ = £’ can be handled suitably. In
order to treat £ # £/, we note that the product of two rationally skew-oriented 1D
intermittent building blocks is more intermittent than each one of them; it has two
dimensional intermittency because the intersection of two thickened (nonparallel)
planes is given by a thickened line, which has 2D smallness. That is, we may show
that the Lebesgue measure of supp We@WY, supp D¢ @W/{, and supp D¢® Dy is =~ r?
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when £ # &', Suitably choosing 7 allows one to treat the remaining oscillation
errors. In summary, intermittency is used in Theorem [5.2] to treat nonlinear errors,
instead of linear ones for Navier—Stokes; we refer to [10] for details.

5.3. Some open problems in the context of the MHD system. The ap-
plicability of convex integration methods to the ideal MHD system is at an early
development stage. For instance, although the authors of [7§] have recently im-
plemented a Lg, convex integration scheme for ([2.19)), to date it remains open to
implement a Cf', Nash-type convex integration, for any o > 0. As such, the flexible
part (B of Conjecture 210 remains open.

As is the case with the intermittent convex integration schemes for 3D Navier—
Stokes, it seems that fundamentally new ideas are needed to substantially increase
the value of 8 in Theorem 2] or to increase the integrability index of the solu-
tions from [10] from L2 to LP with p closer to 3. Because of this, part () of
Conjecture 211l remains widely open.
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