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The behavior of waves on a compact Riemannian manifold is governed by the
eigenvalues and eigenfunctions of the Laplacian. In this setting, a solution u of the
wave equation has an expansion of the form

u(t, x) =
∞∑

j=0

(
aje

itλj + bje
−itλj

)
φj(x),

where −λ2
j are the eigenvalues of the Laplacian with corresponding eigenfunctions

φj , and the coefficients aj and bj are determined by the initial data. (The equality
above always holds in the distributional sense, and it holds in stronger senses if the
solution is more regular.) In other words, in the compact setting, the discrete data
of the eigenvalues determine the frequencies at which waves can oscillate.

In the noncompact setting, however, the set of eigenvalues is typically not rich
enough to describe the behavior of waves. Scattering resonances provide one re-
placement for this data; just as the eigenvalues of the Laplacian on a compact
manifold can be viewed as poles of the resolvent (−Δ−E)−1, scattering resonances
can be defined as poles of a meromorphic continuation of the resolvent.

As a concrete illustration, if V is a compactly supported potential on R3, the
resolvent (−Δ+V −E)−1 is a family of bounded operators on L2; aside from possibly
finitely many poles corresponding to negative eigenvalues, the family is holomorphic
for E ∈ C \ [0,∞). Passing to the double cover of C \ [0,∞) corresponds to taking
E = λ2. The resolvent

RV (λ) = (−Δ+ V − λ2)−1

defines a family of bounded operators on L2(R3) which is meromorphic in the upper
half-plane. Considered as an operator from compactly supported L2 functions to
functions that are locally in L2, this family meromorphically continues to the entire
complex plane. The scattering resonances are precisely the poles of this family in
the lower half-plane.

The study of resonances is motivated by their ability to explain phenomena found
in physics, quantum chemistry, and acoustics. One physical view of the above dis-
cussion is that we expect a closed system (such as one modeled by a compact
Riemannian manifold) to be described entirely by the eigenvalues and eigenfunc-
tions of an underlying Hamiltonian. In an open setting, such as the one described
by potential scattering on R3, the underlying Hamiltonian often has a purely con-
tinuous spectrum, and we do not expect to find positive energy eigenstates. On
the other hand, one does expect to find states that persist for some time before
tunneling to infinity: these are described by resonances and resonant states.

The analogy with eigenvalues is not limited to the discreteness of the resonances:
solutions of the wave equation with potential on R

3 enjoy a resonance wave expan-
sion. More precisely, if u is an appropriately regular solution of

∂2
t u−Δu+ V u = 0
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on R3 and σj are the poles of the resolvent above (so including both resonances and
possibly finitely many eigenvalues), then a contour-deformation argument shows
that for each compact set K ⊂ R

3 and constant C, there are functions aj so that

u =
∑

Imσj>−A

e−iσjtaj(x) + r(t, x),

where r decays exponentially in t at the rate exp(−At). In this case we see that
the real part of the resonance encodes a characteristic frequency of oscillation (as
was the case with eigenvalues) and the imaginary part encodes a characteristic rate
of decay. The resonances closest to the real axis are “physical” in that they decay
slowly and so take longer to tunnel to infinity.

In addition to existence theorems and resonance wave expansions, the analogy
with eigenvalues can be further fleshed out, though the statements on the resonance
side are often considerably more difficult to establish. Two notable examples in-
clude resonance counting estimates (such as the upper bound [10] in analogy with
the Weyl law for eigenvalues) and trace formulae (such as the one due to Melrose [8]
in analogy with the Selberg trace formula). Both examples present new challenges
in the setting of resonances. Unlike in the case of eigenvalues, tight lower bounds
for the resonance counting function are known in only a few settings; similarly, the
available trace formulae require considerably more machinery than their counter-
parts for eigenvalues.

A final aspect to the analogy between eigenvalues and resonances arises from
the correspondence principle in classical mechanics, and it concerns the relation-
ship between their distribution and the underlying Hamiltonian dynamics on the
cotangent bundle (or, more precisely, the cosphere bundle). For resonances, the un-
derlying classical phase space is noncompact, so the presence or absence of trapped
trajectories (i.e., those trajectories that remain confined to a compact set) is a pri-
mary determinant of the distribution of resonances. We typically expect trapping
to produce resonances near the real axis, while the absence of trapped trajectories
should give resonance-free regions near R. If the underlying classical system has no
trapped trajectories, the resonance wave expansion above holds for all A, while if
the trapped set is “thin” enough and the dynamics nearby are hyperbolic, the reso-
nance wave expansions typically only hold only up to a threshold value determined
by the surrounding dynamics [2].

The book [5] under review is a masterly exposition and the definitive work on
this subject for the foreseeable future. It details the above themes in several con-
texts, including one-dimensional scattering theory (where more explicit formulas are
available), compactly supported potential scattering in odd-dimensional Euclidean
space, black box scattering in Euclidean space, and scattering on asymptotically
hyperbolic spaces.

A particular strength is the book’s treatment of the meromorphic continuation of
the resolvent on asymptotically hyperbolic spaces through propagation estimates.
Originally due to Vasy [9], this approach has spurred a flurry of activity in general
relativity [6, 7] and dynamical systems [3, 4]. The book provides an accessible
treatment of this technique and application to other domains in its fifth chapter.
This approach is distinct from the one taken in Borthwick’s book [1], and it provides
a complementary perspective for those primarily interested in hyperbolic manifolds.

The book also provides a detailed account of the influence of trapping in the
semiclassical limit, i.e., in the relationship between the asymptotic distribution of
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resonances (as the real part of the resonance goes to infinity) and the behavior of
the underlying classical dynamical system. There are extensive discussions of the
presence and size of resonance-free regions (related to the rate of decay expected
for solutions of wave equations) as well as of the effect that trapped trajectories
have on the distribution of resonances.

The appendices of the book are another significant strength: the authors include
sections on spectral theory, Fredholm theory, complex analysis, and semiclassical
analysis to make the book essentially self-contained. A careful reading of these
appendices provides a solid introduction to the basic techniques and results required
for graduate students to begin research in the field. Of particular note is the
appendix covering semiclassical analysis: in addition to serving as an excellent text
for an introductory course in microlocal or semiclassical analysis, it includes an
exposition of positive commutator estimates and propagation of singularities that
is perhaps the clearest currently in the literature.
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