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DYNAMICAL VERSIONS

OF HARDY’S UNCERTAINTY PRINCIPLE:

A SURVEY

AINGERU FERNÁNDEZ-BERTOLIN AND EUGENIA MALINNIKOVA

Abstract. The Hardy uncertainty principle says that no function is better
localized together with its Fourier transform than the Gaussian. The textbook
proof of the result, as well as one of the original proofs by Hardy, refers to the
Phragmén–Lindelöf theorem. In this note we first describe the connection of
the Hardy uncertainty to the Schrödinger equation, and give a new proof of
Hardy’s result which is based on this connection and the Liouville theorem.
The proof is related to the second proof of Hardy, which has been undeservedly

forgotten. Then we survey the recent results on dynamical versions of Hardy’s
theorem.

1. Introduction

There are many mathematical interpretations of the uncertainty principle, which
states that the position and momentum of a quantum particle cannot be measured
simultaneously, or that a signal cannot be well-localized both in time and in fre-
quency. All of them refer to a double representation of a function; classically
this is the function itself and its Fourier transform, though more recent versions
of the uncertainty principle use some form of joint time-frequency representation,
for example the short-time Fourier transform. Each uncertainty principle has an
interesting and developing story, and in this note we tell only one of them.

The most famous uncertainty principle was introduced by Werner Heisenberg
in 1927, and its mathematical formulation was given by Earle Hesse Kennard and
Hermann Weyl shortly after. It says that

(1)

∫
Rd

|x|2|f(x)|2
∫
Rd

|ξ|2|f̂(ξ)|2 ≥ d2

4
‖f‖42

for all f ∈ L2(Rd) or, equivalently,∫
Rd

|x|2|f(x)|2 +
∫
Rd

|ξ|2|f̂(ξ)|2 ≥ d

∫
Rd

|f |2.
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We always use the following normalization of the Fourier transform on Rd,

f̂(ξ) =
1

(2π)d/2

∫
Rd

f(x)e−ix·ξdx.

It is well-known that the Fourier transform is an isometry of L2(Rd).
The equality in Heisenberg’s uncertainty principle (1) is attained when f is a

generalized Gaussian function, i.e., f(x) = exp(−(Ax, x)), where A is a positive
definite matrix. The fact that the Gaussian is the best localized function in time
and frequency was also recognized by English mathematician Godfrey H. Hardy
in 1933, in the formulation of the uncertainty principle that now bears his name.
Hardy attributed the remark that a function and its Fourier transform “cannot be
very small” to Norbert Wiener and proved the following one dimensional result.

Theorem 1. Let f ∈ L2(R) satisfy |f(x)| ≤ Ce−a|x|2 and |f̂(ξ)| ≤ Ce−b|ξ|2 . If

ab > 1/4, then f = 0, and if ab = 1/4, then f(x) = ce−a|x|2 .

In his original article [28], Hardy gave two different proofs, and both refer to
holomorphic functions and use some results of complex analysis. The first one
employs the Phragmén–Lindelöf principle for entire functions. This proof or its
variations can be found in many textbooks; see for example [29,40,42]. The second
one also refers to entire functions but makes use of the Liouville theorem only (at
least for the case when ab > 1/4); it is more elementary and seems to be forgotten.
We should also mention that Hardy proved a more general result, assuming that

|f(x)| = O(|x|me−a|x|2) and |f̂(ξ)| = O(|ξ|me−b|ξ|2) as x, ξ → ±∞, he showed that

f is a polynomial times e−a|x|2 .
There was a search for a real variable proof of the Hardy uncertainty principle.

A rather elementary (real variable) argument, given by Terence Tao in his book
[43, §2.6], implies that f is zero if in the statement above ab > C0 for some large
constant C0. Another real variable proof for the case ab > 1 is given by E. Pauwels
and M. de Gosson in [39]. Surprisingly their proof employs prolate spheroidal wave
functions, which, in the context of time frequency analysis, first appeared in the
celebrated series of works of H. Landau, H. Pollak, and D. Slepian in the beginning
of 1960s. The first complete real proof for the sharp result is given in [10].

Before we exhibit the main topic of this note, the dynamical interpretation of
the Hardy uncertainty principle, and give a new proof of the result, we comment
briefly on classical approaches and generalizations.

Hardy proved the theorem for the case a = b = 1/2, which implies the general
result by a simple rescaling. Gilbert W. Morgan gave the following generalization
of Hardy’s result already in 1934, [36].

Theorem 2. Let 1 < p ≤ 2 and 1/p + 1/q = 1. Suppose that f ∈ L1(R) and

|f(x)| ≤ Ce−ap|x|p/p and |f̂(ξ)| ≤ Ce−bq|ξ|q/q and ab > | cos(pπ/2)|1/p, then f = 0.

For an interesting discussion of the Morgan theorem, extensions to functions
that decay only along half-axes, and some remarkable related results, we refer the
reader to [37] and [29].

The assumptions of both theorems formulated above are pointwise bounds for
a function and its Fourier transform. In the 1980s M. Cowling and J. F. Price
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[11] obtained versions where the bounds are replaced by an integral condition, the
simplest version is the so-called L2-Hardy uncertainty principle,

ea|x|
2

f(x) ∈ L2(R) and eb|ξ|
2

f̂(ξ) ∈ L2(R),

implying f = 0 when ab ≥ 1/4.
Hardy’s theorem can be generalized to higher dimension, and the statement is

exactly the same for f ∈ L2(Rd). This can be deduced from the one dimensional
result using the Radon transform; see [41]. Note that we discuss only the simplest
generalization of the Hardy uncertainty principle to Rd. The appealing problem of
natural higher dimensional statements is studied in [5, 6, 12, 13].

An interesting interpretation of Hardy’s uncertainty principle was given in the
beginning of the current century; see [9, 15]. It turns out that Theorem 1 is equiv-
alent to the following statement.

Theorem 3. Let u(t, x) be a solution to the free Schrödinger equation

∂tu = iΔu(t, x).

Suppose that u ∈ C1([0, T ],W 2,2(Rd)) satisfies the decay conditions

|u(0, x)| ≤ Ce−α|x|2 and |u(T, x)| ≤ Ce−β|x|2 ,

where α, β > 0.

(i) If αβ > (16T 2)−1, then u(t, x) = 0.

(ii) If αβ = (16T 2)−1, then u(t, x) = ce−(α+i/(4T ))|x|2 .

A real-variable proof of this theorem is due to M. Cowling, L. Escauriaza,
C. E. Kenig, G. Ponce, and L. Vega; see [10].

In this note we first show that the uniqueness result is equivalent to Hardy’s
theorem and give a simple proof of Theorem 3. The proof involves holomorphic
functions; however the proof of part (i) is based only on the Liouville theorem, which
says that a bounded entire function is constant. The argument reminds one of the
second proof of Theorem 1, given by Hardy in [28]. The proof of part (ii) requires
some analysis of a singular point of a holomorphic function. We then sketch the
second proof of Hardy’s theorem and give a relatively short and elementary proof
of another uncertainty principle due to Beurling. The latter proof is inspired by
the work of Hedenmalm; see [30]. To finish, we present an overview of the recent
generalizations of Theorem 3, which are called the dynamical versions of Hardy’s
uncertainty principle.

2. Free Schrödinger equation

2.1. Solution by the Fourier transform. In this section we present the classical
formula for the solution of the Schrödinger equation, and we provide the details for
the convenience of the reader. A generalization of the result is used later in the
note. We consider the free Schrödinger equation

(2) ∂tu(t, x) = iΔxu(t, x),

where Δx = ∂2

∂x2
1
+ · · · + ∂2

∂x2
d
is the Laplace operator. It is one of the simplest

examples of a constant coefficient linear dispersive equation. Dispersive equations
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are called so since parts of solutions with different frequencies disperse with different
speeds, spreading spatially. A plane wave is a solution to (2) of the form

uξ0(t, ξ) = exp(ix · ξ0 − it|ξ0|2).

Clearly, any superposition of the plane waves is also a solution. The plane waves
satisfy |u(t, x)| = 1. Below we analyze solutions that decay in x. More precisely,
we assume that u ∈ C1([0, T ],W 2,2(Rd)). This smoothness assumption can be
weakened but we prefer to avoid the technical details in this note.

An effective method to solve linear constant coefficient dispersive equations is by
applying the Fourier transform in spatial variables. Let û(t, ξ) = Fxu(t, x). Then
(2) reads

∂tû(t, ξ) = −i|ξ|2û(t, ξ).
Thus the solution to (2) with initial data u(0, x) = u0(x) ∈ L2(Rd) satisfies

(3) û(t, ξ) = e−it|ξ|2 û0(ξ).

Hence, by the Fourier inversion formula,

u(t, x) =
1

(2π)d/2

∫
Rd

e−it|ξ|2+ix·ξû0(ξ)dξ

=
1

(2π)d

∫
Rd

∫
Rd

ei(−t|ξ|2+(x−y)·ξ)u0(y)dydξ.

The formula for u(t, x) above can be written as the convolution

u(t, x) =

∫
Rd

u0(y)Kt(x− y)dy,

where Kt is the (distributional) inverse Fourier transform of the function e−it|ξ|2 .
Formally, we write

Kt(x) =
1

(2π)d

∫
Rd

ei(t|ξ|
2+x·ξ)dξ,

although the integral does not converge. To make sense of the integral, let

Kε
t (x) =

1

(2π)d

∫
Rd

ei(t|ξ|
2+x·ξ)e−ε|ξ|2dξ.

Then it is easy to see that

Kε
t (x) =

1

(4π(ε+ it))d/2
e−|x|2/(4(ε+it)).

The limit of Kε
t (x) as ε → 0 exists and is equal to

Kt(x) =
1

(4πit)d/2
e−|x|2/(4it).

Therefore the solution to the Schrödinger equation is given by

(4) u(t, x) =
1

(4πit)d/2

∫
Rd

ei|x−y|2/(4t)u0(y)dy.

We note that if kt denotes the standard heat kernel, then formally Kt = kit.
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2.2. Uniqueness for the free Schrödinger evolution and Hardy’s theorem.
Using the integral formula for the solution (4), it is not difficult to see that The-
orem 1 is equivalent to Theorem 3 with d = 1. We show one implication: the
Hardy uncertainty principle follows from the uniqueness result for the Schrödinger
equation.

Assume that Theorem 3 is true, and let f be a function as in the Hardy theorem.
We define

u(t, x) =
1

(4πit)1/2

∫
R

ei|x−y|2/(4t)−i|y|2/4f(y)dy,

for t > 0. Since f is decaying fast, the function u(t, x) is smooth. Then, differen-
tiating the integrand, we see that ∂tu = iΔxu. Moreover, by taking the limit as

t → 0, we get u(0, x) = e−i|x|2/4f(x). Furthermore,

u(1, x) =
ei|x|

2/4

(4πi)1/2
f̂(x/2).

The assumptions in the Hardy theorem can now be translated to

|u(0, x)| ≤ Ce−a|x|2 , |u(1, x)| ≤ Ce−b|x|2/4.

Now applying Theorem 3 with T = 1, we conclude the argument.
The reverse implication can be shown in a similar way.

2.3. A proof of the uniqueness theorem. We now give a relatively elementary
proof of Theorem 3. The main idea is to consider the family of partial differential
equations ∂tu = zΔxu with complex parameter z. When z = ±1 we get the
heat and the backward heat equations, while z = i corresponds to the Schrödinger
equation. Computations, similar to ones presented in Section 2.1, show that the
fundamental solution is

kt(z)(x) = (4πzt)−d/2e−|x|2/(4zt).

Thus for a fast decaying initial condition u0(x), the solution to the equation is given
by u(t, x) = u0 ∗ kt(z), so kt(z) =: ktz is a complex extension of the heat kernel.

Assume now that
|u0(x)| = |u(0, x)| ≤ e−α|x|2 .

We start with the initial condition u(0, x) = u0(x) that decays fast, and we solve
the generalized heat equation. We see that the heat equation itself is solvable (it
corresponds to z real and positive) as is the Schrödinger equation (corresponding
to pure imaginary z), but the backward heat equation cannot be solved in general,
and our function is not defined for small real negative z. We consider the function

F (z, x) =
1

(4πz)d/2

∫
Rd

e−|x−y|2/(4z)u0(y)dy = kz ∗ u0,

for Ω0 = {z ∈ C : 	(−1/(4z)) − α < 0}. Solving the last inequality for z, we see
that the integral above converges uniformly on compact subsets of the domain

Ω0 = {z ∈ C : |z + 1/(8α)| > 1/8α}.
The function F 2(z, x) is a holomorphic function of z in Ω0, when x ∈ Rd is fixed.
Note that we take the square of F to avoid the branching of

√
z.

Now, we start with u(T, x) = u1(x) and define

G(z, x) = kz−iT ∗ u1 =
1

(4π(z − iT ))d/2

∫
Rd

e−|x−y|2/(4(z−iT ))u1(y)dy.
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•
z0

• iT·

z plane

Figure 1. Tangent circles ∂Ω0 and ∂Ω1 and their common tan-
gent line l for the case AB = T 2/4, z-plane

Using the decay of u1, we see that G2(z, x) is well defined and holomorphic in the
domain

Ω1 = {z ∈ C : |z − iT + 1/8β| > 1/(8β)}.
Moreover, G(it, x) = u(t, x) when t ∈ (0, T ). Hence the holomorphic functions
F 2(·, x) and G2(·, x) coincide on the interval (0, T ). Therefore F 2(·, x) is extended
to a holomorphic function on Ω0 ∪ Ω1.

To simplify the notation, we denote (8α)−1 = A and (8β)−1 = B. Then the
complements of Ω0 and Ω1 are circles with the radii A and B, while the distance
between the centers is

√
T 2 + (A−B)2.

If AB < T 2/4 (which is equivalent to 16αβ > T−2), then the circles do not
intersect. Thus F 2(z, x) extends to an entire function in z for each fixed x. It also
satisfies

|F 2(z, x)| ≤ C

(4π|z|)d

(∫
Rd

e−�(|x−y|2/(4z))e−α|y|2dy

)2

=
C

(4|z|(α+ γ))d
e−2γα|x|2/(γ+α),

(5)

where γ = 	(1/(4z)). We fix x and note that F 2(z, x) is uniformly bounded as
|z| > 1/α. Then, by the Liouville theorem, F 2(z, x) is a constant function in z for
each x. This means that ∂tu = 0 and thus Δu = 0. There are no nonzero decaying
harmonic functions, therefore u(t, x) = 0.

This proof of Theorem 3(i) uses only the facts that the function ecz satisfies
the mean value property and that a bounded function satisfying the mean value
property on the whole plane is a constant. An elementary proof of the latter can
be found in [38].

Now assume that 16αβ = T−2, i.e., AB = T 2/4. Then the circles ∂Ω0 and
∂Ω1 touch at one point, which we denote by z0; see Figure 1. Thus F 2(z, x) is a
holomorphic function in C \ {z0}. We consider x = 0 and claim that F 2(z, 0) has
a pole at z0. To prove that, we draw the common tangent line l to the circles ∂Ω0

and ∂Ω1, and we consider the images of this line under the transformations ζ = z−1

and η = (z − iT )−1. These are circles ω0 and ω1 passing through the origin, while
the images of the circles ∂Ω0 and ∂Ω1 under those two respective transformations
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•ζ0

ζ = z−1

Figure 2. Circle ω0 and tangent line l0 in ζ = 1/z-plane

are vertical lines l0 and l1 tangent to ω0 and ω1; see Figure 2. We see that ω0 is
defined by the equation

	(ζ − ζ0) = |ζ − ζ0|2/(2r0),
where ζ0 = z−1

0 and r0 is the radius of ω0. Let z be a point close to z0 lying above
the line l (on the other side of the line l than ∂Ω0). Then ζ = z−1 lies inside the
disk bounded by ω0, and we have the following inequality

(6) 	(ζ − ζ0) ≥ c|ζ − ζ0|2 ≥ c1|z − z0|2,
where c = (2r0)

−1 and c1 = c|z0|−4/2. The estimate (5) implies

|F 2(z, 0)| ≤ C|z − z0|−2d

when z is in the half-plane above the line l. For the other half-plane we repeat the
argument, using the function G2, and conclude that F 2(z, 0) has a pole at z0 of
order less than or equal to 2d.

Similarly, we consider the functions

Fj(z, x) = ∂F (x, z)/∂xj

=
1

2z(4πz)d/2

∫
Rd

e−|x−y|2/(4z)(yj − xj)u0(y)dy, j = 1, . . . , d.

Then each F 2
j (z, x) extends to a holomorphic function in C \ {z0} and Fj(z, 0) has

a pole at z0. An estimate of Fj(z, 0) gives

|F 2
j (z, 0)| ≤ C|z − z0|−2d−1.

Finally, consider ζ = ζ0 + t, where t > 0 is real and small. For this case the
inequality (6) can be replaced by 	(ζ−ζ0) = |ζ−ζ0|. Then, repeating the argument
above and taking z = 1/ζ, we see that (z − z0)

dF 2(z, 0) and (z − z0)
d+1F 2

j (z, 0)

are bounded along the curve z = z0(1 + tz0)
−1, t > 0. Thus F 2(z, 0) has a pole at

z0 of order not exceeding d, while for each F 2
j (z, 0), j = 1, . . . , d, the order of this

pole does not exceed d+ 1.
We assume first that d = 1. To finish the proof of the endpoint case, we use the

Hermite functions,

ψn(t) = et
2/2 ∂n

∂tn
e−t2 = Hn(t)e

−t2/2,
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which form an orthogonal basis for L2(R). More generally, for any complex number
γ with 	γ > 0, we may define the generalized Hermite functions

ψ(γ)
n (t) = Hn(

√
2γt)e−γt2 ,

which still form an orthogonal basis for L2(R).
First we consider F 2(z, 0). This is a holomorphic function in C \ {z0} that tends

to zero at infinity and has a simple pole at z0, thus

F 2(z, 0) = b(z − z0)
−1.

Hence ∫ ∞

−∞
e−y2/(4z)u0(y)dy = cz1/2(z − z0)

−1/2.

A simple computation shows that

(7)

∫ ∞

−∞
e−y2/(4z)e−γy2

dy = 2
√
π

z1/2

(1 + 4zγ)1/2
.

We choose γ = −1/(4z0) = −ζ0/4 and see that for some constant c0 and every ζ

c0

∫ ∞

−∞
e−y2ζ/4e−γy2

dy =

∫ ∞

−∞
e−y2ζ/4u0(y)dy.

This means that all even moments of u0 are equal to the corresponding moments

of c0e
−γ|y|2 , and thus u0(y) + u0(−y) = 2c0e

−γy2

.
Then, similarly, we consider F 2

1 (z, 0). We have

F 2
1 (z, 0) = b2(z − z0)

−2 + b1(z − z0)
−1.

On the other hand

(8)

∫ ∞

0

yke−y2/(4z)e−γy2

dy = ck
z(k+1)/2

(1 + 4zγ)(k+1)/2
.

Representing yu0(y) as the series in ψ
(γ)
n , we conclude that

yu0(y)− yu0(−y) = 2(c1 + c2y)e
−γy2

.

Now, taking y → 0 and using that u0(y) = G(0, y) is a continuous function, we see

that c1 = c2 = 0. Thus u0 is even and u0(y) = c0e
−γ|y|2 . It is not difficult to check

that γ = α+ i/4T . This concludes the proof of Theorem 3 for the case d = 1.
To complete the proof in higher dimensions, we consider F (z, x) and all its

partial derivatives in the spatial variables at x = 0. Rewriting the integral in polar
coordinates, we have

F (z, 0) =
1

(4πz)d/2

∫ ∞

0

rd−1

∫
Sd−1

u0(ry
′)dσ(y′)e−r2/(4z)dr.

Let Φ(r) = rd−1
∫
Sd−1 u0(ry

′)dσ(y′). The identity (8) and the fact that F 2 has a
pole at z0 = −1/(4γ) of order not exceeding d imply that

Φ(r) =
d−1∑
l=0

clr
le−γr2 .
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Moreover, since Φ(r) has a zero of order d − 1 at zero, we conclude that Φ(r) =

crd−1e−γr2 . On the other hand, looking at the partial derivatives of F , we see that
for any homogeneous polynomial p(y) of degree k,

Φp(r) = rd−1+k

∫
Sd−1

p(y′)u0(ry
′)dσ(y′)

is a linear combination of the form
∑d−1+k

0 clr
le−γr2 . If

∫
Sd−1 p(y

′)dσ(y′) = 0, then
Φp(r) = 0 since its zero at the origin is of order larger than d−1+k. Therefore u0 is
orthogonal to all polynomials with zero mean on each sphere centered at the origin.

This implies that u0 is a constant on each such sphere and thus u0(y) = ce−γ|y|2 .

2.4. Heat equation. We saw that the Schrödinger equation and the heat equation
are close relatives. Therefore, it is natural that the Hardy uncertainty principle
implies a uniqueness result for the heat equation.

Theorem 4. Let u(t, x) ∈ C1([0, T ],W 2,2(Rd)) be a solution to the heat equation

∂tu = Δxu. Suppose that u(0, x) ∈ L1(Rd) and |u(T, x)| ≤ e−δ|x|2 . If δ ≥ 1/(4T ),
then u = 0.

The case δ = 1/4T corresponds to the situation u(0, x) is the Dirac delta func-
tion. The fact that the Hardy uncertainty principle implies Theorem 4 follows by
applying the Fourier transform in variable x, which gives

(9) û(t, ξ) = e−t|ξ|2 û(0, ξ).

Thus, if the initial data u0(x) = u(0, x) ∈ L1(Rd), then |û(T, ξ)| ≤ Ce−T |ξ|2 .
Combined with the decay condition for u(T, x), it implies that u(T, x) = 0 if δ >

1/(4T ) and u(T, x) = c0e
−δ|x|2 if δ = 1/(4T ). The latter implies û0(ξ) = c and u is

a multiple of the Dirac delta function.
We can also prove Theorem 4 using the approach suggested in the previous

section. The condition |u(T, x)| ≤ e−δ|x|2 implies that the function

G̃2(z, x) = (kz−T ∗ u(T, x))2

is holomorphic in the domain

Ω̃ = {z ∈ C : |z − T + (8δ)−1| > (8δ)−1},
while the condition u(0, x) ∈ L1 implies that the function

F̃ 2(z, x) = (kz ∗ u(0, x))2

is holomorphic when 	(z) > 0. Moreover, we know that F̃ 2(t, x) = G̃2(t, x) when
t ∈ (0, T ). If δ > 1/(4T ), the two domains cover the whole complex plane, and we
obtain a bounded entire function. It leads to a contradiction in the same way as
above for the Schrödinger equation. If δ = 1/(4T ), then the resulting function is
holomorphic in C \ {0}, but the singularity at 0 is removable for almost every x
since

lim
z→0

F̃ 2(z, x) = u2(0, x)

almost everywhere. And we get a contradiction again.
We also note that Theorem 4 does not imply the limit case (ab = 1/4) in the

Hardy uncertainty principle. The reason is that in general a bounded function is
not a Fourier transform of an L1-function. To obtain an equivalent statement, one
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should extend the notion of solutions of the heat equation to the case when the
initial data is a measure.

3. The second proof of Hardy and Beurling’s uncertainty principle

3.1. On the forgotten proof of Hardy. We were not able to find the second
proof of Hardy or its variations in any textbook, so we give a sketch of this proof here
as pointed at in the introduction, for the cone a = b = 1

2 . First, Hardy notes that the

decay conditions on f and f̂ imply the decay conditions on fe(x) = (f(x)+f(−x))/2
and fo = (f(x) − f(−x))/2 and their Fourier transforms. Next, the functions

f1 = (fe + f̂e)/2, f2 = (fe − f̂e)/2, f3 = (fo + if̂o)/2, and f4 = (f0 − if̂o)/2
also satisfy the decay condition together with the Fourier transforms. So one may

assume that f̂ = ikf .

Let first f be even, so that f̂ = ±f . Hardy considers the function

λf (s) =

∫ ∞

0

e−sx2/2f(x) dx,

where f decays as the Gaussian. Then λf is a holomorphic function when 	(s) > −1

and the equation f̂ = ±f translates into the identity

λf (s) = s−1/2λf (1/s).

We skip the details of choosing the right branch of the root function here.
Then the function μ(s) =

√
s+ 1λf (s) satisfies μ(s) = μ(1/s) and it can be

extended to a holomorphic function in C\{−1}. Moreover, μ has a pole at s0 = −1.
Finally, Hardy refers to the injectivity of the transform, i.e., λf = λg if and only if
f = g, and the identity for the Hermite functions∫ ∞

0

ψ2n(t)e
−st2/2dt = cn

(s− 1)n

(s+ 1)n+1/2
.

The case where f is odd is not written down in [28]. For this case we suggest
considering the function

λ̃f (s) =

∫ ∞

0

xe−sx2/2f(x) dx = ±
√

2

π

∫ ∞

0

xe−sx2/2

∫ ∞

0

f(y) sinxy dy dx,

where the second identity follows from the fact f=±if̂ . Then λ̃f (s)=s−3/2λ̃f (1/s).

As before, we consider μ(s) =
√
(s+ 1) λ̃f (s) that satisfies μ(s) = s−1μ(1/s). This

function extends to a holomorphic function in C \ {−1} such that |μ(s)| → 0 when
|s| → ∞. Further, μ has a pole at so = −1, and one concludes the argument by
the same techniques of the even case.

3.2. Beurling’s uncertainty principle. The following version of the uncertainty
principle is due to Arne Beurling

Theorem 5. Suppose that f ∈ L2(R) and∫
R

∫
R

e|xξ||f(x)||f̂(ξ)| dx dξ < ∞.

Then f = 0.
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The theorem appeared in the collected works of Beurling in [4] and dates back to
the 1960s. The original proof of Beurling uses the Phragmén–Lindelöf theorem and
it can be found in [31]. Higher dimensional versions of the Beurling theorem were
obtained in [6]. In 2012 H̊akan Hedenmalm gave another proof and generalized the
statement in [30]. His result was further extended in [26]. We follow the ideas in
[30] to give a relatively short proof of the original statement of Beurling. Clearly,
the Beurling theorem implies the L2-version of the Hardy uniqueness result.

First, by taking the real and imaginary parts of f we may reduce the problem
to the case when f is real-valued. Now, following the idea of Hedenmalm, consider
the function

F (s) =

∫
R

∫
R

eisxξf(x)f̂(ξ) dx dξ.

Then F is well-defined and holomorphic in the strip S = {s ∈ C : |�(s)| < 1}.
Moreover, by the monotone convergence theorem, F is continuous on S. For real
s, we have

F (s) =
√
π/2

∫
R

f(x)f(sx) dx;

we have used that f, f̂ ∈ L1(R). Then F (s) = s−1F (1/s) for s ∈ R\{0}. We obtain
that F can be extended to a holomorphic function on C \ {±i}. The singularities
at s = ±i are removable since the function is continuous at these points. Finally,
the functional equation F (s) = s−1F (1/s) and the fact that F is bounded near the
origin imply that |F (s)| → 0 when |s| → ∞. Thus F = 0. In particular,

F (1) =

√
π

2

∫
R

f2(x) dx = 0.

Finally, since f is real-valued, we conclude that f = 0.

4. Recent versions of the uniqueness theorem

We now return to the dynamical versions of the uncertainty principles. In the
last 15 years the uniqueness results for the free Schrödinger and heat equations
were generalized to a large class of evolutions. We give an overview of some of
these results in this section.

4.1. Schrödinger and heat equations with a potential. First, we consider the
Schrödinger equation with a potential,

(10) ∂tu(t, x) = i(Δu+ V u).

In a series of articles, Luis Escauriaza, Carlos E. Kenig, Gustavo Ponce, and Luis
Vega ([15–19]) generalized the uniqueness result for the case when V is a bounded
potential satisfying one of the following conditions:

(i) limR→∞
∫ T

0
sup|x|>R |V (t, x)|dt = 0,

(ii) V (t, x) = V1(x) + V2(t, x),

where V1 is real-valued (and does not depend on t) and V2 satisfies, for some positive
α and β,

sup
[0,T ]

‖eαβT 2|x|2/(
√
αt+

√
β(T−t))2V2(t)‖L∞(Rn) < +∞.
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Theorem 6. Let u ∈ C([0, T ], L2(Rd)) be a solution to (10), where V satisfies

either (i) or (ii). If |u(0, x)| ≤ Ce−α|x|2 and |u(T, x)| ≤ Ce−β|x|2 with αβ >
1/(16T 2), then u = 0.

Note that the condition on αβ is sharp! The result is further generalized to
semilinear equations and covariant Schrödinger evolution in [18] and [3], [8], and to
Navier–Stokes equation in [14].

We outline the proof of Theorem 6. First it suffices to consider the case when
α = β; the Appell transform reduces the general case to this one. We renormalize
the solution and assume that T = 1. The first step is to show logarithmic convexity
of some weighted norm of the solution. The method can be compared to the one
used by Shmuel Agmon for elliptic equations in 1960s; see [1]. For each t ∈ [0, 1]
and ξ ∈ Sd−1, we define

H(t) =

∫
Rd

|eμ|x+Rb(t)ξ|2u(t, x)|2dx,

where b(t) = 16μt(1 − t). The derivative of v(t, x) = eμ|x+Rb(t)ξ|2u(t, x) in t is
written as the sum of a symmetric and antisymmetric operator,

∂tv = (S +A)v.

Then a straightforward calculation implies that

(logH(t))′′ ≥ 2〈(SA−AS)v, v〉.

Careful estimates on SA − AS show that (logH(t))′′ ≥ −16μR2 − Cv, where Cv

denotes a constant that depends on the potential. Therefore

(11) H(t) exp(−32μR2t(1− t)) ≤ CvH(0)1−tH(1)t.

The right-hand side does not depend on R, while in the left-hand side for t = 1/2
the weight (with which u2 is integrated) is

exp(2μ|x+ 4μRξ|2 − 8μR2).

We look at the coefficient in front of R2: if 32μ3 > 8μ, it is positive, and thus we see
that u(1/2, x) = 0 for almost each x by letting R → ∞. Then u ≡ 0. This formal
computation can be justified if H(0) and H(1) are finite. This proves Theorem 6
when α = β > 1/2.

To extend the result for the range α = β > 1/4, Escauriaza, Kenig, Ponce, and
Vega developed an ingenious bootstrapping argument. To sketch their argument,
we write (11) as∫

Rd

|u(t, x)|2e2μ|x|2+4Rμb(t)x·ξ−2R2b(t)(1−μb(t))dx ≤ CvH(0)1−tH(1)t.

Under the assumption α = β ≤ 1/2, a formal integration of the last inequality with
respect to R leads to∫

Rd

|u(t, x)|2e2a1(t)|x|2dx ≤ CvH(0)1−tH(1)t

for a1(t) = μ/(1−μb(t)). Notice that a1(1/2− t) = a1(1/2+ t), a1(0) = a1(1) = μ,
and a1(t) > μ when t ∈ (0, 1), which shows that the solution u decays faster at
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(0, 1) than at the endpoints. Next, one can construct a positive function b1(t) such
that b1(0) = b1(1) = 0 and so that

H1(t) =

∫
Rd

|ea1(t)|x+Rb1(t)ξ|2u(t, x)|2dx

satisfies

(12) H1(t) exp(−2R2b1(t)) ≤ CvH1(0)
1−tH1(1)

t = CvH(0)1−tH(1)t.

Note that this is again (11) but μ and b are replaced by a1 and b1. A similar study
as before tells us that 1 − a1(1/2)b1(1/2) ≤ 0 implies u ≡ 0, while otherwise we
can integrate again to improve the decay at (0, 1). This self-improvement can be
repeated several times, resulting in a sequence of functions

(13) ak+1(t) =
ak(t)

1− ak(t)bk(t)
, a0(t) = μ

such that

μ < a1(t) < · · · < ak(t), t ∈ (0, 1).

On each step the new function satisfies ak(1/2−t) = ak(t+1/2), ak(0) = ak(1) = μ,
and

‖eak(t)|x|2u(t, x)‖22 ≤ H(0)1−tH(1)t.

As for the functions bk(t), they are constructed from ak(t) in such a way that at
each step relation (12) is satisfied for the pair of functions ak and bk. More precisely,
as shown in [17], bk(t) is the solution to{

b̈k = − 1
a2
k

(
äk + 32a3k −

3(ȧk)
2

2ak

)
,

bk(0) = bk(1) = 0.

If, for some k, we have 1−ak(1/2)bk(1/2) ≤ 0, which translates in a condition on
parameter μ, the iterative argument stops and we reach a contradiction implying
u ≡ 0. Otherwise, the process is infinite and the limit function a(t) = limk→∞ ak(t)
exists. Since (13) implies bk(t) = (ak+1 − ak)/(akak+1), the functions bk will con-
verge to 0 and, from the differential equation satisfied by bk, one can deduce that
the limit function a(t) satisfies{

ä+ 32a3 − 3(ȧ)2

2a = 0,
a(0) = a(1) = μ.

Solving the ordinary differential equation under the constraint a(1/2 − t) =
a(1/2 + t) leads to

a(t) =
C

4
(
1 + (t− 1/2)2C2

)
for some C > 0. Computing the maximum in C of μ = a(0) = C/(4 + C2), we see
that μ must be less than 1/4. Then Theorem 6 follows.

A similar strategy gives a powerful generalization of Theorem 4; see [19].

Theorem 7. Let V (t, x) ∈ L∞(R× Rd) and u be a solution to the equation

∂tu = Δxu+ V u,

u ∈ L∞([0, T ], L2(Rd)) ∩ L2([0, T ], H1(Rd)]). If |u(T, x)| ≤ e−δ|x|2 and δ > 1/
√
T ,

then u = 0.
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A natural question is what decay a stationary solution to the Schrödinger equa-
tion may have. The question was asked by E. M. Landis in 1960 (see [7, 32]), who
conjectured that if V ∈ L∞(Rd), Δu+ V u = 0 in R

d, and |u(x)| ≤ C exp(−|x|1+c)
with c > 0, then u ≡ 0. The conjecture was disproved by V. Z. Meshkov in [36],
who constructed an example of a complex valued u and V such that |u(x)| ≤
exp(−|x|4/3) and proved that there are no solution with a faster decay. A remain-
ing question is whether the Landis conjecture holds under the assumption that V
is real valued. In spite of some recent progress [33], this is an open problem in
dimensions d ≥ 3.

4.2. Discrete evolutions. Another twist of the uniqueness results for Schrödinger
equation was given in [20, 21, 23, 27], where uniqueness theorems are obtained for
the discrete equation. Let Δd be the usual discrete Laplacian on Zd. We consider
the equation

(14) ∂tU(t, n) = i(ΔdU(t, n) + V (t, n)U(t, n)),

where n ∈ Zd and V is a bounded potential. The uniqueness results say that
a solution to the discrete Schrödinger equation which decays fast at two times is
trivial. To find the optimal decay, we consider the free evolution with V = 0. In
dimension d = 1, there is a solution U0(t, n) = i−ne−2itJn(1 − 2t), where Jn is
the Bessel function, and it has optimal decay at t = 0 and t = 1. The role of
the Gaussian is now played by the Bessel function. This fact is related to different
behavior of the heat kernels: for the continuous case the standard heat kernel
is k(1, x) = (4π)−1/2 exp(−x2/4), while for the discrete case the heat kernel is
K(1, n) = e−1|In(1)| � e−1(n!2n)−1, where In are the modified Bessel functions,
In(z) = (−i)nJn(iz).

Theorem 8. Let U(t, n) be a solution to (14), with V ≡ 0, on [0, 1]× Z. Suppose
that

|U(0, n)|+ |U(1, n)| ≤ C√
|n|

(
e

2|n|

)|n|
, n ∈ Z \ {0}.

Then U(t, n) = Ci−ne−2itJn(1 − 2t). In particular, a solution to the free discrete
Schrödinger equation cannot decay faster than Jn(1) both at t = 0 and t = 1.

The idea of the proof is to consider the function ψ(t, z) =
∑∞

−∞ U(t, n)zn. It is
not difficult to show that it is defined on the unit circle |z| = 1, Moreover, the decay
of U(0, l) and U(1, l) shows that ψ(0, z) and ψ(1, z) are entire functions. Equation
(14) implies

ψ(t, z) = ei(z+z−1−2)tψ(0, z),

and ψ(t, z) extends to an entire function for any t ∈ [0, 1]. Careful analysis of this
function and application of the Phragmén–Lindelöf theorem finishes the proof. It
would be interesting to find a real-variable, or at least more elementary, proof.

This result was generalized to special classes of time-independent potentials.
General bounded potentials were considered in [27] (in dimension d = 1) and [23]
(in arbitrary dimension). The result is as follows.

Theorem 9. Let U(t, n) ∈ C1([0, 1] : �2(Zd)) be a solution to (14) on [0, 1] × Zd.
Suppose that ‖V ‖∞ ≤ 1. There exists constant γ such that if

|U(0, n)|+ |U(1, n)| ≤ C exp(−γ|n| log |n|), n ∈ Z
d \ {0},

then U = 0.
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The approach in [27] follows the scheme of [18] described in the first step of the
proof of Theorem 6 in Section 4.1. We describe the details of [23]. The idea is to
make use of the following result, known in the literature as Carleman-type inequal-
ity, whose proof relies on the computation of a commutator between a symmetric
and an antisymmetric operator. In what follows, ‖ · ‖2 stands for ‖ · ‖L2([0,1],
2(Zd))

and ‖ · ‖∞ will represent the supremum norm.

Lemma 1. Let ϕ : [0, 1] → R be a smooth function, and let γ >
√
d
2 . There exist

R0 = R0(d, ‖ϕ′||∞ + ‖ϕ′′‖∞, γ) and c = c(d, ‖ϕ′‖∞ + ‖ϕ′′‖∞) such that if R > R0,
α ≥ γR logR and g ∈ C1

0 ([0, 1], �
2(Zd)) has its support contained in the set

{(t, n) : |n/R+ ϕ(t)e1| ≥ 1},

then√
sinh(2α/R2) sinh(2α/

√
dR)‖eα| n

R+ϕ(t)e1|2g‖2 ≤ c‖eα| n
R+ϕ(t)e1|2(i∂t +Δd)g‖2.

Thanks to this inequality, one can deduce lower bounds for nontrivial solutions
of (14) with a general bounded potential. In order to do that, consider the cut-off
functions,

θR(x) =

{
1, |x| ≤ R− 1,

0, |x| ≥ R,
μ(x) =

{
1, |x| ≥ 2,

0, |x| ≤ 1,
ϕ(t) =

{
3, t ∈ [ 38 ,

5
8 ],

0, t ∈ [0, 1
4 ] ∪ [ 34 , 1],

and define g(t, n) = U(t, n)θR(n)μ
(
n
R + ϕ(t)e1

)
. By means of the Leibniz rule

and carefully studying the size of the weight eα| n
R+ϕ(t)e1|2 in the support of the

derivatives of the cut-off functions, one can check that√
sinh(2α/R2) sinh(2α/

√
dR)‖eα| n

R+ϕe1|2g‖2

≤ c‖eα| n
R+ϕe1|2(i∂t +Δd)g‖2

≤ c
(
‖eα| n

R+ϕe1|2g‖2 + e16αλ(R) + e4α‖U‖2
)
,

(15)

where λ(R) =
(∫ 1

0

∑
R−2≤|n|≤R+1 |U(t, n)|2

)1/2

. The fact that α needs to be larger

than γR logR implies that for R ≥ R0, depending only on the dimension, the first
term in the right-hand side can be absorbed in the left-hand side (one can check
that the product of sinh functions increases with R). On the other hand, if we

assume
∫ 1/2+1/8

1/2−1/8
|U(t, 0)|2 dt ≥ 1, the norm in the left-hand side is bounded by

‖eα| n
R+ϕe1|2g‖2 ≥ e9α,

since g(t, 0) = U(t, 0) if t ∈ [1/2 − 1/8, 1/2 + 1/8], and in that region the weight
is exactly e9α. So for R ≥ R0 depending on ‖U‖2, the last term in the right-hand
side of (15) can also be absorbed, and we get

c

⎛⎝∫ 1

0

∑
R−2≤|n|≤R+1

|U(t, n)|2
⎞⎠1/2

≥ e−5α = e−cR logR

after choosing α appropriately. This proves the following lower bound.
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Theorem 10. Let U ∈ C1([0, 1] : �2(Zd)) satisfy (14). Assume that∫ 1

0

∑
n∈Zd

|U(t, n)|2 dt ≤ A2,

∫ 1/2+1/8

1/2−1/8

|U(t, 0)|2 dt ≥ 1,

and
‖V ‖∞ = sup

t∈[0,1],j∈Zd

{|V (t, n)|} ≤ 1.

Then there exist R0 = R0(d,A) > 0 and c = c(d) such that for R ≥ R0 it follows
that

λ(R) ≡

⎛⎝∫ 1

0

∑
R−2≤|n|≤R+1

|U(t, n)|2
⎞⎠1/2

≥ ce−cR logR.

We remark that this lower bound only uses the fact that the solution is nontrivial
and that the constant c in front of the term R logR only depends on the dimension.

Theorem 10 implies Theorem 9. The decay conditions at times t = 0 and t = 1
imply upper bounds for the term λ(R). Indeed, monotonicity results from [23, 27]
show that

(16) ‖eγ|n| log |n|U(0)‖
2(Zd) + ‖eγ|n| log |n|U(1)‖
2(Zd) < ∞

for some fixed γ implies ‖eγ|n| log |n|U(t)‖
2(Zd) < ∞ for all t ∈ [0, 1]. Hence, if (16)
is satisfied,

λ(R) ≤ Ce−γR logR

for a positive constant C. Thus, by letting R tend to infinity, we arrive to a
contradiction if γ is large enough, since the upper bound decays faster than the
lower bound, and therefore U ≡ 0 if (16) is satisfied for γ > γ0 where γ0 depends
only on the dimension. However, these results are not sharp. We know that the
bound can be improved to exp(−|n|(log |n| + μ)) for some large constant μ. For
the free equation (V = 0), the condition μ > log 2− 1 implies the uniqueness, and
the question is whether for bounded potential the uniqueness result holds with the
same range of μ.

Further uniqueness results for solutions of discrete Schrödinger type equations,
inspired by the works of Escauriaza, Kenig, Ponce, and Vega on the continuous
case, can be found in [2, 22, 25, 34].
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[2] I. Álvarez-Romero, Uncertainty principle for discrete Schrödinger evolution on graphs, Math.
Scand. 123 (2018), no. 1, 51–71, DOI 10.7146/math.scand.a-105369. MR3843554

https://www.ams.org/mathscinet-getitem?mr=0252808
https://www.ams.org/mathscinet-getitem?mr=3843554


DYNAMICAL VERSIONS OF HARDY’S UNCERTAINTY PRINCIPLE: A SURVEY 373
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