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At last, an official collection of character tables and related information about
many finite simple groups has appeared in book form. This information is impor-
tant to specialists in finite group theory and the volume contains neatly presented
instructional material which the nonspecialists can appreciate. For years, the au-
thors have used the material at a very high level. It has been reworded and refined
by experience. At the month-long 1979 Santa Cruz conference on finite groups,
Simon Norton carried a shopping bag of tattered printouts and character tables to
deal with urgent questions about simple groups. Now, we can all have the power
of such rapid access, but in a classier format!

The “classic” character table of a finite group G is by definition a k × k matrix
of complex numbers, whose rows are indexed by the k irreducible characters and
whose columns are indexed by the k conjugacy classes; of course, it is not unique
because there is no generally accepted way to order the index sets, though the
principal character (corresponding to the trivial homomorphism G → GL(1,C))
is always listed first. The (i, j) entry is χi(gj), the value of the ith irreducible
character on a representative of the jth conjugacy class, and this algebraic number
is always a sum of d |gj |th roots of unity, where d = χi(1) is the degree of χi.

The efforts of the last 25 years to classify finite simple groups created a greater
need to have numerical and combinatorial information about the known groups.
The occasional tables produced by R. Brauer or J. S. Frame or J. Todd years ago
were followed by a flood of tables in the 1960s and 1970s. Generally, these were
distributed informally, often with no name or source written on them and always
without proof. Referring to a character table in a research article was awkward
at times. The general theory of Brauer gave many arithmetic conditions on the
character table which in “easy” cases allowed one to fill in many blank entries for
the table of a particular group. This was not always the case. For instance, David
Hunt’s work on the tables for the Fischer 3-transposition groups took an especially
long time and involved extensive computer work and a study of induct-restrict
tables for subgroups with known character tables.

In sum, the five authors have collected some of this early and unpublished work,
then greatly extended it and put it in a form suitable for easy modern applications.

The book is organized as follows: (I) Introduction and explanations (28 pages),
(II) The character tables (235 pages), (III) Supplementary tables (6 pages), (IV)
References (8 pages) and Index (1 page).

(I): Sections 1, 2 and 3 contain a rapid introduction to the families of finite
simple groups. It is clear and telegraphic in style and not intended for someone
who is looking for full discussions and constructions.
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Sections 4 through 7 discuss the multiplier, automorphism groups, isoclinism and
the group extension theory which is relevant to interpreting the blocks (and broken-
edge blocks) in the tables, notation for conjugacy classes, algebraic numbers and
algebraic conjugates of these two concepts. We comment on the tables themselves
in (II). The authors’ notations for algebraic integers are very successful for character

tables, e.g., z = zN = exp(2πi/N), bN = 1
2

∑N−1
t=1 zt

2

, cN = 1
3

∑N−1
t=1 zt

3

(for N ≡ 1
(mod 3)), etc.

One fault with the exposition is that the authors use terms and notation without
explanation, then define them later. In the above sequence of definitions, for zN ,
bN , cN , · · · , one finds “n2”, but not a definition until further down the column.
The notation ∗k is used in Section 7.3 but no hint is given for where to look for the
definition. It would help if an index of notations and definitions were included to
help the reader who starts reading in the middle.

The authors discuss the several existing systems of notation for the simple groups.
Parts of the system used in the Atlas make the reviewer uncomfortable.

The most glaring item is the use of “O” for the simple composition factor of the
n-dimensional orthogonal group of type ε over Fq. In other systems, this group
would be PΩε(n, q) or one of Dm(q), 2Dm(q) (when n = 2m) or Bm(q) when
n = 2m + 1. The authors reject these notations because they want one letter for
the basic name of all these simple groups.

The second comment is about names assigned to sporadic groups; see Table 1,
page viii. The principle generally used by group theorists has been to name a
sporadic group after its discoverers and use a symbol related to these names. The
sometime exceptions to this have been the Conway groups (denoted by .0, .1, .2
and .3 since 1968 but by Co0, Co1, Co2, and Co3 in this volume), the Fischer
groups (denoted by M(22), M(23) and M(24)′ originally, but later by Fi22, Fi23
and Fi′24) and the Monster (the group discovered by Fischer and the reviewer in
November 1973; the Atlas symbols are M , FG and F1) and the Baby Monster (the
{3, 4}+-transposition group discovered by Fischer earlier in 1973; the Atlas symbols
are B and F2) and the Harada group (called the Harada-Norton group in the Atlas;
the Atlas symbols are HN and F5).

The system of F ’s with subscripts has several nice group-theoretic features. How-
ever, there seems to be no natural systems covering all sporadics. Why not keep
the names and remember the history, at least? Perhaps later developments will
suggest a good solution.

Finally some comments about notation for other finite groups. Several recom-
mendations in 5.2 really are at variance with general usage. The authors mention
Cm for a cyclic group of order m but not Zm! Their term “diagonal product” A�B
is otherwise known as a pullback or a fiber product. The most common notation
for an extraspecial group is p1+2n or p1+2n

ε . Since notation for an extension A · B
reads left-to-right along an ascending series, it would be more appropriate to write
(A×B) 12 than 1

2 (A×B).
(II): The organization of the individual tables is discussed in Section 6. See page

xxiv for a well-diagrammed example. Let G be the simple group. The tables come
in blocks with each block corresponding to an extension of the form m.G.a, where
m is a cyclic quotient of the Schur multiplier and a is a cyclic subgroup of the outer
automorphism group; for reaons why these cases suffice (nearly), see 6.5 and 6.6.
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To the left of the block is the downward running list of characters (χ1 =
1, χ2, χ3, · · · ) and their indicators (0, + or − as the character is not real-valued,
afforded by a real representation, or real-valued but not afforded by a real repre-
sentation). Across the top is a band with several rows of information about the
columns (indexed by the conjugacy classes, Ci, i = 1, · · · , k). The experience of
the last 25 years has shown the importance of enriching the traditional “classic”
character table to include power maps (i.e., for n ∈ Z, which classes contain the
nth powers of elements from a fixed class), factorizations (i.e. if g ∈ Ci and π is
a set of primes and g = gπgπ′ is the unique commuting factorization of g into a
π-element and a π′-element, which Cj contains gπ), and so on. A simple application
of this information, which is not possible to execute with a strictly classical table,
is to find the dimension of the space of cubic invariants on a module V affording
the character g �→ 1

6{χ(g)3 + 3χ(g)χ(g2) + 2χ(g)3} and so its inner product with
the trivial character of G gives the answer.

The difficulty of getting these blocks correct increases generally according to the
sequence m = 1, a = 1; a = 1; m, a arbitrary. Indeed the authors acknowledge
errors which turned up as the book went to press (see page xxxii, bottom). How the
notations extend across the several upward and downward extensions is articulated
well.

(III): The final part of the Atlas text consists of three tables and a list of refer-
ences. (1) Partitions and classes of characters for Sn, useful, say, in working out
particular invariants of the group in question. (2) Involvement of sporadic groups
in one another (the single “?” in this Atlas table is now claimed to be “−” in recent
work of R. A. Wilson). (3) Orders of over 250 simple groups, with orders in base 10
and in factorized forms and with Schur multiplier and outer automorphism group.

(IV) The bibliography is restricted to (i) some very general works on the families
of finite simple groups and (ii) lengthy lists of articles on each of the 26 sporadic
groups.

Survey articles (no proofs) for absolute beginners are worth mentioning and
could go in (i), e.g., a paper by R. Carter [J. London Math. Soc. 40 (1965), 193–240;
MR0174655] for groups of Lie type and a paper by the reviewer [in Vertex operators
in mathematics and physics (Berkeley, Calif., 1983), 217–229, Springer, New York,
1985; MR0781380] for sporadic groups. Also, references for Schur multiplier and
automorphism groups would be of general interest.

Tables of numerical information are notorious for errors and it does pay to com-
pare; for example, the order of McLaughlin’s group is incorrectly given on page 136
of D. Gorenstein’s Finite simple groups [Plenum, New York, 1982; MR0698782].
After the Higman-Sims group, G, was discovered in 1968, it was deduced that G
must have subgroups K ≤ H ≤ G with H ∼= PSU(3, 5) and K ∼= Alt7. Of course,
the characters of G must restrict sensibly to characters of K and H but the char-
acter tables then at hand produced a contradiction! The error in the tables was
found.

Should a researcher, urgently needing to prove a theorem, trust the Atlas? The
question is like that of whether to accept the classification of finite simple groups.
Both efforts are widely respected, the participants in both have worked at high
levels to reach the goal, yet have admitted that errors exist. In both cases, the group
theory community feels that probably only local adjustments would be needed in
the ambient program to deal with errors. So, the answer is: “Yes, but. . .”.

https://www.ams.org/mathscinet-getitem?mr=0174655
https://www.ams.org/mathscinet-getitem?mr=0781380
https://www.ams.org/mathscinet-getitem?mr=0698782
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Only a purist would turn his or her back on either claim of completion. To make
progress, we must accept them as essentially correct but pay attention for some
time and look for alternate arguments whenever possible. One can treat them as
axioms when writing arguments down formally.

Norton has shown a list of errors discovered since publication. One is a nonsquare
character table! It is worth mentioning that Chat-Yin Ho recently found a maximal
7-local subgroup of the Monster not on the Atlas list. There may be a problem with
the list of maximal subgroups for Co1.

{Reviewer’s remarks: The reviewer is disappointed at the incorrectness of the
scholarship in a few instances (notwithstanding the disclaimer on page xxxii, Section
8.5.1). The correctness of the Monster character table is not completely proved
(though not doubted). (a) The determination of the conjugacy classes requires
sufficient knowledge of centralizers of elements in a subgroup ofM of the form 21+24·
Co1; the authors guessed the basic information, then proceeded. (b) The existence
of the irreducible character of degree 196883 was taken as a hypothesis (196883 is
the smallest number which could be the degree of a nonprincipal character); a proof
that such a character exists was claimed by Norton in 1981 but no manuscript has
appeared, and its relationship with (a) has not been explicitly stated; existence of
such a character is necessary to complete the program devised by J. G. Thompson
[Bull. London Math. Soc. 11 (1979), no. 3, 340–346; MR0554400] for proving
uniqueness of M.

{It would have been helpful to have some recent references, e.g. to the reviewer’s
recent work on code loops. The reviewer understands that future editions will
contain no new references.

{The book is attractive in appearance. The cover is a cherry red with white
writing on stiff cardboard. The authors’ names form a neat matrix listed vertically
in alphabetical order (which agrees with their respective ages, apparently), each
with two initials and a 6-letter last name. The price is extremely fair. The authors
are to be commended for their influence on the price and for getting the publisher
to replace the originally intended soft binding.

{The book is large—too large for most briefcases. The wire binding on the
reviewer’s copy became deformed right away and interfered with easy closing and
opening of the book to lie flat on a table. The edges of the pages near the binding
have begun to suffer due to struggles with the binding. One idea is to make the
tables available on tape, potentially a big saving of effort for the user who intends
computer calculations.

{The mathematics community (and physics community) should be grateful to
the creators of the Atlas for their extremely fine service. An appreciation and use of
the finite simple groups might be expected to spread noticeably faster as a result.}

R. L. Griess

From MathSciNet, May 2021

MR0245518 (39 #6824) 10.20

Conway, J. H.

A characterisation of Leech’s lattice.

Inventiones Mathematicae 7 (1969), 137–142.

A unimodular lattice Λ is called “even” if the square of the distance between two
points of Λ is always an even integer. Hence u1 = u3 = · · · = 0, where un denotes
the number of points of Λ at squared distance n from the origin. In a beautifully

https://www.ams.org/mathscinet-getitem?mr=0554400
https://www.ams.org/mathscinet-getitem?mr=0245518
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written paper, the author shows that the even unimodular lattice Λ discovered by
J. Leech [Canad. J. Math. 16 (1964), 657–682, see pp. 670–671; MR0167901; ibid.
19 (1967), 251–267; MR0209983] is the only one of dimension d < 32 with u2 = 0
(Theorem 6), that the order of the automorphism group of Λ is (u8/48)2

12|M24|,
where M24 is the simple Mathieu group, u8 = 398, 034, 000, and that the condition
“u2 = 0” defining Leech’s lattice (from the even unimodular family of dimension
d < 32) may be replaced by any one of “u2n = 0 for some n”, “Λ is not directly
congruent to its mirror image”, “no reflection leaves Λ invariant” (Theorem 7).

This initial result (Theorem 1) shows that any even unimodular lattice with
d < 32 which, like Leech’s, has u2 = 0, then has d = 24, u4 = 196, 560, u6 =
16, 773, 120, u8 = 398, 034, 000. To do so, the author utilizes the known result that
for an even unimodular lattice, d = 8n and

∑
un exp(2πinτ ) is a modular form

of weight d/4 for the full modular group; from the latter he deduces u2 > 0 for
d = 8, 16, and a formula giving u2n for the case d = 24, u2 = 0. This gives him
his values u4, u6, u8, which will be crucial later on (e.g., Theorems 2, 4) to convert
inequalities into equalities. To prove Theorem 6, it remains for him to show that
d = 24, u = 0 defines Leech’s lattice, and this task comprises the bulk of the paper
(Theorems 2–6).

The first step (Theorem 2) is to show that each of the 224 equivalence classes
Λ/2Λ contains either precisely one vector of length < (

√
8)(u0/1 + u4/2) + u6/2

equivalence classes), or precisely 24 mutually orthogonal vectors of length (
√
8)

(u8/48 equivalence classes). From any one of the latter, coordinates x=c(x1,· · ·, xn)
are chosen with c = 1/

√
8 such that the vectors in the orthogonal set have either

one xi = ±8 or two xi = ±4, with all other xi = 0.
Then x ∈ Λ implies xi ∈ Z, xi−xj ∈ 2Z, and those x with all xi ≡ 0 mod 2 may

be mapped homomorphically into the subsets C(x) = {i : xi ≡ 2(4)} of {1, · · · , 24},
C(x + y) = C(x) + C(y), with sums of vectors corresponding to symmetric dif-
ferences of sets. The range C = {C(x)} is generated (by symmetric difference) by
exactly 759 = ( 245 ) / ( 85 ) subsets of |C| = 8 elements, with each 5-element subset
of {1, · · · , 24} in exactly one of these; no C ∈ C has 0 < |C| < 8, and there are
exactly 212 (of 224 possible) subsets C(x) in C (Theorems 3, 4).

The stage is now set to characterize the x = c(x1, · · · , x24) in Λ and thence
deduce Λ must be Leech’s lattice. In Theorem 5 the author shows x ∈ Λ if (A) all
xi ∈ 2Z with

∑
xi ≡ 0 mod 8, or all xi ∈ 2Z + 1 with

∑
xi ≡ 4 mod 8, and (B)

{i : xi ≡ k(4)} ∈ C. Thus Λ depends only on C which in turn, being generated by 8-
subsets in which every 5-subset appears exactly once, is a Steiner system S(5, 8, 24)
and hence unique up to permuting {1, · · · , 24} [E. Witt, Abh. Math. Sem. Univ.
Hamburg 12 (1938), 265–275]; thus Λ is unique up to isomorphism (Theorem 6).

The paper concludes with the determination of the size of the automorphism
group of Λ, and the proof of Theorem 7. There is also a reference to related work
of H.-V. Neimeier [“Definite quadratische Formen der Dimension 24 und Diskrimi-
nante 1”, Ph.D. Thesis, Univ. Göttingen, Göttingen, 1968], who has since enumer-
ated the even uni-modular lattices of dimension d = 24, finding 24 of these, only
one (Leech’s) having u2 = 0. Neimeier’s method appears unamenable to extension,
however, as even for the next case d = 32 there are known to be at least 108 such
lattices.

G. K. White

From MathSciNet, May 2021
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MR4080553 00A08; 03B42

Conway, J. H.; Paterson, M. S.; Moscow, U. S. S. R.

A headache-causing problem.

American Mathematical Monthly 127 (2020), no. 4, 291–296.

This amusing note was originally published in celebration of Hendrik Lenstra’s
Ph.D. defense in Amsterdam on May 18, 1977. Since this note now appears in the
Monthly’s April 2020 issue, it may be viewed as an April fool’s joke, a tradition
in keeping with such a note as “Remembering F. O. Vechs” by Ann Dalmak, bet-
ter known as Dan Kalman, in [D. Kalman, Math Horiz. 22 (2015), no. 4, 12–13;
MR3335030]. Since J. H. Conway died on 11 April 2020, the article may also be
viewed as an unscheduled yet fitting goodbye from a master mathematician who
fully embodies the playful aspect of mathematics.

The headache-causing problem presented in this note is a logical paradox: Con-
sider N men each with a nonnegative integer on their forehead, each of whom can
see everyone’s number except their own. A blind umpire has written a number of
numbers on the blackboard, one of which is the sum of all the forehead integers. For
example, in succinct notation—reminiscent of the exhaustive catalogue of mostly
impartial two-person games in Berlekamp, Conway, and Guy’s monumental Win-
ning ways [Winning ways for your mathematical plays. Vol. 1, second edition, A K
Peters, Natick, MA, 2001; MR1808891, Winning ways for your mathematical plays.
Vol. 2, second edition, A K Peters, Natick, MA, 2003; MR1959113, Winning ways
for your mathematical plays. Vol. 3, second edition, A K Peters, Natick, MA, 2003;
MR2006327, Winning ways for your mathematical plays. Vol. 4, second edition, A
K Peters, Wellesley, MA, 2004; MR2051076]—the notation (2, 2, 2|6, 7, 8) means
that N = 3, that each man bears a 2, and that the umpire has written 6, 7, and 8
on the blackboard. Play begins with the umpire asking each man in succession if he
“can deduce solely from this information what number is written on his forehead”.
Play continues, cycling through the panel of men, until someone intelligently and
honourably responds, “Yes.”

The celebrated theorem referred to as P—which is both true and false—as Con-
way and Paterson proceed to demonstrate—is that if the number of numbers on
the blackboard is less than or equal to N then the game terminates after a finite
number of umpire queries. Some of the twists and turns of their proof involve se-
mantics, and it is very much in the spirit of the surprise examination paradox as
introduced by Martin Gardner in his March 1963 Scientific American puzzle col-
umn, analyzed in detail in T. Y. Chow’s “The surprise examination or unexpected
hanging paradox” in [Amer. Math. Monthly 105 (1998), no. 1, 41–51; MR1614002],
where a group of students are told that they will have a surprise quiz during the
next five days. Of course, the quiz cannot be on the last day, nor the day before
that, and so on all the way to the first day—which means that the surprise cannot
occur. However, when the quiz does occur, it surprises everyone.

As a fun application, since the phrase (P and not-P ) is both true and false,
then the phrase (P and not-P ) =⇒ (0 = 1) is true, which means that (0 = 1) is
true, which in turn means that (13 = 13 + 13) is true, so unveiling a counterex-
ample to Fermat’s last theorem. Is the article all nonsense? Multiple meaning is
deeply embedded within human dialogue, and the allure of transforming poetry
into mathematical sense is overwhelming at times for those with playful natures.

Andrew James Simoson

From MathSciNet, May 2021
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MR782233 (86h:20019) 20D08

Conway, J. H.

A simple construction for the Fischer–Griess monster group.

Inventiones Mathematicae 79 (1985), no. 3, 513–540.

Since the appearance of the paper of R. L. Griess, Jr. [same journal 69 (1982),
no. 1, 1–102; MR0671653] in which the Fischer–Griess monster simple group (here
denoted by M) was first constructed, much attention has been devoted to the pos-
sibility of alternate, or at least simpler, constructions of M . The present paper is
a major contribution in this direction; moreover, the author provides some facts
about the structure of the Norton–Griess algebra A, a certain commutative, nonas-
sociative algebra of dimension 196 884 whose automorphism group is M . These
latter results, many due to S. P. Norton, give the first nontrivial results concerning
the structure of A and also offer a means of effectively computing the action of
elements of M on A.

The author begins with some properties of a certain remarkable loop P of order
213 (introduced by the author and R. A. Parker); P might be thought of as an
“extra-special” loop, since P has a center {±1} and P/{±1} can be naturally
identified with the ubiquitous Golay code C. In particular, P has a group of
“standard” automorphisms of shape 212 ·M24. We also let P0 be obtained from P
by the adjunction of a zero 0.

A certain notion of “triality” seems to be a crucial ingredient in recent work
on M , and in the present paper it intervenes in the form of a certain group N of
functions from P0 × P0 × P0 to itself. This group has the shape (22 × 22) · 211 ·
222 · Σ3 ×M24 and its utilization is one of the key ideas of the paper. It turns out
that N has a normal subgroup K0

∼= Z2 ×Z2 such that N/K0 is isomorphic to the
normalizer of a certain 4-group in M . Moreover, N contains three involutions x, y, z
which are transitively permuted by N , and CN (x)/K0 is canonically identified with
a maximal subgroup of the centralizer Gx0 of a certain involution in M . The author
is now able to construct, without too much difficulty, a representation of CN (x) on a
space 196 884x as a sum of constituents 300x+98 280x+98 304x and show that this
representation extends to one of the group Gx0. Similarly, one gets representation
spaces 196 884y and 196 884z for groups Gy0, Gz0 respectively. Via triality one
can identify the three representation spaces and in fact the author shows that such
identifications may be taken to be N -invariant isometries (with K0 acting trivially).
In this way one gets a space of dimension 196 884 (with an algebra structure A)
admitting three distinct groups Gx0, Gy0 and Gz0. G0 is defined as the join of these
three groups, and finiteness of G0 is obtained without difficulty as a consequence
of certain facts concerning the action of G0 on A. Then a result of S. D. Smith
[J. Algebra 58 (1979), no. 2, 251–281; MR0540638] yields G0

∼= M . The author
concludes with results concerning A alluded to above.

Geoffrey Mason

From MathSciNet, May 2021
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MR2253008 (2007k:20005) 20B20; 05B25, 20B25, 20D08, 51E20, 94B25

Conway, John H.; Elkies, Noam D.; Martin, Jeremy L.

The Mathieu group M12 and its pseudogroup extension M13. (English)

Experimental Mathematics 15 (2006), no. 2, 223–236.

The set of permutations that result from arbitrary sequences of moves is called
M13. It is not a group, but it is a union of cosets of M12 in Sym(13) and it has
size 13 · 12 · 11 · 10 · 9 · 8, exactly the size that it would have if it were a sharply
six-fold transitive permutation group of degree 13. Section 5 of the paper reports
on an investigation of how M13 may be thought of as being six-fold transitive.

The paper deals also with extensions of the basic game. The first of these is
a “signed game” in which the counters may be turned over. This leads to the
nontrivial double cover 2M12 of the Mathieu group and an analogous double cover
of M13. The second is a “dualized game” in which a second set of twelve counters is
placed on the set of lines of P3 with the proviso that the point-hole lies on the line-
hole. This leads to another proof that Gbas

∼= M12 and an interesting interpretation
of an outer automorphism of M12.

Section 6 deals with metric properties of M12 and M13. One may define the
distance d(σ, τ ) between elements of M13 to be the length of the shortest sequence
of basic moves that changes σ into τ . Computed information provides the starting
point for investigation of various metric and statistical aspects of M12 , M13 and
their double covers.

Peter M. Neumann

From MathSciNet, May 2021

MR1172696 (94f:11030) 11F22; 17A70, 17B67, 20D08

Borcherds, Richard E.

Monstrous moonshine and monstrous Lie superalgebras.

Inventiones Mathematicae 109 (1992), no. 2, 405–444.

The representation theory of the monster simple group has a fascinating history,
and the subject, dubbed “monstrous moonshine”, touches upon many corners of
modern mathematics. In 1979, Conway and Norton conjectured the existence of a
graded module for the monster whose Thompson series are certain Hauptmoduls.
Frenkel et al. constructed a likely candidate in the mid-1980s, and in this paper
the author proves that this vertex algebra V satisfies the conjecture of Conway and
Norton. In a thorough and satisfying paper, he provides ample history, background
results, detail and motivation. He gives not simply a proof of the conjecture, but
many insightful remarks, valuable results and open questions.

Central to this work is the construction from V of a generalized Kac-Moody Lie
algebra M , appropriately named the “monster Lie algebra”. The monster acts on
M , which is graded by the two-dimensional Lorentzian lattice II1,1. This is not the
first monster Lie algebra constructed by the author. In 1990, he constructed an
algebraMΛ from VΛ, a vertex algebra associated to the Leech lattice Λ. This algebra
M , itself called the monster Lie algebra at the time, now sports the moniker “fake
monster Lie algebra”. Similarities between V and VΛ suggested the construction of
M from V .

https://www.ams.org/mathscinet-getitem?mr=2253008
https://www.ams.org/mathscinet-getitem?mr=2253008
https://www.ams.org/mathscinet-getitem?mr=1172696
https://www.ams.org/mathscinet-getitem?mr=1172696
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By calculating the twisted denominator formula for M , the author shows that
the Thompson series for V satisfy a set of identities known to hold for the Haupt-
moduls of Conway and Norton. He then finds sufficient initial conditions for these
relations to identify a series uniquely and shows that the Thompson series and the
Hauptmoduls of Conway and Norton satisfy the same initial conditions.

The author builds on the techniques used in his proof to go beyond the main
theorem. Rounding out this paper are examples of monstrous Lie superalgebras of
even rank between 2 and 26 (including 10 and 26), whose denominator formulas
give new Macdonald-type infinite product identities.

Steven N. Kass

From MathSciNet, May 2021

MR1198809 (94d:57010) 57M25

Birman, Joan S; Lin, Xiao-Song

Knot polynomials and Vassiliev’s invariants.

Inventiones Mathematicae 111 (1993), no. 2, 225–270.

The authors establish the relationship between the invariants of knots of Jones
type (Jones, skein (Homfly-pt) and Kauffman polynomials) and invariants of finite
type (i.e. Vassiliev invariants). In particular they show that there exist Vassiliev
invariants of any order. They show that the spaces of Vassiliev invariants of degree
2, 3 and 4 are 1-, 1- and 3-dimensional, respectively. They also prove that the sub-
spaces generated by the skein polynomial are 1-, 1- and 2-dimensional, respectively.
Furthermore they show that the unknotting number of a knot is not a finite-type
invariant.

{Reviewer’s remarks: D. Bar-Natan [“On the Vassiliev knot invariants”, Topol-
ogy, to appear] extended the computations of the paper and found the space of
rational Vassiliev invariants up to degree 9; in particular he found that the space of
rational Vassiliev invariants of degree 9 is 44-dimensional. T. Stanford [“Finite-type
invariants of knots, links and graphs”, Preprint, Columbia Univ., New York, 1992;
per bibl.] found the space of integer Vassiliev invariants up to degree 7 (he verified
that at least up to degree 7 integral Vassiliev invariants coincide with the rational
invariants). All Vassiliev invariants found up to now can be obtained using cablings
and the skein and Kauffman polynomials (Bar-Natan verified this for all rational
Vassiliev invariants of degree no more than 9). In particular no Vassiliev invariant
was found to distinguish the knot 817 from its reverse −817. On the other hand
there are Vassiliev invariants of degree less than 100 (and probably much less) which
distinguish mutants (e.g. the Conway knot and the Kinoshita-Terasaka knot). Bar-
Natan [“Weights of Feynman diagrams and the Vassiliev knot invariants”, Preprint,
1991; per bibl.] proved that the coefficients of the Alexander-Conway polynomial
are finite-type invariants (in a different context, that of n-trivial knots, this was also
observed by Y. Ohyama [Topology Appl. 37 (1990), no. 3, 249–255; MR1082935]).
The fact that the skein and Kauffman polynomials can be obtained from the Vas-
siliev invariants was proved independently by M. N. Gusarov [Zap. Nauchn. Sem.
Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 193 (1991), Geom. i Topol. 1, 4–9,
161; MR1157140]. Lin [“Vertex models, quantum groups and Vassiliev’s knot in-
variants”, Preprint, Columbia Univ., New York, 1991; per bibl.] proved generally
that any invariant obtained in the setting of quantum groups can be obtained as
a limit of finite-type invariants. O. Viro suggested [Preprint, Problem 6, 1991; per
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revr.] that this is the case because of the use of two compatible filtrations in the
semigroup algebra over the space of knots. The Vassiliev filtration {Ci} is generated
by the singular knots with i double points and the second filtration is an I-adic
filtration in the ring of polynomials (for the Jones polynomial I = (t− 1) [see J. H.
Przytycki, “Vassiliev-Gusarov skein modules of 3-manifolds and criteria for knot’s
periodicity”, in Low-dimensional topology (Knoxville, TN, 1992), Johannson Inter-
nat. Press, Cambridge, MA, to appear]). For a recent survey on Vassiliev invariants
we refer to an article by Birman [Bull. Amer. Math. Soc. (N.S.) 28 (1993), no. 2,
253–287; MR1191478].

Józef H. Przytycki

From MathSciNet, May 2021
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Lickorish, W. B. R.; Millett, Kenneth C

A polynomial invariant of oriented links.

Topology. An International Journal of Mathematics 26 (1987), no. 1, 107–141.

Let L+, L− and L0 be diagrams of three oriented links that are exactly the same
except near one crossing point (see Figure 1 on p. 108 in the paper). Alexander
found (1928) that his polynomial invariant of links can be characterized by using its
values on L+, L− and L0. Conway introduced in 1969 the normalized form of the
Alexander polynomial which satisfies ΔL+

(t)−ΔL−(t)+(t1/2−t−1/2)ΔL0
(t) = 0. In

the spring of 1984 Jones found a new polynomial invariant of links and later he and
Lickorish and Millett found that the Jones polynomial satisfies a relation similar to
that of the Alexander polynomial: t−1VL+

(t)− tVL−(t) + (t−1/2 − t1/2)VL0
(t) = 0.

The similarity between the formulae for ΔL(t) and VL(t) was too great to be a
coincidence and in fact it was found by Lickorish and Millett (August 1984) that
there exists a polynomial invariant of links, PL(m, l), which satisfies lPL+

(l,m) +
l−1PL−(l,m) + mPL0

(l,m) = 0. The same result was found independently by
Freyd and Yetter, Hoste, Ocneanu (August–September 1984) and the reviewer and
Traczyk (early December 1984). The paper under review introduces the PL(l,m)
polynomial. (There is no agreement on what name should be used for PL. The
following are in use: Jones–Conway, generalized Jones, two-variables Jones, twisted
Alexander, HOMFLY and FLYPMOTH.) Many important properties of PL are
proved in the paper; in particular the formula which allows one to compute PL for
the link being the sum of two tangles. The authors also develop the linear skein
theory (using ideas of Conway and Giller). Linear skein theory is an important
concept when one tries to go from polynomial invariants of links in the 3-sphere to
algebraic invariants of any 3-manifold.

Józef H. Przytycki

From MathSciNet, May 2021
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MR4076631 57K10; 57R65

Piccirillo, Lisa

The Conway knot is not slice.

Annals of Mathematics. Second Series 191 (2020), no. 2, 581–591.

The Conway knot of the title is an 11-crossing knot which together with the
Kinoshita-Terasaka knot forms the smallest pair of positive mutant knots, as Con-
way discovered in 1970. The Kinoshita-Terasaka knot is smoothly slice and both
knots have Alexander polynomial 1 and so are topologically slice. For nearly fifty
years the question of whether the Conway knot is slice has remained open.

As the collection of knot invariants which detect non-sliceness have increased over
the years, they have all failed to show that the Conway knot is not slice. The author
starts with an old observation about the trace of the 0-framed surgery on a knot
k, X0(k). This is formed by attaching a 2-handle to a 4-ball along k: it is a simply
connected smooth 4 manifold with boundary. The boundary is a homology S1×S2

and X0(k) has the homotopy type of S2. There is a combinatorial embedding of
S2 in X0(k), S

2
k ⊂ X0(k), with one singular point given by coning k in the 4-ball

which represents the generator of H2(X0(k)).
Next it is observed that k is slice if and only if X0(k) embeds in S4. If k is slice,

use the slice disk to embed the 2-handle in S4−B4 where B4 is the 4-ball in X0(k)
and a hemisphere in S4. The other direction follows immediately from [R. H. Fox
and J. W. Milnor, Osaka Math. J. 3 (1966), 257–267; MR0211392], Theorem 1.

To conclude the proof one needs to find a non-slice knot k with X0(k) diffeo-
morphic to X0(Conway knot). There exist techniques for beginning with a knot
and producing other knots with diffeomorphic X0’s which have been developed and
exploited by the author and others. The author recalls the dualizing patterns con-
struction, which can be applied to a knot k to produce another knot k∗, and proves
that X0(k) is diffeomorphic to X0(k

∗).
The author finds an explicit dualizing pattern for the Conway knot to get a new

knot, k′, and then applies the Rasmussen s-invariant to show that k′ is not slice.
This part is the most technical part of the paper. There is a spectral sequence
which computes a bi-graded group known to be Q ⊕ Q and the gradings of the
generators determine the s-invariant. Thanks to the sparseness of the differentials,
s(k′) is determined to be 2 whereas if k′ were slice, the s-invariant would be 0.

As a corollary the author obtains that the s-invariant is not determined by X0

since s(Conway knot) = 0.
The paper is fun to read and the arguments are carefully laid out. An interwoven

discussion of the history of the problem makes it clear just how difficult the problem
appears to be until one finds just the right approach.

Laurence R. Taylor
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Griess, Robert L., Jr.

Twelve sporadic groups. (English)

Springer Monographs in Mathematics.
Springer-Verlag , Berlin, 1998, iv+169 pp., $79.95, ISBN 3-540-62778-2

Following the announcement of the proof of the classification theorem for fi-
nite simple groups (CFSG) in 1980, much work has been done on many fronts to
try to “understand” the 26 sporadic simple groups, which do not fit into any of
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the well-behaved and well-understood infinite families, and exhibit often bizarre
behaviour. While the more extravagant hopes have not been realised, our un-
derstanding has reached the point where definitive monographs and introductory
textbooks are sorely needed. The book under review joins two books by M. G. As-
chbacher [Sporadic groups, Cambridge Univ. Press, Cambridge, 1994; MR1269103;
3-transposition groups, Cambridge Univ. Press, Cambridge, 1997; MR1423599] and
one by A. A. Ivanov [Geometry of sporadic groups. I, Cambridge Univ. Press, Cam-
bridge, 1999; MR1705272] in attempting to fill this gap.

The problem which immediately confronts the author of such a book is that there
is a huge amount of material to be covered, and no book can hope to do justice to
the subject as a whole. Aschbacher limits himself (roughly) to proofs of existence
and uniqueness of the 26 groups, and in his two books so far has dealt with only a
handful of them. Of necessity, his books are very technical, and provide little of the
kind of information which users of the CFSG require. Ivanov similarly is concerned
with the definitive exposition of the solution of a classification problem for certain
geometries.

The book under review is quite different. It aims to be a textbook for graduate
students, rather than a monograph. It is only 169 pages long, and attempts to
develop the theory more or less from first principles up to the construction and
basic properties of the twelve sporadic groups which are related to the Golay codes
and the Leech lattice—that is, the five Mathieu groups, the three Conway groups,
and the groups of Hall-Janko, Higman-Sims, Suzuki and McLaughlin.

It is inevitable in a book like this that one must take certain background material
on trust—one cannot develop in detail all the theory required and still hope to
reach interesting conclusions. Griess’s choice of what to leave out obviously reflects
his individual tastes. He treats codes and lattices in some detail, and emphasizes
cohomological methods and results, while omitting proofs of results in “pure” group
theory (such as Schur-Zassenhaus, Thompson’s transfer theorem, etc.) and the
theory of classical groups and groups of Lie type.

This background is collected into the first two chapters, after which there are
three chapters on codes, culminating in detailed analysis of the (extended binary)
Golay code, including existence and uniqueness proofs. The treatment here follows
the “hexacode” approach of Benson and Conway, but is a good deal more axiomatic
than usual. In Chapter 6 we turn from the code to its automorphism group, and
find detailed and explicit descriptions of all its maximal subgroups. No attempt is
made however to prove that the list of maximal subgroups is complete. Chapter
7 presents the analogous material for the small Mathieu groups, again following
Conway in using the tetracode to construct the (extended) ternary Golay code,
and it is more or less independent of the other chapters.

Most of the rest of the book is concerned with the Leech lattice, and subgroups
of its automorphism group. Here the pace increases noticeably, and some proofs
are rather sketchy, or relegated to exercises. Basic properties of the Leech lattice,
more often obtained by elementary counting arguments, are here derived by quot-
ing properties of theta functions from the theory of modular forms. The entire
construction of the Hall-Janko group is left as an exercise.

The book ends with a mixed bag of appendices whose purpose is not entirely
clear, and a chapter giving the briefest of introductions to the remaining 14 sporadic
groups, as well as a highly individual view of certain historical events.
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While an Atlas author in his glass house should be wary of throwing stones,
I should mention some of the more unfortunate errors in this book, besides the
frequent misprints and inaccurate cross-referencing. In Exercise 2.8, dimH1 = 1,
not 0. On page 16, the Schur multiplier of 2Dl(q) is cyclic of order (4, ql + 1), not
(4, q+1). On page 17, but not on page 169, the orders of four of the sporadic groups
are wrong. In Table 2.16, for the natural modules of SL(2, 2m) = Sp(2, 2m) for all
m > 1, and of Sp(4, 2m) for all m, the dimension of H1 is 1 not 0, while for Ω−(6, 2)
the dimension of H1 is 0, not 1. In Table (2.17) the non-split group 53·SL(3, 5) is
omitted, as are the groups 22m·SL(2, 2m) for m > 2 and 24·Sp(4, 2)—there may be
others. Note also that the dimensions of H2 for the two given representations of
M24 are 0 and 1 respectively, proved by D. J. Jackson [“Some problems in finite
group theory”, Ph.D. Thesis, Cambridge Univ., Cambridge, 1982; per revr.]. In
Table 10C Griess has unfortunately copied the misprints from Conway’s paper as
well as introducing new ones.

These reservations notwithstanding, this book succeeds in its aim of making a
fascinating but difficult area of mathematics more readily accessible, and of the
books currently available it is the one which I would recommend as an introduction
to sporadic groups for a beginning graduate student.

Robert A. Wilson

From MathSciNet, May 2021
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Conway, John H.

The sensual (quadratic) form. (English)

Mathematical Association of America, Washington, DC , 1997, xiv+152 pp.,
$32.95, ISBN 0-88385-030-3

The principal theme of this little book is the classical topic of the theory of inte-
gral quadratic forms over the rational integers Z. It is however a rather unorthodox
and highly personal account of the subject.

The first chapter begins by defining a tree associated with a rank 2 Z-module,
and then using a binary integral quadratic form to label the tree with the integers
represented primitively by the form. Conway calls this the “topograph” of the form.
Certain invariants called “vonorms” and “conorms” are defined for (binary) posi-
tive definite forms. The topographs of the possible kinds of binary forms (positive
or negative definite, semidefinite, indefinite,. . .) are investigated, leading to algo-
rithms for determining the numbers represented by such forms, and their equiva-
lence classes (although the latter is not made completely explicit). He also touches
very briefly on the question of determining the isometry groups of these forms for
their topographs. In some “Afterthoughts” to the first chapter, topographs are
related to properties of the upper half plane.

Chapter 2 begins by posing Mark Kac’s question of “hearing the shape of a
drum”, and the author relates the higher-dimensional analogue of this idea on
tori—quotients of Rn by a lattice—to the question of whether a positive definite
integral quadratic form is determined by the numbers it represents. A property
of such a form is called “audible” if the property is determined by these numbers,
or equivalently, by the theta function of the quadratic form. As examples, he
shows that the determinant of the form and the theta function of the dual form are
audible. He also provides counterexamples to the higher-dimensional Kac question,
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the first of which were found by J. Milnor. The Afterthoughts of this chapter
deal with Kneser’s “gluing method” for constructing lattices, and this is applied
to a description of the 24-dimensional even lattices and Witt’s characterization of
lattices generated by vectors of norm 2.

Chapter 3 defines the Voronŏı cells of a lattice (positive definite form), and
thence the Voronŏı vectors, the Voronŏı norms (vonorms), and the conorms. These
are related to the ideas of Chapter 1 (for binary forms) and then they are analyzed
for ternary forms. The shapes of the Voronŏı cells are determined in dimensions 2
and 3, and a discussion of them in dimension 4 appears in the Afterthoughts.

The fourth and final chapter is concerned first with the author’s version of the
Hasse-Minkowski theorem and then with the local invariants of integral forms (the
Jordan decomposition and the genus). It ends with a proof of Kitaoka’s theorem
that the genus of a form of rank ≤ 4 is audible, and an example of 2 non-equivalent
5-dimensional lattices with the same theta functions—therefore providing a coun-
terexample to the audibility of the genus in dimension ≥ 5. A postscript describes
some mostly classical facts about integral quadratic forms, such as Legendre’s three
squares theorem.

This is a book rich in ideas. They seem to burst forth from almost every page,
and it is perhaps not surprising that it seems a little disorganized at times. I
suspect that the author’s hope that “even the experts in quadratic forms will find
some new enlightenment here” will be realized. The parts of the book dealing with
topographs, and with Voronŏı cells, vonorms and conorms are especially interesting.
One can only hope that this book will help to bring them into the argot of quadratic
forms.

Carl Riehm
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