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ATIYAH’S WORK ON HOLOMORPHIC VECTOR BUNDLES

AND GAUGE THEORIES

SIMON DONALDSON

Abstract. The first part of the article surveys Atiyah’s work in algebraic
geometry during the 1950s, mainly on holomorphic vector bundles over curves.
In the second part we discuss his work from the late 1970s on mathematical
aspects of gauge theories, involving differential geometry, algebraic geometry,
and topology.
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Part 1. Early work

Michael Atiyah began his research career as an algebraic geometer, writing a
series of papers in the period 1952–1958, mostly about bundles over algebraic va-
rieties. Many of the themes in these papers reappear 20 years later when Atiyah’s
interests turned to Yang–Mills theories. In the commentary on Volume 1 of his
collected works Atiyah wrote:

I was fascinated by classical projective geometry . . . at the same
time great things were happening in France and I was an avid reader
of the Comptes Rendus, following the developments in sheaf theory.

The language and style of these early papers of Atiyah are an interesting mixture
of classical and modern.
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1.1. Extensions and the Atiyah class

Extensions of vector bundles form a theme running through much of Atiyah’s
work. Let X be a complex manifold. A holomorphic vector bundle π : E → X is a
complex vector bundle in the ordinary sense such that the total space is a complex
manifold, and the projection and structure maps are all holomorphic. Alternatively,
the bundle is defined by a system of holomorphic transition functions

gαβ : Uα ∩ Uβ → GL(r,C),

with respect to an open cover X =
⋃
Uα. The definition of a subbundle F ⊂ E

is the obvious one, and we get a holomorphic quotient Q = E/F and an exact
sequence:

(1) 0 → F
i→ E

p→ Q → 0.

The new feature, compared with the theory of topological or C∞ bundles, is that
this exact sequence need not split: it is not usually true that E is isomorphic to a
direct sum F ⊕Q. We define an equivalence relation on short exact sequences like
(1) by saying that two are equivalent if there is a commutative diagram:

0 F E Q 0

0 F E′ Q 0

� � � �

� � � �

�

Then the basic fact is:

Proposition 1. Given holomorphic bundles F,Q there is a 1-to-1 correspondence
between equivalence classes of extensions (1) and the sheaf cohomology group
H1(Hom(Q,F )) such that the trivial extension defined by F ⊕ Q corresponds to
0 ∈ H1(Hom(Q,F )).

In [4] Atiyah writes that this result “follows from the general theory of fibre bun-
dles” and refers to unpublished notes of Grothendieck. In the notation used above
we do not distinguish between a holomorphic vector bundle and its sheaf of local
holomorphic sections. There is a 1-to-1 correspondence between vector bundles and
sheaves of locally free modules over the structure sheaf OX of holomorphic func-
tions on X, and a version of Proposition 1 holds for locally free sheaves of modules
in general. To define the extension class from the axioms of sheaf cohomology we
apply Hom(Q, ) to the sequence to get

0 → Hom(Q,F ) → Hom(Q,E) → Hom(Q,Q) → 0,

and this has a long exact cohomology sequence with coboundary map

∂ : H0(Hom(Q,Q)) → H1(Hom(Q,F )).

The extension class is ∂1Q, where 1Q is the identity on each fibre of Q.

We can see this more explicitly using either Čech or Dolbeault representations
of the cohomology. For the first we use the fact that the extension can be split
locally, so there is an open cover {Uα} over which we have holomorphic splitting
maps

jα : Q|Uα
→ E|Uα

.
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On an intersection Uαβ = Uα ∩ Uβ , we have two splitting maps and

jα − jβ = i ◦ Tαβ ,

where Tαβ : Q|Uαβ
→ F |Uαβ

. Thus {Tαβ} is a cochain in the Čech complex as-
sociated to the sheaf Hom(Q,F ), and one finds that it is a cocycle and that its
cohomology class is independent of choices.

The Dolbeault description of the extension class is important in complex differ-
ential geometry. To set this up, we recall that a holomorphic vector bundle can be
viewed as a C∞ bundle equipped with a ∂-operator

∂E : Ω0(E) → Ω0,1(E),

satisfying the Leibnitz rule ∂E(fs) = (∂f)s + f∂Es. Here we are writing Ω0,1(E)
for the smooth (0, 1)-forms with values in E. Using the Leibnitz rule, one gets an
extension to operators

∂E : Ωp,q(E) → Ωp,q+1(E)

with ∂
2

E = 0. Fixing p, the cohomology of the resulting complex gives the sheaf
cohomology H∗(E ⊗ ΛpT ∗X).

Returning to the extension class, this time we use the fact that a sequence of C∞

bundles can be split. So we can choose a global C∞ (not necessarily holomorphic)
splitting map j : Q → E and a corresponding projection � : E → F . Then the
composite � ◦ ∂E ◦ j is a map from C∞ sections of Q to (0, 1)-forms with values
in F . One finds that this commutes with multiplication by smooth functions so is
given by a tensor B ∈ Ω0,1(Hom(Q,F )) which gives a Dolbeault representative for
the extension class. Said in another way, if we identify E with F ⊕ Q as a C∞

bundle then ∂E has a matrix representation:

(2) ∂E =

(
∂F B

0 ∂Q

)
.

With this background in place we begin our review of some of Atiyah’s appli-
cations of the theory. In [4] he introduced what is now called the Atiyah class of
a bundle E → X. This can be described in two ways. For the first, for a point
x ∈ X let J(E)x be the set of 1-jets of sections of E at x. By definition, such a
1-jet is an equivalence class of local holomorphic sections where s is equivalent to s′

if s(x) = s′(x) and the derivative of s− s′ at x vanishes. (Recall that the derivative
of a section of a vector bundle is not intrinsically defined in general but it is defined
at a zero of the section.) Then we have an exact sequence of vector spaces

0 → T ∗Xx ⊗ Ex → J(E)x → Ex → 0.

Letting x vary, we get an exact sequence of bundles over X

(3) 0 → T ∗X ⊗ E → J(E) → E → 0,

and the Atiyah class α(E) is the extension class in

H1(Hom(E,E ⊗ T ∗X) = H1(EndE ⊗ T ∗X).

A more general approach uses principal bundles, and this was the point of view
Atiyah took in [4]. Let G be a complex Lie group, and let π : P → X be a principal
G-bundle. Then there is an exact sequence of vector bundles over P :

0 → Lie(G) → TP → π∗TX → 0
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Here Lie(G) is the trivial bundle with fibre the Lie algebra Lie(G) which can be
identified with the vertical tangent vectors along the fibres of π using the group
action. All three bundles in this sequence are equivariant with respect to the action
of G, and this implies that the sequence is pulled back from an exact sequence of
vector bundles over X

(4) 0 → adP → T → TX → 0,

where adP is the bundle over X associated to the adjoint representation of G
on its Lie algebra. Then there is an extension class in H1(T ∗X ⊗ adP ). In the
case when G = GL(r,C), so P is the frame bundle of a vector bundle E, we
have adP = EndE and we get the same class as before. The different approaches
correspond to two ways of viewing connections. From the principal bundle point
of view a connection is given by a splitting of the exact sequence (4), that is to
say a G-invariant horizontal subbundle H ⊂ T. In the first approach a splitting
of the sequence (3) gives a map � : J(E) → E ⊗ T ∗X. From the definition of
the jet space, a section s of E induces a section J(s) of J(E) and ∇s = �(J(s))
is a covariant derivative on sections of E. While C∞ connections always exist,
holomorphic connections need not, and one of the main results of Atiyah in [4] is:

Proposition 2. A bundle E admits a holomorphic connection if and only if the
Atiyah class α(E) ∈ H1(EndE) is zero.

For another point of view on the Atiyah class, we consider a C∞ connection, or
covariant derivative, ∇E on E which is compatible with the holomorphic structure
in the sense that the (0, 1) component of ∇E equals ∂E . (In the principal bundle
approach this is the same as saying that the horizontal subspaces are complex

subspaces of T .) The connection has curvature F∇ ∈ Ω2(EndE) and since ∂
2

E = 0

the (0,2) part of F∇ vanishes and F∇ = F 1,1
∇ + F 2,0

∇ . The Bianchi identity implies

that ∂EndEF
1,1
∇ = 0, so F 1,1

∇ defines a class in H1(EndE ⊗ T ∗X) which is another
representation of the Atiyah class.

This makes a connection with Chern–Weil theory. Let ψ be an invariant poly-
nomial of degree k on the Lie algebra of G = GL(r,C). (In other words, ψ is a
polynomial function on matrices with ψ(gmg−1) = ψ(m): these are just symmetric
functions in the eigenvalues.) Then the combination of ψ and wedge product de-
fines a map from the tensor product of k copies of EndE ⊗ T ∗X to ΛkT ∗X. If we
have any class β ∈ H1(EndE⊗T ∗X), we combine the map above with the product
on cohomology to get ψ(β) ∈ Hk(ΛkT ∗X). Suppose, for simplicity, that X is a
compact Kähler manifold. Then we have a Hodge decomposition of the cohomology
and

Hk(ΛkT ∗X) = Hk,k(X) ⊂ H2k(X,C).

So ψ(β) can be viewed as a class in the topological cohomology of X. Applying this
to β = α(E), we get the usual Chern–Weil construction for characteristic classes
of E. This is clear from the representation of the Atiyah class by the curvature.
We can choose a connection compatible with a Hermitian structure on the bundle.
The curvature has type (1, 1) and writing out the recipe above, using the Dolbeault
description where the product on cohomology is induced by wedge product on
forms, gives exactly the Chern–Weil construction. (The whole discussion extends
to general structure groups G and that is the context in which Atiyah worked.)
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The curvature of a holomorphic connection has type (2, 0), so when X is a
Riemann surface, a holomorphic connection is flat. Using this, Atiyah obtained
alternative proofs of some results of Weil from his 1938 paper [71], which began the
study of higher rank vector bundles over Riemann surfaces. In the classical case
of line bundles of degree 0 a standard approach is to view sections as automorphic
functions on the universal cover, transforming according to a multiplier. In other
words, the line bundle is endowed with a flat connection with structure group C∗

and arises from a representation ρ : π1(X) → C∗. Weil extended this to higher
rank bundles and flat bundles with structure group GL(r,C). He showed that an
indecomposable bundle E over a compact Riemann surface admits a flat connection
if and only if it has degree (i.e., first Chern class) equal to 0. For a bundle E over
X we have the Serre duality:

H1(EndE ⊗ T ∗X) = H0(EndE)∗.

So a flat connection exists if any only if the pairing between the Atiyah class and
every holomorphic section of EndE vanishes. If the bundle is indecomposable
(i.e., cannot be written as a nontrivial direct sum), then any holomorphic section
of EndE can be written as λ1E + N , where N is nilpotent. (For otherwise the
eigenspaces would give a decomposition.) By the discussion of Chern–Weil theory
above, the pairing between 1E and α(E) is the degree of E, so one has to see that
the pairing of α(E) with the nilpotent sections vanishes. Suppose, for simplicity
that E has rank 2 and there is a rank 1 subbundle L = kerN = ImN . Then we
can choose a connection ∇ on E that preserves L. The pairing is given by∫

X

Tr(F∇ N),

and the integrand vanishes since F∇ preserves L.

1.2. Bundles over curves

In this subsection we discuss the papers [3] and [5] of Atiyah which are more
detailed investigations of holomorphic bundles, mainly over algebraic curves (or
compact Riemann surfaces).

The first paper [3] is focused on vector bundles E → X of rank 2. Then the
projective bundle P(E) is a ruled surface so the study becomes part of the general
study of algebraic surfaces. The starting point is the fact that any such bundle
contains rank 1 subbundles L ⊂ E. For if H is any positive line bundle over E
and k is sufficiently large, the tensor product E ⊗Hk has a nonzero holomorphic
section. This section might vanish at some points of X, but it is still true that the
image of the section defines a rank 1 subbundle of E⊗Hk. This is a special feature
of dimension 1: in a local trivialisation about a point x in X, the section is defined
by a vector-valued function and we take the fibre of the subbundle over x to be
the line spanned by the first nonvanishing derivative. This fact means that we can
write E as an extension

(5) 0 → L → E → Q → 0,

where L and Q are line bundles and by the theory discussed in the previous sub-
section the bundle E is determined by L,Q and an extension class in H1(L⊗Q∗).
Multiplying the extension class by a nonzero scalar just corresponds to scaling the
inclusion map i : L → E and does not change the rank 2 bundle. So if we leave out
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the trivial extension, the data is (L,Q, ξ) where ξ ∈ P(H1(L ⊗Q∗)). Thus, using
the theory of extensions, Atiyah was able to reduce questions about rank 2 bundles
to questions about line bundles and cohomology. The essential difficulty is that the
line subbundle is not unique, so any bundle E has a multitude of descriptions of
this form.

To reduce this multitude, Atiyah considers subbundles of maximal degree. As
we will see, this is an idea that goes a long way, so we will make a definition.

Definition 1. For a rank 2 bundle E over a compact Riemann surface X, let ν(E)
be the maximal degree of a rank 1 subbundle of E.

(It is straightforward to show that this is well-defined.)
Let us illustrate the utility of this notion by classifying rank 2 bundles over the

Riemann sphere P1. Recall that the line bundles over P1 are just the powers O(k)
of the Hopf bundle O(1) and that H0(O(k)) = 0 for k < 0 while H1(O(k)) = 0 for
k > −2. By taking the tensor product with a line bundle, we may reduce to the
case when ν(E) = 0, so E is an extension

(6) 0 → O → E → O(−k) → 0

but E has no subbundle of strictly positive degree. Take the tensor product of (6)
with O(−1) and the long exact sequence in cohomology, which runs

· · ·H0(E(−1)) → H0(O(−k − 1)) → H1(O(−1)) · · · .
(Here, and later, we write E(p) for E ⊗ O(p).) If k ≤ −1, there is a section of
O(−k − 1) which lifts to a section of E(−1) since H1(O(−1)) = 0. The image of
this section is a line subbundle L of E, and the section can be written as a section
of L(−1) composed with inclusion map, so the degree of L is strictly positive which
contradicts our hypothesis. Thus we see that k > −1. Now the extension class of
(6) lies in H1(O(k)) which vanishes for k > −1, so we conclude that the extension
splits and E = O⊕O(−k). (The definition of ν implies that in fact k ≥ 0.) In terms
of ruled surfaces the result states that the P1 bundles over P1 are the Hirzebruch
surfaces Σk = P(O⊕O(−k)) for k ≥ 0, which Atiyah refers to as the classical result
“that every rational normal ruled surface can be generated by a 1-1 correspondence
between two rational normal curves lying in skew spaces”.

One of Atiyah’s main results in [3] determines when two extensions define iso-
morphic rank 2 bundles over a Riemann surface. Start with one description which
we can take to be

(7) 0 → O → E → L1 → 0,

for a line bundle L1 of degree d and an extension class in H1(L∗
1). Assume that the

extension does not split, so E is determined by a point η in the projective space
P(H1(L∗

1)) which we denote by PL1
. The Serre dual of H1(L∗

1) is H
0(L1⊗KX) so

we have PL1
= P(H0(L1 ⊗KX)∗), and the linear system L1 ⊗KX defines a map

f : X → PL1
.

Now take a nontrivial line bundle Λ of degree 0 and consider the possible exis-
tence of an extension

0 → Λ → E → L1 ⊗ Λ−1 → 0,

where the last term is fixed by considering the determinant of E. Taking a tensor
product with Λ−1, this is equivalent to considering extensions

0 → O → E ⊗ Λ−1 → L2 → 0,
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where L2 = L1 ⊗ Λ−2. The existence of such an extension is equivalent to a
nonvanishing section of E ⊗ Λ−1 and from (7) we have an exact sequence

0 → H0(E ⊗ Λ−1) → H0(L1 ⊗ Λ−1) → H1(Λ) · · · .
So we need a section of L1⊗Λ−1 which maps to zero in the (g−1)-dimensional vector
space H1(Λ). A section of L1⊗Λ−1 defines a positive divisor, say D = Q1+· · ·+Qd

for points Qi ∈ X. Now we have L1 ⊗ L2 = L1 ⊗ L1 ⊗ Λ−2 = (L1 ⊗ Λ−1)2. So

(8) O(2D) = L1 ⊗ L2.

Atiyah shows that this section maps to 0 in H1(Λ) if and only if the point η ∈ PL1

is in the linear span of f(Q1), . . . , f(Qd). So, starting with L1 and η ∈ PL1
, we

consider the curve f(X) ⊂ PL1
and find all the configurations of d points on this

curve whose linear span contains η. For each such configuration we define another
line bundle L2 by (8) and this gives all the descriptions of the rank 2 bundle by
extensions with a subbundle of maximal degree.

Atiyah used these techniques in [3] to classify all rank 2 bundles over curves of
genus 1 and 2, extending the classical case of genus 0 that we saw above. Postpon-
ing the discussion of genus 1, we consider now genus 2. There are various cases,
depending on the first Chern class of the bundle and the invariant ν. By taking the
tensor product with a line bundle, it suffices to consider bundles E with c1(E) equal
to 0 or 1. The most interesting case, for reasons we will see more of later, is when
c1(E) = 1 and ν(E) = 0. So, after tensoring by a line bundle, we have an extension
(7) where the line bundle L has degree 1. Thus L⊗KX has degree 3; the Riemann–
Roch formula shows that H0(L⊗KX) has dimension 2 and PL is a projective line.
Since the dimension of this vector space is 2 we have a canonical identification be-
tween the projective space and its dual, so, in this special situation, we can regard
the extension data as the zero divisor P +Q+R of a section of L⊗KX . Conversely,
any divisor D = P + Q + R defines a degree 1 line bundle L = O(D) ⊗K−1

X and
an extension class. So for each triple of points P,Q,R we have a rank 2 vector
bundle E(PQR), say. The curve X is hyperelliptic, with an involution τ : X → X.
Applying his criterion, Atiyah shows that a different triple P ′Q′R′ defines a bundle
E(P ′Q′R′) projectively equivalent to E(PQR) if and only if the new triple is given
by applying τ to two of the points: for example P ′ = P,Q′ = τ (Q), R′ = τ (R). In
this way he constructs a three-dimensional moduli space MP parametrising these
projective bundles.

To see this moduli space more explicitly, we start with the symmetric product
s3(X) of triples PQR. This is a fibre bundle over the Jacobian Jac(X) with fibre
P1. There is a 4-to-1 map from s3(X) to MP given by the identifications described
above. This map takes the P1 fibres in the symmetric product to the bundles
constructed using a fixed line bundle but varying extension data. We have a 2-to-1
map from X to P1 which induces an 8-to-1 map from s3(X) to s3(P1) = P3. This
map factors through the space MP, so we have

s3(X) → MP
π→ P3,

where π is 2-to-1. We have six branch points λi ∈ P1 of the double covering
X → P1. Each of these points λi defines a plane Πi in P3 = s3(P1). The 3-fold
MP is the double cover of P3 branched over these six planes Πi.

We now turn to Atiyah’s results on bundles over elliptic curves (genus 1). The
rank 2 case was covered in [3], and the later paper [5] gave a complete classification
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for all ranks. Slightly before, Grothendieck classified bundles of all ranks over P1:
they are all direct sums of line bundles, and the proof follows the same lines as the
rank 2 case discussed above, using induction on the rank.

Let X be a compact Riemann surface of genus 1 and fix a line bundle λ of degree
1 over X. For integers r, d with r > 0, let E(r, d) be the set of isomorphism classes
of indecomposable bundle of rank r and degree d. The most straightforward case
is when r, d are coprime, so we begin with that. Atiyah proved

Proposition 3. There is a unique way to define indecomposable bundles Er,d (up
to isomorphism) for coprime rank r and degree d such that

• E1,0 = C;
• Er,d+r = λ⊗ Er,d;
• if 0 < d < r, there is an exact sequence

0 → Cd → Er,d →→ Er−d,d → 0.

Atiyah’s construction of the Er,d follows the Euclidean algorithm for the pair
(r, d). To illustrate this, consider the case of E5,3. Following the third bullet, we
want to build this as an extension

(9) 0 → C3 → E5,3 → E2,3 → 0,

so we first have to construct E2,3. Following the second bullet, we have E2,3 =
λ ⊗ E2,1, so we have to construct E2,1. The three bullets together state that this
should be an extension

(10) 0 → C → E2,1 → λ → 0.

These extensions (10) are classified by H1(λ∗) which is one dimensional, so there
is indeed a unique indecomposable E2,1. Standard arguments show that, with
E2,3 = E2,1⊗λ, the cohomology H1(E∗

2,3) is three dimensional. So an isomorphism

h : H1(E∗
2,3) → C3 builds an extension (9) and the middle term E5,3 does not

depend (up to isomorphism) on the choice of h (for any two choices differ by an
automorphism of C3).

Now the basic fact is that this construction essentially gives all indecomposable
bundles with (r, d) coprime: as L runs over the line bundles of degree 0, the tensor
products Er,d ⊗ L run once over all of E(r, d), so E(r, d) is identified with the
Jacobian Jac(X).

The statements for (r, d) = h > 1 are similar except that we start with a more
complicated initial bundle Fh ∈ E(h, 0). These are the unique indecomposble bun-
dles with degree 0, rank h and having nontrivial sections, and they can be built
inductively as

0 → C → Fh → Fh−1 → 0.

In the end, each E(r, d) is a copy of the Jacobian.

1.3. Double points in dimensions 2 and 3

The paper [6] contains some of the most significant results from Atiyah’s early
work. It lies a little outside the main themes that we have discussed but vector
bundles have some bearing on the material.

Consider a hypersurface X in Cn+1 defined by an equation f(z) = 0 with one
singular point at the origin, so the analytic function f and its first derivatives
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vanish at z = 0. There are two operations we can perform to replace X by a
complex manifold:

• Resolution: Blowing up the origin in Cn+1 sufficiently many times with
suitable centres, the proper transform of X is a complex manifold X̃ with
a map π : X̃ → X and an exceptional divisor E ⊂ X̃ which is collapsed
to the origin. The map gives a holomorphic isomorphism from X̃ \ E to
X \ {0}.

• Smoothing : For small nonzero δ ∈ C, we get a smooth hypersurface Xδ

defined by the equation f(z) = δ.

The spaces X̃ and Xδ are usually completely different as smooth manifolds. The

singularity is called an ordinary double point if the Hessian ∂2f
∂zi∂zj

of f at the origin

is nonsingular. Atiyah’s first result in [6] is that:

Proposition 4. For ordinary double points of complex surfaces, the manifolds
X̃,Xδ are diffeomorphic.

More generally if we have any surface S with ordinary double point singularities
which arises as a limit of smooth surfaces Sδ, then the resolution S̃ is diffeomorphic
to the smoothings Sδ.

If the Hessian of f is nonsingular, then, as Atiyah proved, there is a local holo-
morphic co-ordinate transformation taking f to the standard quadratic form

∑
z2i .

(This is a holomorphic version of the Morse lemma for smooth real-valued func-
tions.) In this way one can reduce to the case when X is the singular quadric
surface z21 + z22 + z23 = 0. To see how this is related to vector bundles, consider
extensions over P1:

(11) 0 → O(−1) → E → O(1) → 0,

classified by H1(O(−2)) = C. For each point τ ∈ H1(O(−2)), we can construct
a bundle Eτ and these fit into a smooth family as τ varies and it is clear that the
projective bundles P(Eτ ) are all diffeomorphic. When τ is nonzero the bundle Eτ

is holomorphically trivial—the sequence (11) is just that arising from the inclusion
of the tautological bundle O(−1) in the trivial bundle C2. Thus for τ �= 0 the
ruled surface P(Eτ ) is the product P1 × P1, the Hirzebruch surface Σ0. When
τ is zero, we have Eτ = O(1) ⊕ O(−1) which has the same projectivisation as
O⊕O(2), so P(E0) is the Hirzebruch surface Σ2. We see that Σ2 is diffeomorphic
to Σ0 = P1 × P1 but with a different complex structure. In general, the ruled
surfaces Σk for even k are all diffeomorphic (as Atiyah mentions in [3]).

For δ �= 0 the projective completion in P3 of the affine surface
∑

z2i = δ is
a nonsingular projective quadric surface Sδ, hence equivalent to P1 × P1. The
projective completion S0 of the singular affine surface

∑
z2i = 0 is a cone over the

conic Q in the hyperplane at infinity defined by the same equation. Blowing up the
origin, we get a resolution S̃0 → S0 with exceptional divisor E which is a copy of Q
with self-intersection E.E = −2. The proper transforms of the lines in S̃0 through
the origin give a ruling of S̃0 which displays S̃0 as the Hirzebruch surface Σ2. So
the preceding discussion shows that S̃0 is diffeomorphic to Sδ and it is not hard to
see that this implies Proposition 4.

In fact there are many ways of understanding this. If we take δ to be a small
positive real number, then the complex quadric Xδ in Cn+1 defined by the equation∑

z2i = δ contains an n-dimensional sphere as the set of real solutions. It is easy
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to show that, as a C∞ manifold, Xδ fibres over Sn with fibres Rn. On the other
hand the resolution X̃ contains the exceptional divisor which can be identified with
a complex quadric Q ⊂ CPn and X̃ is a holomorphic fibration over Q with fibre
C. For n > 2 the spaces Xδ and X̃ do not even have the same homotopy type:
the special feature of the surface case, when n = 2, is that the conic Q ⊂ P2 is
diffeomorphic to the 2-sphere.

Something special also happens when n = 3, and this is the most original and
significant aspect of Atiyah’s paper—the discovery of small resolutions. We can ex-
plain this, in a way which will fit in with material later in this article, by considering
quotient spaces. Consider first the action of C∗ on C2 given by

λ 
→
(

λ 0
0 λ−1

)
.

There is an invariant polynomial xy, and for t �= 0 the set xy = t is one orbit of the
action. But in the exceptional case t = 0 there are three distinct orbits: the origin
and the two axes minus the origin. The quotient space C2/C∗ is a non-Hausdorff
space since these orbits cannot be separated. To get around this, we make a choice
of which orbit to include and then we get a quotient space C.

Now extend this to consider the action of C∗ on C4 with co-ordinates
(x1, x2, y1, y2) with λ acting as multiplication by λ on the xi and λ−1 on the yj .
There are four invariant polynomials Aij = xiyj and these satisfy an identity

(12) A11A22 −A12A21 = 0.

In more invariant terms, if we write C4 = V1 ⊗ V2 for two-dimensional spaces Vi,
then the polynomials Aij define the tensor product map α : V1 ×V2 → V1 ⊗V2 and
the image is the variety of matrices with determinant zero.

The left-hand side of (12) is a nondegenerate quadratic form, so the image of
α can be identified with our standard singular quadric X ⊂ C4 with one ordinary
double point. The fibre of α over any nonzero point is a single C∗ orbit but the
quotient C4/C∗ is not Hausdorff for the same reason as before. So, as before, we
consider three different subsets U0, U+, U− of C4:

• in U+ we include all points (x, y) with x �= 0;
• in U− we include all points (x, y) with y �= 0;
• in U0 we include the origin but no other point (x, y) with x or y equal to 0.

Then U0/C
∗ is identified by α with the singular quadric X while Y± = U±/C

∗ are
complex manifolds. The projectivization map from V1\{0} to P(V1) induces a map
from Y+ to P1 with fibre C2. More precisely, Y+ is the total space of the bundle
O(−1)⊕O(−1) over P1. The map α induces a map from Y+ to the singular quadric
X with fibre P1 over the origin. This is a small resolution because this fibre has
codimension 2 rather than 1. Of course the same applies to Y−, but this gives a

different small resolution. In the usual resolution X̃, obtained by blowing up the
origin, the exceptional fibre is a copy of a nonsingular quadric surface Q ⊂ CP3,
which is the product P1 ×P1. Then the map X̃ → X factors through either Y+ or
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Y− by collapsing one of the P1 factors in Q and we have a diagram:

X̃

X

Y+ Y−
�

���

�
���

�
���

�
���

To relate this to the two-dimensional case, we take the composition of the map
Y+ → C4 with a generic linear projection from C4 to C to get p : Y+ → C. For
nonzero t in C the fibre p−1(t) is a smooth quadric surface in C3 while p−1(0) is
the resolution of the singular quadric surface. One checks that p is a submersion
which shows again that the two are diffeomorphic, and this is the way that Atiyah
proves Proposition 4.

Finally, suppose that Z is a 3-fold and q : Z → B is a holomorphic map to a Rie-
mann surface such that the fibres have at worst ordinary double point singularities.
In other words the triple (Z,B, q) is a family of surfaces over B. Atiyah considers a

double cover � : B̂ → B branched over the critical values of q (and possibly other

points of B). Then there is a pulled-back family Ẑ → B̂, but each critical point of

q produces an ordinary double point singularity in Ẑ. Performing small resolutions
of these singularities, Atiyah gets a new family q∗ : Z∗ → B̂ which is a submersion
with all fibres smooth. In other words, he resolves the singularities of the fibres of
q “in the family”, after going to the double cover. (The cover cannot be avoided
since the original family has nontrivial monodromy around the critical values in B
but the monodromy has order 2 so is removed in the double cover.)

1.4. Some later developments

In Part 2 we jump forward almost two decades, so here we will mention some
developments in the intervening period, roughly 1958–1977, which are relevant to
both Atiyah’s early and later work.

The theory of moduli spaces of bundles over Riemann surfaces, which had ap-
peared in an informal way in Atiyah’s early papers, was put on a solid foundation
in the early 1960s by Mumford [48], as an application of his geometric invariant
theory. He introduced the notion of stability of a vector bundle over a compact
Riemann surface X and showed that for each (r, d) there is a moduli space M(r, d)
of stable holomorphic or rank r and degree d over X. These map to the Jacobian
of X by the determinant of the bundle and the fibre, N(r, d) say, has complex di-
mension (r2 − 1)(g− 1). These are quasiprojective varieties, and when r and d are
coprime they are projective. In the case of rank 2 bundles the stability condition
is just that ν(E) < d/2 where ν is the invariant we discussed in section 1.2. The
geometry and topology of these moduli spaces was studied by Newstead (a former
student of Atiyah), Narasimhan, Seshadri, Ramanan, and others. The simplest case
is when X has genus 2 with r = 2, d = 1. It was shown by Newstead [56] and by
Narasimhan and Ramanan [51] that N = N(2, 1) is the intersection of two quadrics
in P5. Up to a covering this is the same as Atiyah’s moduli space of projective
bundles, discussed in section 1.2. If L is a line bundle over X with L2 = C, then
rank 2 bundles E and E ⊗ L have the same determinant. In genus 2 there are 24

such line bundles L, and we get an action of (Z/2)4 on N with quotient MP. Write
N in standard form as the intersection of the quadrics

∑
w2

i = 0 and
∑

λiw
2
i = 0
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in CP5. The group G = (Z/2)6 acts on C6 by multiplication of the co-ordinates wi

by ±1. Let G0 ⊂ G be the index 2 subgroup which changes only an even number of
signs. Then −1 is in G0 and acts trivially on P5 and G1 = G0/(±1) is isomorphic
to (Z/2)4. This gives the (Z/2)4 action on N and MP = N/G1. To relate this
to Atiyah’s description, the map Zi = w2

i induces an equivalence between N/G
and the 3-plane P3 = {

∑
Zi = 0,

∑
λiZi = 0} in CP5. The induced map from

MP = N/G1 to P3 has degree 2 (since ±1 acts trivially on N) and is a double
cover branched over the six planes {Zi = 0} in P3. We saw that the extension
construction gives a map from a P1 bundle over the Jacobian Jac(X) to MP. This
lifts to N if we take the cover of Jac(X) by itself given by the doubling map. So
for each point in Jac(X), we get a map from P1 to N . Newstead, and Narasimhan
and Ramanan showed that the images are lines, and all lines in N arise in this way.
This fits into a famous classical picture involving three spaces (see [35, Chapter 6]).

• Genus 2 curves X.
• Principally polarised abelian surfaces J .
• Intersections N of two quadrics in P5.

To get from X to J , we take the Jacobian Jac(X). To get from J to X, we take
the theta divisor (assuming that J is not a product). To get from X to N , we take
the moduli space of rank 2 bundles N(2, 1). To get from N to X, we take the six
points λi in P1 corresponding to the singular quadrics in the pencil through N and
the double cover of P1 branched at these points. Finally, to get from N to J , we
take the set of lines in N .

In section 1.1 we mentioned the 1938 result of Weil which states that an indecom-
posable rank r vector bundle of degree 0 over a curve arises from a representation
of the fundamental group in GL(r,C). The drawback of this is that the represen-
tation is far from unique. For example in the case of rank 1 bundles, the space
of representations has dimension 2g while the space of degree 0 line bundle—the
Jacobian—has dimension g. In 1965 Narasimhan and Seshadri obtained a much
sharper result. First, the degree restriction can be removed by considering pro-
jective representations. More important they showed that considering irreducible
unitary representations selects out exactly the stable bundles of Mumford and that
the representation associated to a bundle is unique. More precisely, let x0 ∈ X
be a basepoint, and let αi, βi be standard generators for the fundamental group
π1(X, x0) with relation

g∏
i=1

[αi, βi] = 1.

Let π̃r be the central extension of π1(X, x0) defined by adjoining an element z
such that zr = 1 and

∏g
i=1[αi, βi] = z. Then Narasimhan and Seshadri proved

in [52] that there is a 1-to-1 correspondence between equivalence classes of stable
rank r bundles E with ΛrE = d O(x0) and conjugacy classes of irreducible unitary
representation of π̃r in U(r) which map z to exp(2πid/r). It is hard to overstate
the significance of this result for later developments, some of which we will discuss
in Part 2. Here we will just see how it fits in with Atiyah’s classification of bundles
over elliptic curves. In that case stable bundles only occur when r, d are coprime,
so we assume that. The representations are given by A,B ∈ U(r) satisfying

ABA−1B−1 = ζ1,
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where ζ = exp(2πid/r) ∈ C is a primitive rth root of unity. To construct such
a representation, let A be the map which permutes the standard basis vectors
cyclically

Ae1 = e2, . . . , Aer = e1,

and let B be diagonal in this basis with Bek = ζkek. This is the unique irreducible
representation up to conjugacy and corresponds to Atiyah’s bundle Er,d.

Meanwhile, there were developments in the study of bundles over higher-dimen-
sional varieties. Maruyama constructed moduli spaces of stable bundles over pro-
jective surfaces, with an extension of Mumford’s definition of stability. Atiyah’s
former student Schwarzenberger studied bundles over the projective plane and
other surfaces [62]. He introduced the notion of jumping lines. A stable bundle
with first Chern class 0 over the plane is trivial on generic lines, but not on all.
There is a curve in the dual plane parametrising lines such that the restriction is
nontrivial—typically O(1)⊕O(−1). This jumping curve is an interesting invariant
of the bundle. The degree of the curve is equal to the second Chern class of the
bundle. For bundles of rank 2 and c2 = 2, we get a conic and the bundle can be
reconstructed from the conic. One takes a suitable line bundle L → Q over the
quadric surface Q which is a double cover of P2 branched over the conic. The direct
image of this line bundle is a rank 2 bundle over P2.

The ramifications of Atiyah’s results on double points are so extensive that they
would require much more space than we have and much more knowledge on the part
of the author to treat them properly. In one direction they lead on to Brieskorn’s
theory of simple singularities associated to the Lie algebras of types A,D,E (which
we will see a little of in section 2.4.3). In another direction, small resolutions are
crucial in the classification theory of higher-dimensional varieties and in mirror
symmetry for Calabi–Yau threefolds.

Part 2. Gauge theory

In the commentary on Volume 5 of his collected works [7], Atiyah wrote:

From 1977 onwards my interests moved in the direction of gauge
theories and the interaction between geometry and physics. . . . The
stimulus came from two sources. On the one hand Singer told
me about the Yang–Mills equations which through the influence of
Yang were just starting to percolate into mathematical circles. . . .
The second stimulus came from the presence in Oxford of Roger
Penrose and his group.

2.1. The Yang–Mills equations and self-duality

Gauge theory refers to the study of a connection A on a principal bundle P with
structure group G over a manifold M . The curvature F (A) is a 2-form with values
in the bundle adP associated to the adjoint action of G on its Lie algebra. If M has
a Riemannian or pseudo-Riemannian metric g and if we have an invariant quadratic
form on the Lie algebra, we can write down the Lagrangian

(13) L =

∫
M

|F (A)|2dμ
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and associated Euler–Lagrange equations

(14) d∗AF (A) = 0.

This is a second-order partial differential equation for the connection A. (Of course
the Euler–Lagrange equations are generated by the formal expression (13)—there
is no assumption that the integral is well-defined.) If the structure group G is S1,
the curvature is an ordinary 2-form. If M is Lorentz space-time R3,1, this is the
setting for classical electro-magnetism, with F the electromagnetic field. Writing
this in terms of a space-time splitting as a pair (E,B) of electric and magnetic
fields, the Lagrangian is ∫

R3,1

|E|2 − |B|2,

and the equation d∗F = 0 along with dF = 0 (which is true for any curvature
2-form) are the source-free Maxwell equations for (E,B). In all that follows we will
be concerned with the case when M has a Riemannian metric g, and we usually
suppose that G is compact and the form on the Lie algebra is positive definite.
Then the integral (13) is the square of the standard L2 norm of the curvature,
as the notation suggests. The passage from Lorentzian to Euclidean signature
becomes relevant to physics in quantum field theory, which we will not attempt to
say anything about here.

There are several special features of Yang–Mills theory when the dimension of
the base manifold M is 4. The integral (13) and the Yang–Mills equation (14) are
conformally invariant and there are first-order instanton equations whose solutions
satisfy the second-order Yang–Mills equations, in much the same way as holomor-
phic functions on C are harmonic. We assume that the Riemannian 4-manifold M
is oriented; then there is a ∗-operator ∗ : Λ2 → Λ2 with ∗2 = 1 and the 2-forms
decompose into the ±1 eigenspaces Λ2 = Λ2

+ ⊕ Λ2
− of self-dual and anti-self-dual

forms. Then we can write

F (A) = F+(A) + F−(A)

and the instantons have F+ = 0 (self-dual connections) or F− = 0 (anti-self-dual
connections). If M = R4 with a space-time splitting R4 = R3 × R we can write
the curvature as a pair (E,B), and the instanton condition is E = ±B.

Another special feature of dimension 4 is that there are topological invariants—
characteristic numbers—which are also given by integrals of quadratic expressions
in the curvature. Let b be an invariant quadratic form on the Lie algebra. In
Chern–Weil theory, for any connection A on a G bundle P → M , one considers a
4-form b(F (A)) on M . One shows that this is a closed form and that its de Rham
cohomology class depends only on the bundle P , not on the choice of connection. It
defines a characteristic class κb of P in H4(M ;R). When M is a compact oriented
4-manifold we get a characteristic number

κb(P ) =

∫
M

b(F ).

Take b to be the positive definite form used to define the Lagrangian. Then from
the definition of the ∗-operator we have

κb(P ) =

∫
M

|F+|2 − |F−|2 dμ,
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while

L(A) =

∫
M

|F+|2 + |F−|2 dμ.

It follows that an instanton connection on P is an absolute minimum of L: it is a
± self-dual connection depending on the sign of κb(P ). For example consider the
group G = SU(r) with the standard positive definite form b(ξ) = −Tr(ξ2) on its
Lie algebra. Then Chern–Weil theory shows that

κb(P ) = −8π2〈c2(P ), [M ]〉,

where c2 is the second Chern class. So on a bundle with c2 < 0 we can look
for self-dual connections, and on a bundle with c2 > 0 we look for anti-self-dual
connections. If c2 = 0 the formulae show that any instanton must be flat, with
F = 0.

Atiyah’s first contribution to Yang–Mills theory (with Hitchin and Singer) was
an application of the index theorem to find the dimensions of moduli spaces of
instantons. This was outlined in a note [16] with full details and applications in
[17]. For physics the main case of interest was when the base manifold is Euclidean
R4 which has the 4-sphere S4 as conformal compactification. Finite action solutions
of the Yang–Mills equations over R4 are equivalent to smooth solutions on S4 (as
was proved a few years later by Uhlenbeck). Changing orientation switches self-dual
and anti-self-dual. There is a better fit with standard conventions if one chooses
to discuss anti-self-dual (ASD) connections, so we will follow that convention here
(different to the convention in the papers of Atiyah, Hitchin, and Singer). The
first interesting case is the structure group G = SU(2) and a bundle P → S4 with
c2(P ) > 0. A construction of t’Hooft (which we will discuss further below) gave
families of solutions depending on approximately 5k parameters. Atiyah, Hitchin,
and Singer showed that the general solution depends on 8k − 3 parameters. More
precisely, the moduli space Mk of solutions is a manifold of dimension 8k − 3.

We will now review Atiyah, Hitchin, and Singer’s analysis of the deformation
problem in general. This involves variants of the ideas and technology used to
study deformations of complex manifolds and holomorphic bundles. Let A be an
ASD connection on a G-bundle P → M with M a compact oriented 4-manifold
and G compact. Recall that “the difference of two connections is a tensor”: the
general connection on P can be written as A+ a where a ∈ Ω1(adP ): the 1-forms
with values in the bundle adP . We have a coupled exterior derivative

dA : Ωp(adP ) → Ωp+1(adP ),

and the formula for the curvature is

(15) F (A+ a) = F (A) + dAa+
1

2
[a, a],

where the last expression combines the bracket on the fibres of adP with the wedge
product on forms. Thus

(16) F+(A+ a) = d+Aa+
1

2
[a, a]+,

where the + superscripts denote projection to the self-dual forms. The group G of
automorphisms of the bundle P covering the identity on M acts on the connections,
and connections in the same orbit are geometrically equivalent. By definition the
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moduli space M is the quotient of the set of solutions to the ASD equation by G.
We can write

(17) g(A) = A− (dAg)g
−1.

(Strictly, the notation here assumes that G is a matrix group so that g can be
regarded as a section of an associated vector bundle.)

For small a we have, schematically, F+(A + a) = d+Aa + O(a2). If g is close to
the identity, we can write g = exp(−u) for u ∈ Ω0(adP ) and, again schematically,
g(A) = A + dAu + O(u2). The linearised version of the deformation problem is
expressed through a complex

(18) Ω0(adP )
dA→ Ω1(adP )

d+
A→ Ω2

+(adP ),

with cohomology groups H0
A, H

1
A, H

2
A. The cohomology H1

A consists of solutions of
the linearised ASD equation modulo those that arise from gauge transformations
of A, so it is a natural candidate to be the tangent for the moduli space M at
the equivalence class [A]. One of the main results is that this is true provided
that the connection A is irreducible and the second cohomology H2

A vanishes. Here
“irreducible” means that the bundle P with connection A does not reduce to any
proper subgroup of G. (In fact one needs the weaker condition that the bundle
does not reduce to a subgroup whose centralizer in G is larger than the centre of
G.) This implies that H0

A vanishes, because a nonzero covariant constant section
of adP induces a reduction of the bundle.

Index theory computes the Euler characteristic h0−h1+h2 of the complex (18).
For this we consider, as standard in elliptic and Hodge theory, the operator

DA = d∗A + d+A : Ω1(adP ) → Ω0(adP )⊕ Ω2
+(adP ),

whose kernel is isomorphic to H1
A and cokernel to H0

A ⊕H2
A, so the index of DA is

minus the Euler characteristic. Suppose for a moment that M is a spin manifold,
so we have bundles V ± → M of positive and negative spinors. These are bundles
with fibre C2 and structure group SU(2). We have V + ⊗ V + = Λ2V + ⊕ S2V +.
The first summand has a fixed isomorphism with C and the second with Λ2

+ ⊗C.
On the other hand V + ⊗V − is isomorphic to the complexified cotangent bundle of
M . So the complexification of DA is an operator

DC
A : Γ(V − ⊗ E) → Γ(V + ⊗ E),

where E is the complex vector bundle V + ⊗ adP . This operator is the Dirac
operator (from negative to positive spinors) coupled to the vector bundle E so
Atiyah, Hitchin, and Singer conclude that

(19) ind(DA) = −
∫
M

ch(V + ⊗ adP )Â(M),

(see the article of Dan Freed in this volume [31]). From general considerations, the
formula is still valid if M has no spin structure.

In the case when M = S4, Atiyah, Hitchin, and Singer used this index formula
to find exactly which bundles admit ASD connections. In this case we can assume
that G is compact, simply connected, and simple. The G-bundles over S4 are
classified by π3(G) and by Lie theory there is an SU(2) subgroup K ⊂ G, unique
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up to conjugacy, such that the inclusion defines an isomorphism Z = π3(SU(2)) →
π3(G). So the G-bundles are determined by an integer k and this is compatible
with reduction of structure groups. The existence result is:

Theorem 1. There exist G irreducible ASD connections G connections over S4 if
and only if

• for G = SU(r), k ≥ r/2;
• for G = Sp(r), k ≥ r;
• for G = Spin(r) and r ≥ 7, k ≥ r/4;
• for G = G2, k ≥ 2;
• for G = F4, E6, E7, E8, k ≥ 3.

The proof is, roughly speaking, to start with the known SU(2) solutions and
to compare moduli space dimensions to see when they can be deformed to larger
structure groups. This involves a more delicate analysis of the deformation theory,
when H0

A is nonzero.

2.2. Self-dual manifolds and twistor spaces

Another theme in the paper [17] of Atiyah, Hitchin, and Singer was a founda-
tional study of self-dual 4-manifolds and their twistor spaces, in the Riemannian
case. (Twistors were introduced by Penrose, initially over Lorentzian space-times.)

Let (M, g) be an oriented Riemannian manifold of even dimension 2m. For each
point p ∈ M we can consider complex structures on the real vector space TMp

compatible with the metric and orientation. The compatible complex structures on
R2m are parametrised by the homogeneous space Σ = SO(2m)/U(m) which has a
standard SO(2m)-invariant complex structure. We get a bundle π : Z → M with
fibre Σ such that a point z of π−1(p) defines a compatible complex structure Iz on
TMp. The Levi-Civita connection of (M, g) defines a horizontal subbundleH ⊂ TZ,
complementary to the tangent bundle along the fibres (the vertical subbundle). We
define an almost-complex structure J on Z by specifying that at a point z ∈ π−1(p):

• J : TZz → TZz preserves the horizontal and vertical subbundles.
• J : Hz → Hz is equal to Iz under the isomorphism dπ : Hz → TMp.
• The restriction of J to the vertical subspace is given by the standard com-
plex structure on Σ.

It is not hard to check that this almost-complex structure depends only on the
conformal class of the metric g.

We now restrict our attention to 4-manifolds, with m = 2. Then Σ is just the
Riemann sphere. A compatible complex structure I on R4 defines a 2-form ω
by the usual formula ω(ξ, η) = 〈Iξ, η〉 and this is a self-dual form of length

√
2.

For example, if we take the standard complex structure with complex co-ordinates
z1 = x1 + ix2, z2 = x3 + ix4, then ω = dx1dx2 + dx3dx4. This gives a 1-to-1
correspondence between Σ and the unit sphere in Λ2

+. Similarly, Z is identified
with the unit sphere bundle in the rank 3 real vector bundle Λ2

+ → M4. The
antipodal map on the fibres defines a map τ : Z → Z which reverses the almost-
complex structure.

The curvature tensor Riem of a Riemannian manifold is a section of Λ2⊗Λ2. In
dimensions greater than 4 it has a decomposition into three irreducible components:
the trace-free Ricci curvature Ricci0, the scalar curvature R (which is the trace of
the Ricci curvature), and the Weyl curvature, which is conformally invariant. For
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an oriented 4-manifold there is another decomposition. We split Λ2 into self-dual
and anti-self-dual parts and we get four components R++ ∈ Λ2

+⊗Λ2
+, etc., of Riem.

Then

• R+− and R−+ are naturally identified with the trace-free Ricci tensor
Ricci0.

• The traces of R++, R−− are both equal to 1/4 the scalar curvature.
• The trace-free parts W+,W− of R++, R−− are the self-dual and anti-self-
dual parts of the Weyl curvature.

The main foundational result then is

Theorem 2. For an oriented Riemannian 4-manifold (M, g) the almost-complex
structure on Z is integrable if and only if W+ = 0.

In this case the space Z is called the twistor space of (M, g). Atiyah, Hitchin,
and Singer use the opposite orientation convention, so they consider manifolds
with W− = 0 called self-dual 4-manifolds, whereas we are considering anti-self-dual
manifolds. The 4-manifold M with its conformal structure can be recovered from Z
as the space of real lines—embedded complex curves of genus 0 which are preserved
by the antiholomorphic involution τ .

Before discussing the proof of Theorem 2, we consider the model case when
M = R4. We use a different description of Σ as P(V +) where V + is the positive
spin space. Let P3 = P(V + ⊕ V −) so P3 is a complex projective space containing
two distiguished lines P(V +) and P(V −). Write P3

∗ for the complement of P(V −).
Then there is a holomorphic fibration � : P3

∗ → P(V +) with fibres affine complex
planes whose projective completions correspond to the family of projective planes
through the line P(V −).

The spin spaces V +, V − can be regarded as one-dimensional quaternionic vector
spaces, and we have an isomorphism c : R4 → HomH(V +, V −). For a nonzero
ψ+ ∈ V + the map

x 
→ (ψ+, c(x)(ψ+))

induces a 1-to-1 correspondence betweenR4 and the affine complex plane�−1([ψ+])
and the induced complex structure on R4 is that specified by [ψ+] ∈ P(V +) and
the isomorphism Σ = P(V +). This gives an equivalence between the twistor space
Z(R4) and P3

∗. The twistor space of the conformal compactification S4 is CP3.
Another way of expressing things is to start with the quaternionic vector space H2.
Then we can take the quaternionic projective space

S4 = HP1 = H2 \ {0}/H∗

or the complex projective space

CP3 = H2 \ {0}/C∗,

and we see that there is a natural map π : CP3 → S4, which is the twistor fibration.
We now return to the foundational Theorem 2. The Newlander–Nirenberg theo-

rem states that an almost-complex structure is integrable if and only if its Nijenhius
tensor vanishes. Given this, the proof of Theorem 2 is a differential geometric cal-
culation which can be done in various ways. Atiyah, Hitchin, and Singer work on
the total space of a C∗-bundle over Z (which is H2\{0} in the case of M = S4) and
consider the twistor equation, an overdetermined linear equation for spinor fields
on M . A more direct approach exploits the conformal invariance by varying the
Riemannian metric. If p is a point in a Riemannian manifold, we can choose a
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conformally equivalent metric whose Ricci curvature vanishes at p. This follows
from the fact that the change in the Ricci curvature under a conformal factor ef

is given by the Hessian of f plus lower-order terms. We will apply this to our 4-
manifold M . Another way of expressing the Newlander–Nirenberg theorem is that
an almost-complex structure J on a manifold W is integrable if and only for each
point w ∈ W we can choose local co-ordinates centred at w such that structure J
agrees with the standard structure up to first order—i.e., the first derivatives of the
almost-complex structure expressed in these co-ordinates vanish at the origin. We
apply this to a point z ∈ π−1(p) ⊂ Z(M). Choose a metric in the conformal class
such that the Ricci curvature vanishes at p. In the decomposition of the Riemann
curvature tensor, the curvature of the bundle Λ+ is given by R++ and R+−. So
in our situation, with W+ + 0, the curvature of the bundle Λ+ vanishes at p. This
means that we can choose a geodesic co-ordinate chart on M and a trivialisation
of Λ+ around p in which the connection matrix of Λ+ vanishes to first order. It is
then clear that the almost-complex structure on Z(M) agrees with that on Z(R4)
to first order around π−(p), and since the latter is integrable, as we have seen above,
the same holds for Z(M).

The upshot of this theory is that an (anti) self-dual conformal structure is en-
coded in the complex geometry of a complex 3-fold Z with antiholomorphic invo-
lution τ . Similarly, the ASD Yang–Mills instantons are encoded as holomorphic
bundles over Z by a construction originating with Ward [70]. We consider first the
noncompact structure group GL(r,C). Recall from section 1.1 that a holomorphic
vector bundle E → Z has an intrinsic ∂-operator

∂E : Ω0(E) → Ω0,1(E),

which has an extension to forms Ωp,q(E) with ∂
2

E = 0 and hence the (0, 2) compo-
nent F 0,2 of the curvature of a compatible connection ∇E vanishes. A version of
the Newlander–Nirenberg theorem states that conversely any connection on a C∞

bundle with F 0,2 = 0 defines a holomorphic structure. Now let E be a bundle with
connection ∇ on the ASD 4-manifold M , and let E = π∗(E)—a bundle over Z with
a pulled-back connection ∇ = π∗(∇). The counterpart to Theorem 2 is

Theorem 3. The curvature of ∇ has F 0,2 = 0 if and only if ∇ is an ASD instanton
over M .

This is a much easier calculation. In the horizontal and vertical splitting of TZ,
the curvature of ∇ is purely horizontal, since it is lifted from the base. To under-
stand the horizontal component, we have to consider the ± self-dual decomposition
for 2-forms on C2, equipped with its standard metric. The (p, q) decomposition of
the complexified forms is

Λ2
C = Λ2,0 ⊕ Λ1,1 ⊕ Λ0,2.

We have a U(2)-invariant metric form ω which is of type (1, 1) so Λ1,1 decomposes

as the C.ω ⊕ Λ1,1
0 . One readily sees that the complexified anti-self-dual forms are

just Λ1,1
0 and the complexified self-dual forms are C.ω ⊕ Λ2,0 ⊕ Λ0,2. This implies

one direction in the statement: if ∇ is an ASD instanton the pull-back curvature
has type (1, 1). For the converse one checks that a self-dual form on R4 has nonzero
(0, 2)-component for some complex structure.

Again, one can recover the ASD connection ∇ from holomorphic data on Z.
By the integrability theorem, the connection ∇ defines a holomorphic structure
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on the bundle E over Z and this is clearly holomorphically trivial on the fibres
of π—the real lines. Conversely if E is any holomorphic bundle over Z which is
holomorphically trivial on the real lines, then we can define a C∞ vector bundle
E over M by a direct image construction: the fibre of E at a point p ∈ M is the
space of holomorphic sections of E over π−1(z). We define a connection on E in the
following fashion. Let s be a section of E → M ; by definition this gives a section
s of E, holomorphic along the fibres. For a point p in M we define a subset Ip of

sections s by saying that s ∈ Ip if ∂Es vanishes along π−1(p). Then one checks that
there is a unique connection ∇ on E such that s is in Ip if and only if ∇s vanishes
at p. (The verification of this uses the fact that the holomorphic bundle E is trivial
on the first formal neighbourhood of each fibre.)

The conclusion is that the study of instantons with structure group GL(r,C) on
the ASD manifold M is equivalent to the study of rank r holomorphic bundles on
Z which are trivial on all real lines. The theory can be extended to general groups.
For structure group U(r) one needs the additional condition of a real structure on
the bundle: an isomorphism E = τ∗(E∗).

In higher dimensions the almost-complex structure on the twistor space with
fibre SO(2m)/U(m) is almost never integrable. There is a good higher-dimensional
version of the theory, developed by Salamon [59],[60] for quaternionic and quater-
nion Kähler base manifolds.

2.3. The ADHM construction

One of Atiyah’s most decisive contributions to Yang–Mills theory was his con-
struction (in joint work with Hitchin, contemporaneous with independent work of
Drinfeld and Manin) of the general solution of the Yang–Mills instanton equations
over S4 (for compact classical groups). This was preceded by some earlier work with
Ward [19], which we will touch on later. The result of Atiyah, Drinfeld, Hitchin,
and Manin appeared in the short note [14], and Atiyah gave an extended exposition
in [7]. The construction is normally called the ADHM construction.

For the moment we ignore real structures: then the problem is to describe holo-
morphic bundles E over CP3 which are trivial on the generic line, so in particular
c1(E) = 0. Much of the relevant theory had been developed earlier by Horrocks
and Barth. The basic idea is to construct E as the cohomology of a monad or
2-step complex of the form,

(20) U(−1)
a→ V

b→ W (1).

Here U, V,W are complex vector spaces; U, V ,W are the corresponding trivial
bundles over CP3, and the (p) notation means tensor product with the line bundle
O(p) as in section 1.2. The maps a, b are holomorphic bundle maps with a injective,
b surjective, and b ◦ a = 0. Such a monad defines a bundle E as the cohomology
Ker b/ Im a. Notice that a monad description for E gives one for E∗, when we
replace U, V,W by their duals and take the transposed maps.

The approach of Barth and Horrocks is based on a characterisation of sums of
line bundles, due to Horrocks [40].

Proposition 5. A holomorphic vector bundle V over CP3 is a direct sum of line
bundles if and only if the cohomology groups H1(V (p)), H2(V (p)) vanish for all p.
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Here one direction is completely standard. In general, line bundles O(p) over pro-
jective spaces can have nonzero cohomology only in the top and bottom dimension.
In the case of CP3, the cohomology H0(O(p)) is nonzero for p ≥ 0, and H3(O(p))
is nonzero for p ≤ 4. Serre duality relates p and −4−p. For p = −1,−2,−3 the line
bundle O(p) has no cohomology, and for the analysis of the vector bundle E the
key roles are played by the cohomology groups H1(E(−1)), H1(E(−2)) and their
Serre duals H2(E∗(−3)), H2(E∗(−2)).

The main technique in this approach is the construction of bundles as extensions,
something which was prominent in Atiyah’s earlier work discussed in Part 1. Given
a bundle E and a vector space W , consider extensions

(21) 0 → E → Q → W (1) → 0.

These are classified by H1(E(−1))⊗W ∗. Take W to be H1(E(−1)), so the exten-
sions are classified by W ⊗W ∗ = Hom (W,W ) and there is a preferred class given
by the identity. This class defines a bundle Q and exact sequence (21). Taking the
tensor product with O(−1) we get a long exact sequence, part of which is

W
∂→ H1(E(−1)) → H1(Q(−1)) → 0 → H2(E(−1)) → H2(Q(−1)) → 0.

The coboundary map ∂ is the product with the extension class, hence an iso-
morphism, and we see that H1(Q(−1)) = 0 while H2(Q(−1)) is isomorphic to
H2(E(−1)). Dually, we consider a vector space U and extensions

(22) 0 → U(−1) → K → E → 0,

classified by H1(E∗(−1)) ⊗ U . We take U to be the dual of H1(E∗(−1)), which
is H2(E(−3)), and the extension corresponding to the identity. Now we find that
H1(K(−3)) = 0 while H2(K(−3)) is isomorphic to H2(E(−3)). In brief, passing
from E to Q “kills” H1( (−1)) while preserving H2( (−1)) while passing from
E to K kills H1( (−3)) while preserving H2( (−3)).

Since the inclusion of E in Q induces an isomorphism on H1( (−1)) the exten-
sion (21) prolongs to an extension U(−1) → V → Q for some bundle V which fits
into a diagram:

0 0

0 E Q W (1) 0

0 K V W (1) 0

U(−1) U(−1)

0 0

� � � �

� � � �

� �

� �

� �

� �
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By construction, there are maps a : U(−1) → V , b : V → W (1) with ba = 0 and
such that E = Ker b/ Im a. So the task is to show that, for a bundle E corresponding
to an instanton, the bundle V is trivial. Following through long exact cohomology
sequences, one finds that H1(V(−1)) and H2(V(−3)) vanish but

H1(V(−2)) = H1(E(−2)), H2(V(−2)) = H2(E(−2)).

So a necessary condition for V to be trivial is that H1(E(−2)) = H2(E(−2)) = 0.
Barth, and Barth and Hulek [21], established a converse.

Proposition 6. If E is trivial on some line and H1(E(−2)) = H2(E(−2)) = 0
vanish, then the bundle V is trivial, and hence E arises from a monad.

(Here the cohomology groups H2(E(−2)) and H1(E∗(−2)) are Serre duals, so
the two vanishing conditions are interchanged by interchanging E and E∗. In fact,
Barth and Hulek considered bundles with E ∼= E∗.) The proof is to show that,
under these assumptions, all the intermediate cohomology of V vanishes so that
Horrocks’ result can be applied. Then one shows that H0(V(−1)), H0(V∗(−1))
vanish, which implies that the line bundles in the sum given by Horrocks’ theorem
must be trivial.

The final step then, in the proof of the ADHM result, is to show that a bun-
dle E arising from a U(r) instanton on S4 satisfies the vanishing conditions in
Proposition 6. Replacing E by E∗ it suffices to show that H1(E(−2)) = 0. This
uses some further twistor theory, for linear equations. In general there are Penrose
correspondences between cohomology classes on the twistor space and solutions of
linear PDE on S4. In fact this is a local theory, so it applies to open sets U in S4

and π−1(U) in CP3. In the case at hand the relevant correspondence is between
H1(E(−2)) and solutions of the equation

(23) ∇∗∇s+
R

6
s = 0

for sections s of E. Here R is the scalar curvature of S4. The scalar curvature
enters in making the equation conformally invariant, when considered as applying
to suitable densities. If we take U ⊂ R4 and use the Euclidean metric, the relevant
equation is just ∇∗∇s = 0. To give an idea of this correspondence, we will consider
the case when the bundle and connection are trivial, which goes back to the origins
of Penrose’s theory. So we have to go from a class Φ in H1(π−1(U),O(−2)) to a
harmonic function on U ⊂ R4. For any line L in π−1(U) the cohomology group
H1(L,O(−2)) is isomorphic to C and the choice of a metric in the conformal class
fixes a definite isomorphism. So the restrictions of Ψ to the real lines gives a
function on U , and we want to see that this is harmonic. We can calculate in a
small neighbourhood of the origin in R4 and the corresponding line L0 ⊂ CP3.
Take a standard cover of L0 by two open sets overlapping in a neighbourhood of
the equator and thicken these to open sets Ω1,Ω2 in CP3. Using Čech cohomology,
the class Φ can be represented by a section φ of O(−2) over Ω1 ∩ Ω2. Recall
that the twistor space of R4 can be identified with the total space of the bundle
O(1) ⊕ O(1) over L0. Take a co-ordinate z on L0 and standard trivialisation of
O(1) away from z = ∞, so we get co-ordinates z, ζ1, ζ2 over Ω1 ∩ Ω2. Now it is
convenient to work in the complexification, considering all lines near to L0. These
are described as sections of O(1) ⊕ O(1) and depend on four complex parameters
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p, q, r, s, corresponding to the section with equations

ζ1 = pz + q, ζ2 = rz + s.

Over a neighbourhood of L0 the bundle O(−2) can be identified with the pullback of
the cotangent bundle of L0. Thus we can write φ = f(z, ζ1, ζ2)dz for a holomorphic
function f of three variables. With this setup, the evaluation of the class on a line
is defined by integrating around an equatorial contour, so we arrive at the function

F (p, q, r, s) =

∫
γ

f(z, pz + q, rz + s)dz.

Elementary calculus shows that F satisfies the equation:

∂2F

∂p∂s
− ∂2F

∂q∂r
= 0.

This is the complexified Laplace equation corresponding to the quadratic form
ps− qr on C4. Making a linear change of co-ordinates to put this quadratic form
into the standard shape

∑
x2
i and then restricting to the real points, we get an

integral representation of harmonic functions, which in fact goes back to Bateman
[20] in 1904.

What we have discussed above is just the easiest part of the Penrose corre-
spondence. But, assuming that correspondence, the vanishing of H1(E(−2)) for a
bundle E corresponding to a unitary instanton is immediate because ∇∗∇ + R

6 is

a positive operator, so the only global solution of (23) over S4 is s = 0.

2.4. Topology and geometry of moduli spaces

2.4.1. Riemann surfaces. In this subsection we discuss the long and influential
paper, The Yang–Mills equations over Riemann surfaces [12], by Atiyah and Bott.
This takes up some of the themes in Atiyah’s earlier work, discussed in Part 1, and
subsequent developments outlined in section 1.4. Let X be a compact Riemann
surface of genus g ≥ 1. For each r and 0 ≤ d < r there is a moduli space Mr,d of
stable holomorphic vector bundles over X of rank r and degree d and fixed deter-
minant, and these have a Narasimhan–Seshadri description in terms of projective
unitary representations. We will concentrate on bundles of rank r = 2. The most
straightforward case in some ways is to take d = 0 when one can fix the determinant
to be the trivial line bundle, but there is a major complication that there are then
also reducible representations. The moduli space of irreducible representations is
not compact and the obvious compactification, adjoining the reducible representa-
tions, is singular. So we will consider the case with r = 2, d = 1, and we get a
compact moduli space M = M2,1 which is a complex manifold of dimension 3g−3.
The problem is to describe the cohomology of M. This question had been treated
before from several points of view, beginning with Newstead who found the Betti
numbers, and we will return to that below.

The novelty in the work of Atiyah and Bott was to bring in ideas from Yang–
Mills theory. Let Y be any compact Riemannian manifold, and let E → Y be a
U(r) bundle. Then we have an infinite-dimensional space A of all connections on
E and an infinite-dimensional group G of bundle automorphisms which acts on A.
The Yang–Mills functional L(A) = ‖F (A)‖2 is a G-invariant functional on A and
its critical points are the Yang–Mills connections on E. If we have a compact, hence
finite-dimensional, manifold B and a function f on B, there are well-established
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theories which relate the critical points of f to the topology of B. There are also
well-established extensions of these ideas to infinite dimensions, notably to the
energy functional on paths in a manifold whose critical points are geodesics. To
apply these ideas to the Yang–Mills case, two basic points arise.

• As in any variational problem, there are fundamental analytical and PDE
questions which have to be tackled, and these depend very much on the
dimension of the base manifold Y . We will say more about this later.

• The action of the gauge group G means that the critical points are never
isolated, and one would like to work on the quotient space B = A/G but
then there are difficulties caused by the existence of reducible connections.

To set up the picture in more detail, fix a compatible Riemannian metric on the
Riemann surface X so that X has area 2π, and fix a C∞ rank 2 bundle E → X with
c1(E) = 1. Fix a connection on the determinant bundle Λ = Λ2E with curvature −i
times the area form on X. Let A be the space of connections on E which induce the
given connection on Λ2E, and let G be the group of automorphisms of E which act
with determinant 1 on the fibres. The Yang–Mills connections are easy to describe.
Recall that the equations are d∗AF (A) = 0, or equivalently dA(∗F (A)) = 0. In
this case ∗F (A) is a section of the bundle adE ⊂ EndE, and the equations say
that it is covariant constant. For convenience, set F(A) = −i ∗ F (A), so F(A) is
a Hermitian endomorphism of E with trace 1. If F(A) is covariant constant—i.e.,
dAF(A) = 0—there are two possibilities:

(1) F(A) = 1
21E ;

(2) F(A) has constant eigenvalues (μ, 1− μ) for some integer μ ≥ 1.

In the first case the induced connection on the trace-free part of adE is a flat
SO(3) = PU(2) connection, and it is straightforward to show that these precisely
correspond to the projective unitary representations given by the Narasimhan–
Seshadri theorem. It is also easy to show that these are absolute minimisers of the
Yang–Mills functional on A. So in B = A/G the minimum of the functional can be
identified with the moduli space M we want to study.

In the second case, the eigenspaces give a decomposition E = L⊕L∗ ⊗Λ where
L has degree μ and the connection is given by a sum of connections with con-
stant curvature on the two line bundles. Since the connection on Λ is fixed, this
is determined by a connection with constant curvature on L. Conversely, for any
connection on L we can build a Yang–Mills connection on E. Two connections
with constant curvature on L differ by a flat connection, or in other words a
representation π1(Σ) → S1. These representations are parametrised by the 2g-
dimensional torus J = H1(X;R)/H1(X,Z). The Yang–Mills functional takes the
value q(μ) = μ2 + (1 − μ)2 on these reducible connections. The conclusion is that
the nonminimal critical points of the functional in A/G consist of copies Jμ of J
for μ ≥ 1, with critical value q(μ).

The discussion so far has been based on the Riemannian geometry of X. Now
we pass to the complex geometry. Any connection A ∈ A defines a holomorphic
structure on E through its ∂-operator ∂A. For line bundles this gives the classical
identification of the real torus J with the Jacobian of X, parametrising holomorphic
line bundles of degree 0. The situation can be described by introducing another
group Gc, consisting of automorphisms of E of determinant 1 but not necessarily
unitary. Then Gc acts on A in the following way. Thinking of a connection as a
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covariant derivative,
∇A = ∂A + ∂A

an automorphism g ∈ Gc acts by

(24) ∇g(A) = g ◦ ∂Ag
−1 + (g∗)−1∂Ag

∗.

Said in another way, a connection on E is determined by its ∂-operator and the
given Hermitian structure. (This is what is often called the Chern connection in
complex differential geometry; see [35, Chapter 0] for example.) So we can identify
A with the space of ∂-operators and there is an obvious action of G on that space
(which corresponds to the first term on the right-hand side of (24)).

The conclusion from the above is that the set of equivalence classes of rank 2
holomorphic vector bundles over X with fixed determinant Λ can be identified with
the set of orbits of Gc in A. We write set rather than space because the natural
topology on the quotient A/Gc is not Hausdorff, due to jumping phenomena of the
kind we discussed in section 1.3. This is the point of the notion of a stable bundle.
Recall that in section 1.2 we introduced an invariant μ(V ) of a rank 2 holomorphic
vector bundle over X: the maximal degree of a line subbundle. In our situation
when V has degree 1, the stability condition is just that μ(V ) < 1. Then we get a
Gc-invariant stratification of A consisting of the following.

• An open set As ⊂ A of stable points, i.e., connections which define stable
holomorphic structures.

• For each μ ≥ 1, a stratum Cμ ⊂ A of connections which define a holomor-
phic structure V with μ(V ) = μ.

Let us now go back to the variational point of view. Following standard strategy
and the analogy with finite-dimensional problems, we could consider the gradient
flow of the Yang–Mills functional, which is the evolution equation in A

(25)
∂A

∂t
= −d∗AF (A),

and hope to show that this converges as t → ∞ to a critical point. This would
give a G-invariant stratification of A, with strata labelled by the critical sets, which
would be the basis for a Morse-theoretic analysis of the topology. But all this would
depend on detailed analysis of equation (25). Atiyah and Bott realised that the
complex geometry allows one to bypass this (then conjectural) analysis because
the putative “Morse” stratification is exactly the same as the stratification above
coming from the complex geometry. In more detail:

• By definition of the moduli space of stable holomorphic bundles and the
Narasimhan–Seshadri theorem, there is a map R : As → M;

• Let A be a point in Cμ, so it defines a holomorphic structure V which is
an extension

(26) 0 → L → V → Λ⊗ L∗ → 0

for a holomorphic line bundle L of degree μ ≥ 1. It is easy to see that this
subbundle is unique. Then we get a map Rμ : Cμ → Jμ taking A to the
corresponding reducible connection on L⊕ Λ⊗ L∗.

Then one can show from simple calculations with the flow equation (25) that if
the flow exists for all time and converges to a critical point, the limit points are
given by the maps R and Rμ. The essential point is that the flow preserves the Gc-
orbits. The whole picture extends to bundles of higher rank. An unstable bundle
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V has a canonical Harder–Narasimhan filtration so that successive quotients are
semistable and this can be refined to a filtration

0 = V0 ⊂ V1 · · · ⊂ Vk ⊂ V

with Vi+1/Vi stable. The gradient flow starting with a holomorphic structure of
type V has a limit as t → ∞ corresponding to the holomorphic structure

⊕
Vi+1/Vi,

with a projectively flat connection on each factor.
We now move to the second point: taking account of the G-action on A. For this,

Atiyah and Bott introduced the use of equivariant cohomology in Morse theory. For
any group Γ and space Z with Γ action, the Γ-equivariant cohomology H∗

Γ(Z) is
defined to be the ordinary cohomology of the space ZΓ = Z ×Γ EΓ where EΓ is
the total space of the universal bundle EΓ → BΓ. Thus ZΓ is a fibre bundle over
BΓ with fibre Z. Restriction to the fibre gives a map from H∗

Γ(Z) to H∗(Z) and
pulling back from the base gives a map from H∗(BΓ) to H∗

Γ(Z) which makes H∗
Γ(Z)

a module over the ring H∗(BΓ). In the situation at hand we want to consider the
equivariant cohomology H∗

G(A) and relate this to the stratification.
The general picture in equivariant theory is, very roughly, that a point in Z with

stabiliser Γ′ ⊂ Γ should contribute H∗(BΓ′) to the cohomology. In our case the
stabiliser in G of a point in Jμ is a copy of S1 and BS1 = CP∞ with cohomol-
ogy the polynomial ring in one variable of degree 2. Slightly more precisely, the
whole critical set Jμ can potentially contribute H∗(Jμ ×CP∞) to the equivariant
cohomology of A, but this is shifted in degree by the index: the dimension of the
negative subspace for the Hessian of the functional L. That is, from standard ar-
guments using the existence of the stratification and the retraction maps R,Rμ,
the G-equivariant cohomology of A is no larger than the direct sum of the ordi-
nary cohomology H∗(M) (which we are trying to compute) with the sum over μ
of the shifted H∗(Jμ × CP∞). A fundamental observation of Atiyah and Bott is
the self-completing principle which states that the equivariant cohomology of the
whole space A is equal to this direct sum. Said in another way the Morse inequal-
ities in this situation become equalities. This follows from general properties of
the equivariant setup. The index of a point of Jμ can be computed to be 2g + 4μ
and the conclusion can be expressed in terms of the equivariant Poincaré series
P (t) =

∑
dimHq

G(A) as

(27) P (t) = PM(t) +

∞∑
μ=1

t2g+4μ (1 + t)2g

(1− t2)
,

where PM is the ordinary Poincaré polynomial of the moduli space M.
The next question is to identify the equivariant cohomology of the space of

connections A. Since A is contractible this is the same as the cohomology of the
classifying space BG which can be found by standard algebraic topology arguments.
The answer is as follows. There is a universal bundle, which is a G-equivariant
SO(3) = PU(2) bundle over X × A. Here G acts trivially on X. This has a
Pontrayagin class in the four-dimensional equivariant cohomlogy of X × A which
is H∗(X) ⊗ H∗

G(A). Taking the Künneth components of this, we get classes u ∈
H4

G(A), ω ∈ H2
G(A) and a map ν : H1(Σ) → H3

G(A). Then the result is thatHG∗(A)
is freely generated by these classes, i.e.,

H∗
G(A) = Q[u, ω]⊗ Λ∗H1(X),
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where u has degree 4, ω has degree 2, and H1(X) has degree 3. Thus the Poincaré
series is

P (t) =
(1 + t3)g

(1− t4)(1− t2)
,

and combining this with (27) gives a formula for the Poincaré polynomial of M:

PM(t) =
1

(1− t2)(1− t4)

(
(1 + t3)2g − t2g(1 + t)g

)
.

This can be expressed in various other ways. Examining the Atiyah–Bott argument
gives a refinement to describe the homology groups of M as representations of the
mapping class group of X (which acts on M via its description through projective
flat connections). These representations are all built out of the exterior powers Λj =
ΛjH1(X;Q). It is neatest to normalise the gradings about the middle dimensions,
so we write

Λj = Λg+j , Hi = H3g−3+i(M;Q).

The one finds [26] the genus-independent formula

Hi =
∑

aijΛj ,

where aij is the co-efficient of ti in

(t2j − t−2j)(tj − t−j)

(t2 − t−2)(t− t−1)
.

For example when g = 2, the rational homology of M—the intersection of two
quadrics as described in section 1.4—is Q in dimensions 0, 2, 4, 6 and a copy of
H1(X;Q) in dimension 3.

2.4.2. Other results and developments. The arguments of Atiyah and Bott
applied to bundles of all ranks, and they obtained inductive formulae for the Betti
numbers of moduli spaces M(r, d) of stable bundles for r, d coprime. In the sim-
plest case considered above of M(2, 1), the Betti numbers had been found first
by Newstead [55]. General formulae had been found by Harder and Narasimhan
[36] using the Weil conjectures and counting points in moduli spaces defined over
finite fields. Atiyah and Bott pointed out intriguing parallels between the different
approaches—one related to physics and one to number theory— which were devel-
oped further by Asok, Doran, and Kirwan [2] and, more recently, Gaitsgory and
Lurie [32].

Atiyah and Bott also found further information about the topology of these mod-
uli spaces. They showed that they are simply connected and the integral homology
has no torsion, and they obtained results about the cohomology ring. Returning
again, for simplicity, to the case of r = 2, d = 1 their arguments showed that the
restriction map from H∗(BG) to H∗(M) is surjective; we have explicit generators
ω, u, ν(H1(Σ)) for the former, so it is question of finding the relations between these
in H∗(M). For example when g = 2, one easily finds that ω2 = 2u in H4(M).
They also made progress on a conjecture of Newstead regarding the characteristic
classes of M, which they showed reduced to the conjecture pg1 = 0, where p1 is the
first Pontrayagin class of the tangent bundle

The decade following the Atiyah and Bott paper saw many further developments
in the understanding of the topology of these moduli spaces of which we just mention
a few.
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• King and Newstead gave a complete description of the relations in the
cohomology rings H∗(M) for rank 2 bundles [42]. The higher-rank case
was treated by Earl and Kirwan [30].

• Kirwan proved the Newstead conjecture pg1 = 0 [44].
• In another direction, one can consider the integrals

(28)

∫
M

ωpuq,

where p+ 2q = 3g − 3 and the dimensions of the vector spaces

H0(M, Lk),

where L is the positive line bundle over the moduli space with c1(L) = ω.
These are related by the Riemann–Roch formula. The vector spaces came
into prominence as conformal blocks in conformal field theory, fitting later
into Witten’s quantum field theory interpretation, and generalisation, of
the Jones polynomial. This was a major interest of Atiyah’s in the late
1980s and one example of the general notion of a topological quantum field
theory, as discussed in Dan Freed’s article in this volume [31]. In [66],
Thaddeus used the Verlinde formulae for the dimensions of these vector
spaces to evaluate the integrals (28). About the same time, Witten [72],
developed a related theory, focused on the volume of the moduli spaces,
which could also be used to find the integrals. Later, Jeffrey and Kirwan
[41] evaluated the corresponding integrals over moduli spaces of bundles of
all ranks, using a localisation formula related to what we will discuss in
section 2.4.5.

• Another huge development involved moduli spaces of pairs consisting of a
holomorphic bundle E with extra structure. Prominent examples, which we
will touch on later, are vortices (E,ψ), studied by Bradlow, Garcia-Prada,
and many others, where ψ is a holomorphic section of E, and the Higgs
bundles (E, φ) introduced by Hitchin [38], where φ is a holomorphic 1-form
with values in EndE.

2.4.3. Moment maps: symplectic, Kähler, and hyperkähler. One of the
most influential results in the paper of Atiyah and Bott—a digression from the
main theme of the paper—was their interpretation of curvature as a moment map.
This is a concept from symplectic geometry, and Atiyah wrote several papers about
aspects of symplectic geometry in the mid-1980s.

Recall the Hamiltonian construction in symplectic geometry. If (V, ω) is a sym-
plectic manifold and H is a smooth function on V , one defines a vector field XH by
the condition that its contraction with ω is the 1-form dH. This has the property
that the Lie derivative of ω along XH vanishes, so the flow generated by XH is a
one-parameter family of symplectomorphisms, preserving ω. Conversely, at least
locally, any such flow is generated by a Hamiltonian function H. Now suppose that
a Lie group G acts on V preserving ω. A map

μ : V → Lie(G)∗

is called a moment map for the action if for each ξ in Lie(G) the pairing 〈μ, ξ〉 is
a Hamiltonian function for the one-parameter subgroup generated by ξ. In other
words, at each point x ∈ V the derivative dμ : TVv → Lie(G)∗ is the transpose of
the infinitesimal action Lie(G) → TVv under the identification of TVv with its dual
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furnished by ω. The moment map is equivariant if it intertwines the actions of G
on V and Lie(G)∗.

Now go back to the infinite-dimensional space A of connections on a bundle over
a compact Riemann surface X. This is an affine space with associated vector space
Ω1(X; adE). There is a symplectic form

(29) Ω(a, b) =

∫
X

Tr(a ∧ b).

Note that this does not use the complex structure on X, only the orientation.
This is a generalisation of the skew pairing on ordinary 1-forms defined by wedge
product and integration.

The gauge group G acts on A preserving the symplectic form. The Lie algebra of
G is the space Ω0(X, adE) and integration gives a map from Ω2(X, adE) to the dual
of the Lie algebra. The observation of Atiyah and Bott is that the map from A to
Ω2(X, adE) given by the curvature of a connection is an equivariant moment map
for the action of G. This paved the way to a number of important subsequent de-
velopments. In one direction, in symplectic geometry, with an equivariant moment
map μ as above, one considers the symplectic or Marsden–Weinstein quotient

V//G = μ−1(0)/G

which has (ignoring possible singularities) an induced symplectic form. Applied
to the space of connections, this gives a symplectic form on the moduli space of
irreducible flat connections. For a bundle E with nonzero degree there is a slight
modification of this. In the general picture, with a group G acting on (V, ω), if the
Lie algebra of G has a nontrivial centre, a moment map is not unique since one
can add any element of the dual of the centre. The basic example is when G = S1,
so a moment map is a Hamiltonian function and one can add a constant. For a
bundle with nonzero degree we modify the moment map so that the zeros are given
by connections with constant central curvature, and we get a symplectic form on
the moduli spaces we considered before. About the same time, Goldman defined
symplectic structures on moduli spaces of representations of the fundamental group
of a surface into any semisimple Lie group [33]. Taking the group SL(2,R), he made
a connection with results of Wolpert [73] on the symplectic geometry of Teichmuller
space.

In another direction, the identification of the curvature as a moment map fits
the Narasimhan–Seshadri theorem into a general theme of “equality of symplectic
and complex quotients” which emerged at around the same time as the Atiyah–
Bott paper. This is a theory which initially applies in finite-dimensional situations.
Suppose that V is a complex manifold, ω is a Kähler form, and G is a compact Lie
group acting on V and preserving both the complex structure and ω. There is a
complexification Gc and the action extends to a holomorphic action of Gc on V .
The full quotient V/Gc will not usually be a well-behaved object—it will not be
Hausdorff—but under suitable technical hypotheses one defines a set of stable points
V s ⊂ V such that the quotient V s/Gc is Hausdorff. Then the general principle is
that this complex quotient agrees with the symplectic quotient defined via a moment
map. Further, the pictures are compatible in that the induced symplectic form on
the quotient space is a Kähler form with respect to the visible complex structure
in the complex description. In the case of moduli spaces of flat connections, this
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gives a simple conceptual setting for the Kähler structures which had been written
down before by Narasimhan [50].

This principle of equality of symplectic and complex quotients sheds light on the
discussion in section 1.3 of small resolutions. Take G = S1 acting on C2 ×C2 with
weight +1 on the first factor and −1 on the second. With the standard symplectic
form a Hamiltonian is

H(x, y) = |x|2 − |y|2.

We are free to add a constant, so for each ε ∈ R we have a symplectic quotient
H−1(ε)/S1. Taking ε > 0 means that we are considering pairs (x, y) with x �= 0
and the symplectic quotient agrees with the quotient U+ that we considered before.
Similarly, taking ε = 0 or ε < 0 gives the other two quotient spaces that we
considered. In other words, the Atiyah flop interchanging the two small resolutions
appears as the variation of the symplectic quotient with respect to the level set
of the Hamiltonian. In the complex geometry picture this enters through the fact
that one has to make a choice of stability condition. The study of variation of
moduli spaces under change of stability conditions has become a huge area. As one
example, we mention the work of Thaddeus [67] in which he considered vortices—
pairs (E,ψ) consisting of a rank 2 bundle E and a holomorphic section ψ. Thaddeus
takes bundles with odd degree and fixed determinant. There is a family of stability
conditions depending on a real parameter σ and hence a family of moduli spaces
Nσ. When σ is very large, the condition just requires that the bundle E is stable,
so in this regime Nσ fibres over the moduli space M2,1 with fibre P(H0(E)) over E.
When σ is small, the stability condition just requires that ψ has no zeros and Nσ

is a projective space parametrising extensions up to scale. Between these extremes
there are a finite number of values of σ where the moduli space changes, as in
the model example above. Thaddeus was able to describe these changes explicitly
and, using this, was able to give a proof of the Verlinde formula and also another
approach to the homology of the moduli spaces.

The equivariant Morse theory techniques of Atiyah and Bott were developed
in the thesis of Kirwan, supervised by Atiyah, obtaining a general machine for
calculating cohomology of quotient spaces in symplectic and algebraic geometry
[43]. As one of the simplest examples, Kirwan’s theory calculates the Betti numbers
of the quotient of the set of configurations of d points in the Riemann sphere by
the action of the the Möbius transformations (assuming, for technical reasons, that
d is odd).

In infinite-dimensional situations, such as the action of G on A, this principle
of equality of symplectic and complex quotients is a guide rather than a general
theorem. But the idea has been important in subsequent developments in complex
differential geometry. These include examples related to gauge theory, some of
which we will discuss further below, and also to other structures such as Kähler
metrics. The author has written about this in many places so we will just refer to
[27], [28].

These moment map ideas are also important in four-dimensional gauge theory
and mesh in with other work of Atiyah. In abstract, suppose now that V is a
hyperkähler manifold. That is, V has a Riemannian metric g, three compatible
complex structures I1, I2, I3 giving an action of the quaternions, and three corre-
sponding Kähler forms ω1, ω2, ω3. Suppose that G acts on V preserving all this
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structure. Then a hyperkähler moment map is a map

μ : V → Lie(G)∗ ⊗R3

whose components give moment maps as considered before for the three symplectic
forms ωi. This setup was considered by Hitchin et al., [39], who showed that, under
suitable technical hypotheses, the quotient

V///G = μ−1(0)/G,

has an induced hyperkähler structure. To explain this in outline, write μ =
(μ1, μ2, μ3) and fix one complex structure, say I1. Then one finds that μ2 + iμ3 is
holomorphic with respect to I1, so its zero set is an I1-complex subvariety. Then
(ignoring possible singularities) the quotient V///G can be regarded as the Kähler
quotient of this complex subvariety, as considered before. Replacing I1 by I2 and
I3, one sees the three complex structures on V///G.

This theory can be applied in two ways to the moduli spaces of instantons over
R4, which end up giving the same hyperkähler structures. For the first we work in
an infinite-dimensional setting, as in the paper of Atiyah and Bott. Let ω1, ω2, ω3

be the standard basis for the self-dual 2-forms on R4. Then for tangent vectors a, b
to the space A of connections on E → R4, we have symplectic forms

Ωi(a, b) =

∫
R4

Tr(a ∧ b) ∧ ωi,

making A formally into an infinite-dimensional hyperkähler manifold, and the self-
dual part of the curvature F+(A) has three components F+

i (A). The basic fact is
that the F+

i are moment maps for the gauge group action on A with respect to
the forms Ωi: in other words, F+ is a hyperkähler moment map. Since R4 is not
compact, one should really be more careful in specifying what kind of behaviour at
infinity is allowed, but suffice it here to say that the relevant gauge group should
be the based gauge group of automorphisms which fix the fibre over infinity. Thus
the quotient is the moduli space of instantons framed at infinity. The conclusion
then is that these moduli spaces of framed instantons have hyperkähler structures
given by the quotient construction.

The other approach is more elementary and uses the ADHM description. Recall
that this identifies moduli spaces of instantons with equivalence classes of monads,
which are given by matrix data. We write down explicitly what this data is, after
suitable normalisations. To do this, it is convenient to single out one complex
structure on R4. Then for an instanton with structure group U(r) and Chern class
k, one finds that the matrix data consists of linear maps

α1, α2 : Ck → Ck, P : Cr → Ck, Q : Ck → Cr

satisfying the equations

(30) [α1, α2] + PQ = 0,

(31) [α1, α
∗
1] + [α2, α

∗
2] + PP ∗ −Q∗Q = 0,

and also certain nondegeneracy conditions. The framed moduli space is given by
the quotient of such solutions (α1, α2, P,Q) by the obvious action of U(k). (The
obvious action of U(r) changes the framing.) Now the point is that the set of all
quadruples of maps (α1, α2, P,Q) is a quaternionic vector space:

Hom(Ck,Ck)⊗C H⊕Hom(Ck,Cr)⊗C H,
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and the quadratic expressions on the left-hand sides of (30), (31) make up the
hyperkähler moment map for the action of U(k). Thus the moduli space appears
as a finite-dimensional hyperkähler quotient. Geometrically, the choice of complex
structure gives a projective plane CP2 inside the twistor space, and equation (30) is
the condition that the data (α1, α2, P,Q) provides a monad defining a holomorphic
vector bundle over this plane, which is just the restriction of the bundle over CP3

considered in the twistor approach. In fact this construction sets up a 1-to-1 cor-
respondence between the framed moduli spaces of instantons and moduli spaces of
holomorphic bundles over CP2 trivialised over the line at infinity. This was shown
in [24], confirming a suggestion of Atiyah in [7, Chapter VII].

At this point we make a digression which will connect again with Atiyah’s early
work on double points. As we said in section 1.3, the remarkable feature is that a
two-dimensional double point singularity can be resolved in a family (after taking
a covering). This leads to a famous story in complex geometry, through work of
Brieskorn and others, involving ADE singularities. The finite subgroups of SU(2)
are in 1-to-1 correspondence with the Lie algebras of type A,D,E. For each such
group Γ the quotient C2/Γ has the special property that its resolution and smooth-
ings are diffeomorphic and it can be resolved in a family. The intersection pattern of
the exceptional curves in the resolution yields the Dynkin diagram of the Lie group.
The ordinary double point singularity is the case A1 where the subgroup Γ is ±1
and there is just one exceptional curve. Moving now to differential geometry, Gib-
bons and Hawking introduced the notion of ALE gravitational instantons. These
are hyperkähler 4-manifolds which are asymptotically locally Euclidean, i.e., the
structure asymptotic at infinity to the flat structure on C2/Γ for some Γ ⊂ SU(2)
as above. In the simplest case when Γ = {±1}, such a metric had been found earlier,
independently, by Calabi and by Eguchi and Hanson. For the other Ak singularities,
Gibbons and Hawking gave an explicit construction based on harmonic functions on
R3 with poles. Hyperkähler structures on 4-manifolds are (anti) self-dual so have
twistor spaces. Hitchin found the twistor description of the Gibbons–Hawking met-
rics and showed that it fitted beautifully with the Brieskorn theory. Such a metric
has a family of complex structures parametrised by the 2-sphere. For two special
points on the sphere the complex structure is that of the resolution of the singular-
ity and for the other points of the smoothing. In his paper [8] Atiyah used Hitchin’s
twistor description to find explicit formulae for the Green’s function on these Ak

gravitational instantons. Regarding a pair of points in the 4-manifold as a pair
of lines in twistor space, he showed that the Green’s function corresponds to the
Serre class in an Ext group, related also to a paper of Atiyah and Ward [69] on the
construction of bundles on twistor spaces.

To get back to hyperkähler quotients, the question left open after the develop-
ments outlined above was the existence of gravitational instantons corresponding
to the D and E families of Lie groups. This was answered decisively by Kronheimer
in his thesis supervised by Atiyah [46]. Kronheimer used a quotient construction
which has some similarities to the ADHM description of instanton moduli spaces.
For any finite subgroup Γ ⊂ SU(2), Kronheimer considers the regular representa-

tion R. Then EndR⊗C2 is a quaternionic representation of Γ. LetM =
(
R⊗C2

)Γ
be the space of vectors fixed by Γ, and let G be the subgroup of U(R) of trans-
formations which commute with Γ. Then G acts on M preserving a hyperkähler
structure, and Kronheimer showed that the hyperkähler quotient is the desired ALE



ATIYAH ON HOLOMORPHIC VECTOR BUNDLES AND GAUGE THEORIES 599

space. One has a family of these quotients obtained by varying the level set of the
moment map, and in this way Kronheimer obtained a complete classification of all
ALE gravitational instantons.

These ideas also apply to solution of the Bogomolny equation ormonopoles which
were a major research interest of Atiyah. The Bogomolny equation is an equation
on R3 obtained from the dimension reduction of the instanton equation on R4. One
component of the connection becomes a Higgs field: so the data is a connection A
on a bundle E over R3 and a section φ of adE. The Bogomolny monopole equation
is

(32) dAφ = ∗F (A).

This is supplemented by asymptotic conditions at infinity. In the case when the
structure group is SU(2), one requires that |φ| tends to 1 at infinity. Then the
restriction of φ to a large sphere defines a map, up to homotopy, from S2 to S2

and hence an integer degree k. For each k ≥ 1 there is a moduli space Mk of
monopoles, which has dimension 4k − 1. When k = 1 the moduli space is just R3

and the solution can be thought of as a particle centred at a point in R3. One has a
hyperkähler picture, inherited from that in R4, and the moduli spaces can be seen
as hyperkähler quotients. Again, this requires one to work with suitable framed
moduli spaces M̃k which are circle bundles over the Mk, hence of dimension 4k.
There is also an analogue of the ADHM construction, due to Nahm, which gives
another hyperkahler quotient description of the same moduli spaces.

While the general setup is very similar to the instanton case, there are impor-
tant differences. One is that the hyperkähler metrics on the Mk are complete, so
the construction gives a new source of complete hyperkähler manifolds. This was
developed in work of Atiyah and Hitchin [15]. The first interesting case is when

k = 2. The moduli space M̃2 has dimension 8 but another hyperkähler quotient by
the circle action gives a reduced space M of dimension 4, which can be identified,
topologically, as the cotangent bundle of the real projective plane. The quotient
construction involves fixing an origin R3, and the solutions can be thought of,
roughly speaking, as a pair of 1-monopoles centred at antipodal points ±x ∈ R3

with a circle-valued phase which determines how the 1-monopoles are glued to-
gether. The line Rx gives a point in RP2 and the phase and |x| can be thought
of as polar co-ordinates on the cotangent space. This approximate description be-
comes more exact in the asymptotic regime where |x| → ∞ and breaks down when
|x| → 0.

The group SO(3) of rotations of R3 acts by isometries on M . (It does not
preserve the hyperkähler structure I, J,K but rotates it.) The generic orbits have
codimension 1, so the metric can be regarded as a solution of a system of ODE’s (the
Einstein equations with this symmetry). Atiyah and Hitchin were able to solve this
system in terms of elliptic integrals, so arriving at an explicit formula for the metric.
The Atiyah–Hitchin manifold M has been important in subsequent developments
in four-dimensional Riemannian geometry. The asymptotic behaviour is different
from the ALE manifolds we discussed above: it is called asymptotically locally
flat (ALF). Other, older, examples are the Taub–Nut space and families obtained
by the Gibbons–Hawking construction related to the Ak series of ALE manifolds.
The Atiyah–Hitchin manifold is the first in another Dk series of ALF gravitational
instantons which have been the scene for much subsequent activity, for example
[23].
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In another direction, Atiyah and Hitchin used their description of the metric to
investigate the dynamics of monopoles. To explain the idea, consider a potential
function V on some Riemannian manifold Q which has a minimum, say V = V0,
on a submanifold L ⊂ Q. We consider the motion of a particle q(t) on Q in the
potential V , so the energy is

V +
1

2
|q̇|2.

If the energy is close to V0, the particle is constrained to move in a small neighbour-
hood of L, and it can be shown that the motion is well-approximated by geodesic
motion on L for the induced Riemannian metric. In the case at hand one has an
infinite-dimensional, field-theory version of this setup. The manifold Q becomes
the space of gauge equivalence classes of pairs (A, φ) on R3 and the potential V is

V (A, φ) =

∫
R3

|F (A)|2 + |dAφ|2

which is minimised on the monopole moduli space (similar to what we discussed for
instantons). The equation of motion now becomes a hyperbolic equation on R3,1.
The principle above indicates that low energy solutions to this hyperbolic equation
can be approximated by geodesics on the moduli space. Using their formulae for the
metric and solving the geodesic equations numerically, Atiyah and Hitchin obtained
a wealth of information about this dynamical question.

In other work, Atiyah initiated the study of monopoles on three-dimensional
hyperbolic space [11]. If we take a standard circle action on S4, with fixed point
set a 2-sphere, the quotient (S4 \ S2)/S1 can naturally be viewed as hyperbolic
3-space H3. More precisely, S4 \ S2 is conformally equivalent to H3 × S1. Just as
translation-invariant instantons on R4 correspond to monopoles on R3, so is the
same for S1-invariant instantons and hyperbolic monopoles. The great advantage is
that the analysis can be greatly simplified by considering instantons which extend
smoothly over the 2-sphere. This is not the most general case: one has a real
parameter given (for SU(2) bundles) by the length of the Higgs field at infinity,
and solutions extend when this parameter is integral. For nonintegral values one
gets singular connections of the kind studied later by Kronheimer and Mrowka
[47]. Taking this parameter to infinity corresponds, under scaling, to making the
curvature of the hyperbolic space tend to 0, so the geometry converges to R3 on
bounded regions. Monopoles over both R3 and H3 have twistor descriptions. The
relevant mini-twistor spaces, introduced by Hitchin [37], are the spaces of oriented
geodesics and are complex surfaces. For R3 this is the tangent bundle TS2 of the
2-sphere and in the hyperbolic case it is the complement of the antidiagonal Δ in
S2 × S2 (i.e., Δ is the set of antipodal pairs). The tangent bundle TS2 can be
identified with the singular quadric cone in CP3 minus the vertex while S2 × S2

is a smooth quadric, so in the convergence of the hyperbolic to the flat case we
encounter again the degeneration of smooth quadrics to the cone.

As a final example of the application of these hyperkähler quotient ideas, we
mention Hitchin’s work on Higgs bundles over Riemann surfaces. That is, pairs
(E, φ) where E is a rank r bundle and φ ∈ H0(EndE ⊗K). The theory can also
be seen as a dimension reduction of the instanton theory in four dimensions. The
moduli space of Higgs bundles is hyperkähler. It has another description as the
moduli space of irreducible projective representations of the fundamental group in
GL(r,C), thus making a link with the old work of Weil [71].
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2.4.4. Topology of instanton and monopole moduli spaces. We move back
a few years, to a 1978 paper of Atiyah and Jones [18] and return to the line of ideas
in the paper of Atiyah and Bott. For a G-bundle E over S4 we have the space
of connections A and gauge group G and the Yang–Mills functional L which takes
its minimum on the instanton moduli space. The general question is whether the
topology ofM can be related to that ofA/G and possible nonminimal critical points,
as done by Atiyah and Bott in the two-dimensional case. It will be convenient here
to use the framed moduli spaces and hence restrict to the subgroup G∞ ⊂ G fixing
the fibre over infinity. Then G∞ acts freely on A, and we do not have any trouble
with reducible connections. In the two-dimensional case we focused on rational
cohomology, but here the main interest is in more subtle, torsion, phenomena. The
equivalence class of the G-bundle E is determined by an element of π3(G)—the
homotopy class of a transition function defined on an equatorial 3-sphere. If, as
we will assume, G is a simple Lie group, we have π3(G) ∼= Z so the bundles are
labelled by an integer k. The quotient B = A/G∞ is homotopy equivalent to
the corresponding component Ω3

k(G) of the third loop space Ω3G = Maps(S3, G),
where throughout we use based maps. This homotopy equivalence can be seen
by considering preferred transition function defined by the parallel transport of a
connection along meridians. Atiyah and Jones initiated the investigation of the
maps on homotopy and homology induced by the inclusion M̃k → Ω3

kG. (The
group structure implies that all the components Ω3

k(G) have the same homotopy
type, so we will sometimes blur the distinction between them.)

From now on we restrict to the group G = SU(2), which is diffeomorphic to S3.
The main result of Atiyah and Jones states that for each q, when k is sufficiently
large, the induced map i∗ : Hq(M̃k) → Hq(Ω

3
k(S

3)) is a projection onto a direct
summand. In particular, all the homology of Ω3

k(S
3) is eventually seen in the

instanton moduli spaces, as k increases. Their proof used the family of t’Hooft
solutions to the instanton equations, which can be described in various ways. In
terms of the ADHM data (30), (31), they arise when r = 2 and the composite
P ◦Q is zero. So α1, α2 commute, and for the t’Hooft solutions we take them to be
diagonal

α1 = Diag(λ1, . . . , λk), α2 = Diag(μ1, . . . , μk).

The nondegeneracy conditions require that the k points (λi, μi) in C2 are distinct,
and one finds that the remaining data is given by positive weights, or scales, as-
sociated to these k points. For the topological discussion these scales can all be
set to 1, and we have a family of solutions parametrised by the configuration space
Ck(R

4) of k distinct points in C2 = R4. Now Atiyah and Jones show that the map
from Ck(R

4) to Ω3
k(S

3) given by this t’Hooft family is homotopy equivalent to a
composite of two other maps. One is the map

Ω4(S4) → Ω4(HP∞) = Ω4BSU(2) = Ω3SU(2),

defined by the standard inclusion S4 = HP1 ⊂ HP∞. The other is the case n = 4
of a map Ck(R

n) → Ωn
kS

n, well known in homotopy theory, which Segal had shown
induces an isomorphism on q-dimensional homology once k � q. Combining this
with other arguments from algebraic topology, they deduced their result.

The most influential part of the Atiyah–Jones paper was a conjecture (subse-
quently the Atiyah–Jones conjecture) they made, to the effect that the homology

Hq(M̃k) should be equal to Hk(Ω
3(S3)) once k � q. Part of the motivation for this
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came from an important analogy between Yang–Mills theory in dimension 4 and
harmonic maps in dimension 2. In this analogy the instantons correspond to holo-
morphic maps from a Riemann surface to a Kähler manifold. The simplest case
is when both domain and target are the Riemann sphere, so we are considering
rational maps which, after fixing base points, can be taken in the form

f(z) =
k∑

i=1

ai
z − zi

,

or limits of these when some of the points zi coincide. Segal showed in [61], around
the same time as the Atiyah–Jones work, that the inclusion of the space Rk of
rational maps of degree k into Ω2

kS
2 induces an isomorphism on Hq once k � q,

which is the analogue of the Atiyah–Jones conjecture.
This conjecture of Atiyah and Jones was the scene for a lot of activity in the

1980s. It was eventually proved (for SU(2) instantons) by Boyer, Hurtubise, Mil-
gram, and Mann in 1993 [22]. The activity followed two main lines: variational
methods, chiefly by Taubes, and more explicit geometrical descriptions of the mod-
uli spaces. We recall some background for the variational problem. The Yang–Mills
functional is defined in all dimensions n. Like many other variational problems,
there is a a critical dimension n = 4 where it is scale invariant. For harmonic
maps the corresponding dimension is 2. Below this critical dimension the analysis
is relatively straightforward. So, for example, R̊ade [57] established long-time exis-
tence and convergence of the Yang–Mills flow (24) in dimensions 2 and 3. Roughly
speaking, in dimensions 2 or 3 the topology of the space of connections modulo
gauge must match up with the critical points in the usual Morse theory fashion.

Going to dimension 4, with an eye to the Atiyah–Jones conjecture, there is a
network of difficulties. Most important, at the time Atiyah and Jones were writing,
there was no theory which could implement variational arguments at the critical
dimension. The basic problem is the lack of compactness: as a sequence of con-
nections with bounded Yang–Mills functional may fail to converge due to bubbling
at points. In the following years such results were developed, using deeper anal-
ysis of this bubbling. In the case of harmonic maps of surfaces this development
was initiated by Sacks and Uhlenbeck, and in the Yang–Mills case by Taubes and
Uhlenbeck. The second difficulty, at the time Atiyah and Jones were writing, was
that little was known about the higher critical points of the Yang–Mills functional.
The analogy with harmonic maps gave some grounds for thinking that there might
be none. Subsequently, these were proved to exist, first by Uhlenbeck, Sibner, and
Sibner [68] using variational arguments, and later by relatively explicit construc-
tions [58]. But an important result of Taubes [63] showed that the index of these
higher critical points must increase with k: the index cannot be less than roughly
one quarter the dimension of the moduli space of instantons. Taubes’ argument
used the action of quaternions in a way remininscent of the Morse theory proof of
the Lefschetz hyperplane theorem. This index bound is consistent with the Atiyah–
Jones conjecture, and Taubes proved a number of results in that direction [64], but

not the full conjecture. More precisely, Taubes introduced maps Tk : M̃k → M̃k+1,
unique up to homotopy, and showed that the resulting direct limit of homology
groups is H∗(Ω

3
0S

3). In particular, if the homology groups Hq(M̃k) stabilise as
k → ∞, then the limit must be Hq(Ω

3
0S

3). But this leaves open the possibility that
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there are additional classes in Hq(M̃k), for arbitrarily large k, which map to zero

in Hq(M̃k′) for some k′ > k.
We turn now to the more geometrical approaches. Gravesen [34] obtained a result

similar to that discussed above of Taubes by using a description due to Atiyah [10]
of the G-instanton moduli spaces as spaces of holomorphic maps from S2 to the
loop space ΩG. This is an infinite-dimensional complex manifold, and Gravesen’s
work extends Segal’s theory for rational maps to the infinite-dimensional situation.
The technique of Boyer et al. in [22] exploited the identification of instantons with
holomorphic bundles on the plane mentioned in section 2.4.3. They defined a
stratification of the moduli space based on the configuration of jumping lines and,
by a detailed study of this, were able to show that the homology groups stabilise.
Combined with the results of Taubes or Gravesen, this gave a proof of the Atiyah–
Jones conjecture. Another proof, of a slightly different result, was found by Kirwan
using the ADHM description and her general theory of quotient spaces [45].

The topology of instanton moduli spaces and the variational theory of the Yang–
Mills functional seems an interesting area for future study. Do analogues of the
Atiyah–Jones conjecture hold true for other 4-manifolds? One recent relevant de-
velopment is due to Waldron, who showed that the Yang–Mills flow in dimension
4 has long-time smooth solutions [69].

While variational methods have, so far, been only partially successful for Yang–
Mills theory on 4-manifolds, there is a very satisfactory picture for analogous ques-
tions involving monopoles. Taking the gauge group SU(2), the moduli space of
charge k monopoles can be identified with the rational map spaces Rk [25]. Taubes’
index bounds apply also to monopoles, and he developed a full variational theory
in this case [65]. Putting this together gives an alternative proof of Segal’s result
on the homology approximation of Ω2

kS
2 by Rk for large k. Similar results hold for

other structure groups where the moduli spaces that appear are spaces of holomor-
phic maps from S2 to co-adjoint orbits. Monopoles also tie up with the instanton
discussion. The proof, mentioned above, by Uhlenbeck, Sibner, and Sibner of the
existence of higher critical points can be seen as a variant, for hyperbolic monopoles,
of Taubes’ theory for Euclidean monopoles.

2.4.5. Localisation. Atiyah was very interested in an integration formula found by
Duistermaat and Heckman in 1982 [29]. Consider a compact sympletic 2m-manifold
(V, ω) with a circle action generated by a Hamiltonian function H. Suppose for
simplicity that the action has a finite set of fixed points, or in other words H has
nondegenerate critical points. The Duistermaat–Heckman formula is

(33)

∫
V

e−itH ω2m

m!
=

∑
p

e−itH(p)

e(p)tm
,

where p runs over the fixed points and e(p) is the product of the weights of the
action on TVp.

If we take any function H on V , standard theory gives an asymptotic formula as
t → ∞ for the integral on the left-hand side of (33) with a sum of contributions from
the critical points which reproduces the expression on the right-hand side in this
case. This is the stationary phase approximation. The point of the Duistermaat–
Heckman result is that the fact that H generates a circle action implies that the
stationary phase approximation is exact.
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Considering H as a map H : V → R, let μ be the measure on R given by
the pushforward of the volume form ωm/m! on V . The integral on the left-hand
side of (33) now appears as the Fourier transform of μ, and simple arguments
from analysis, together with the asymptotic statement, show that equation (33) is
equivalent to the fact that μ is piecewise polynomial. In the simplest case, when V
is the 2-sphere, the measure μ is supported in an interval on which it is a constant
multiple of Lebesgue measure. This is a restatement of Archimedes’ theorem on
the area of zones in the sphere. The same holds for the action of a torus T k

on a symplectic manifold (V, ω) with a moment map m : V → Rk, where Rk is
viewed as the dual of the Lie algebra. The pushforward of the volume form is
piecewise polynomial. Using ideas from Morse theory, Atiyah obtained a result in
similar vein: the support of this measure—that is, the image of m—is a convex
polyhedron [9]. (Similar results were obtained about the same time by Guillemin
and Sternberg.) In the case when V is a co-adjoint orbit of a compact Lie group
and T k is the maximal torus, this recovers classical matrix inequalities and has an
intimate connection with representation theory.

In another direction, Atiyah and Bott explained how formula (33) can be re-
garded as a localisation formula in equivariant cohomology [13]. Recall that for
any group G acting on V the equivariant cohomology H∗

G(V ) is the cohomology
of the space VG = EG ×G V which fibres over BG with fibre V . For a compact
oriented 2m manifold V we have then an integration-over-the-fibre map

I : H∗(VG) → H∗−2m(BG).

In the case at hand, with G = S1, the cohomology H∗(BG) is the polynomial ring
in a generator τ of degree 2, so, taking complex co-efficients, we have a map

H∗
S1(V ) → C[τ ].

Atiyah and Bott showed that, in the abstract, this map can be computed from
data at the fixed points of the action. The simplest case is when the action is free.
Then the equivariant cohomology is the same as the cohomology of the quotient
space V/S1 and it is clear that the integration over the fibre vanishes. The general
Atiyah–Bott formula, for isolated fixed points, is

(34) I(α) =
∑
p

i∗p(α)

E(TVp)
,

where ip is the inclusion of p in V and E(TVp) is the equivariant Euler class of the
tangent bundle. Each term in the sum on the right-hand side is computed as an
element of the field of fractions C(τ ), but the sum lands in the polynomials C[τ ].

To connect with the Duistermaat–Heckman formula, we recall the Cartan model
for equivariant cohomology via differential forms. In the case of a circle action we
take Ω∗

V ⊗C[τ ] with a differential

dX = d+ τiX ,

where iX is contraction with the vector field X generating the action. Acting on
the S1-invariants in Ω∗

V ⊗C[τ ], this has square zero and the resulting cohomology
groups are isomorphic to H∗

S1(V ). Now the hypothesis that H is a Hamiltonian
for the circle action is equivalent to saying that ω + τH is a dX -closed form. In
other words H gives an extension of ω, which is an ordinary closed form, to an
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equivariantly closed form. Now the integral on the left-hand side of (33) is just

I(exp(ω + τH)) ∈ C[τ ],

except that we replace the formal variable τ by the complex variable it in inter-
preting the formula.

2.4.6. The Seiberg–Witten curve and Nekrasov’s instanton counting. We
finish this article with a brief discussion of a development which brings together
many of the themes we have discussed in Atiyah’s work.

As we mentioned above, the individual terms in the Atiyah–Bott fixed point
formula are defined as rational functions of τ . The same applies for an action of
a torus T = Tμ with isolated fixed points, where each fixed point contributes a
rational function of variables (τ1, . . . , τμ). The fixed point contribution

i∗p(α)

E(TVp)

makes sense for classes α ∈ H∗
T (V ) which are of the wrong dimension to integrate

over the manifold. In particular we can consider the class 1 in H0. For a compact
manifold V the sum of these contributions must vanish, but we will now consider
the case of an action on a noncompact manifold with a finite number of fixed points.
Then we can make the formal definition

(35)

∫
V

1 =
∑
p

1

E(TVp)
,

which is a rational function of (τ1, . . . , τμ).
To understand this more, suppose that V is a manifold with boundary ∂V = W

on which the torus T acts and there are no fixed points on the boundary. Then the
quantity in (35) is a topological invariant of the action of T on the boundary W .
For the simplest case, suppose that T = S1 and that the action on W is free. Then
W/S1 = Q is a (2m− 2)-manifold and W → Q is an S1-bundle with a Chern class
c1 ∈ H2(Q). Then it is not hard to see that

(36)

∫
V

1 = τ−m〈cm−1
1 , [Q]〉.

In the general case of a T -action with no fixed points on W , for almost all
elements ξ of the Lie algebra of T the corresponding vector field Xξ on W has
no zeros. Let A be a 1-form on W such that the Lie derivative of A under Xξ

vanishes and A(Xξ) = 1. Such 1-forms exist: for example we can take a T -invariant
Riemannian metric on W such that Xξ has length 1 and the 1-form A to be the
dual of Xξ. We then obtain a quantity

J =

∫
W

A ∧ dAm−1,

and it is straightforward to show that this is independent of the choice of A and is
a rational function of ξ. Then one has a formula

(37)

∫
V

1 = J,

where the right-hand side is a rational function defined on the Lie algebra of the
torus. (In the case when W is three-dimensional, this invariant is related to the
asymptotic Hopf invariant introduced by Arnold [1].)
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Nekrasov applied these ideas in [53] to framed moduli spaces M̃k,r of instantons
on R4 with rank r and Chern class k. There are commuting actions of SO(4),
acting by rotations of R4, and of U(r), acting on the framing. We take maximal
tori T 2 in SO(4) and T r−1 ∈ SU(r) ⊂ U(r) (the centre of U(r) acts trivially).
More precisely, Nekrasov considered a completion Mk,r of the moduli space which
depends on a choice of complex structure R4 = C2. As we mentioned in section
2.4.3 the framed instanton moduli spaces can be identified with moduli spaces
of holomorphic bundles on the complex plane trivialised at infinity. Then the
completion Mk,r can be defined as a set of Gieseker stable torsion-free sheaves on
the plane, framed at infinity. From another point of view, we modify the ADHM
equations (30), (31) to

[α1, α2] + PQ = 0, [α∗
1, α1] + [α∗

2, α2] + P ∗P −QQ∗ = ε,

for some nonzero ε. In other words we are changing the level set in the definition
of the hyperkähler quotient, just as we have discussed before. In the simplest case
of k = 1, r = 2, the moduli space is

M2,1 = C2 × (C2 \ {0})/± 1).

The first factor gives the centre of the instanton and the norm of the second factor
gives the scale. The Uhlenbeck completion, which does not depend on a choice of
complex structure, adds ideal instantons with scale zero to give

C2 × (C2/± 1),

whereas the Gieseker completion is obtained by blowing up the singular set to add
an exceptional divisor C2 ×CP1.

The advantage of the Gieseker completion is that the spaces Mr,k are smooth

manifolds. The action of T 2 × T r−1 on the moduli space extends to Mr,k and
Nekrasov showed that there are a finite number of fixed points which can be de-
scribed explicitly in terms of Young diagrams. So the preceding discussion applies.
For simplicity we now take r = 2 so the torus acting is T 2 × S1, and we take
co-ordinates (ε1, ε2, a) on the Lie algebra. Nekrasov defines

(38) Z(ε1, ε2, a,Λ) =
∞∑
k=0

Λk

∫
M2,k

1.

These definitions were motivated by supersymmetric Yang–Mills theory and in par-
ticular the work of Seiberg and Witten. Nekrasov made a series of conjectures about
this function Z. One was that

F (ε1, ε2, a,Λ) = ε1ε2 logZ(ε1, ε2, a)

is holomorphic across ε1, ε2 = 0. Another was that F (0, 0, a,Λ) is given by a certain
formula involving the periods of the meromorphic 1-form zdw/w on the Seiberg–
Witten curve: the elliptic curve Cu,Λ defined by the solutions (z, w) of the equation

(39) Λ(w + w−1) = z2 + u.

These conjectures were proved subsequently by Nekrasov and Okounov [54] and
by Nakajima and Yoshioka [49], and we refer to those papers for further details. For
the present article, the point is that this work—combining Atiyah–Bott localisa-
tion, instanton moduli spaces, the ADHM constuction, and hyperkähler quotients—
produced fundamental results in quantum Yang–Mills theory.



ATIYAH ON HOLOMORPHIC VECTOR BUNDLES AND GAUGE THEORIES 607

About the author

Simon Donaldson works on differential geometry and connections with other
areas, including complex geometry and holomorphic vector bundles. He studied for
his doctorate from 1980 to 1983 under the supervision of Michael Atiyah and was
a colleague of Atiyah in Oxford from 1884 to 1990.

References

[1] V. I. Arnol′d, The asymptotic Hopf invariant and its applications, Selecta Math. Soviet. 5
(1986), no. 4, 327–345. Selected translations. MR891881

[2] A. Asok, B. Doran, and F. Kirwan, Yang-Mills theory and Tamagawa numbers: the fascina-
tion of unexpected links in mathematics, Bull. Lond. Math. Soc. 40 (2008), no. 4, 533–567,
DOI 10.1112/blms/bdn036. MR2438072

[3] M. F. Atiyah, Complex fibre bundles and ruled surfaces, Proc. London Math. Soc. (3) 5
(1955), 407–434, DOI 10.1112/plms/s3-5.4.407. MR76409

[4] M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85
(1957), 181–207, DOI 10.2307/1992969. MR86359

[5] M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957),

414–452, DOI 10.1112/plms/s3-7.1.414. MR131423
[6] M. F. Atiyah, On analytic surfaces with double points, Proc. Roy. Soc. London Ser. A 247

(1958), 237–244, DOI 10.1098/rspa.1958.0181. MR95974
[7] M. F. Atiyah, Geometry on Yang-Mills fields, Scuola Normale Superiore Pisa, Pisa, 1979.

MR554924
[8] M. F. Atiyah, Green’s functions for self-dual four-manifolds, Mathematical analysis and ap-

plications, Part A, Adv. in Math. Suppl. Stud., vol. 7, Academic Press, New York-London,
1981, pp. 129–158. MR634238

[9] M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982),
no. 1, 1–15, DOI 10.1112/blms/14.1.1. MR642416

[10] M. F. Atiyah, Instantons in two and four dimensions, Comm. Math. Phys. 93 (1984), no. 4,
437–451. MR763752

[11] M. F. Atiyah, Magnetic monopoles in hyperbolic spaces, Vector bundles on algebraic varieties
(Bombay, 1984), Tata Inst. Fund. Res. Stud. Math., vol. 11, Tata Inst. Fund. Res., Bombay,
1987, pp. 1–33. MR893593

[12] M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans.
Roy. Soc. London Ser. A 308 (1983), no. 1505, 523–615, DOI 10.1098/rsta.1983.0017.
MR702806

[13] M. F. Atiyah and R. Bott, The moment map and equivariant cohomology, Topology 23
(1984), no. 1, 1–28, DOI 10.1016/0040-9383(84)90021-1. MR721448

[14] M. F. Atiyah, V. G. Drinfel′d, N. J. Hitchin, and Yu. I. Manin, Construction of instantons,
Phys. Lett. A 65 (1978), no. 3, 185–187, DOI 10.1016/0375-9601(78)90141-X. MR598562

[15] M. Atiyah and N. Hitchin, The geometry and dynamics of magnetic monopoles, M. B. Porter

Lectures, Princeton University Press, Princeton, NJ, 1988, DOI 10.1515/9781400859306.
MR934202

[16] M. F. Atiyah, N. J. Hitchin, and I. M. Singer, Deformations of instantons, Proc. Nat. Acad.
Sci. U.S.A. 74 (1977), no. 7, 2662–2663, DOI 10.1073/pnas.74.7.2662. MR458424

[17] M. F. Atiyah, N. J. Hitchin, and I. M. Singer, Self-duality in four-dimensional Rie-
mannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), no. 1711, 425–461, DOI
10.1098/rspa.1978.0143. MR506229

[18] M. F. Atiyah and J. D. S. Jones, Topological aspects of Yang-Mills theory, Comm. Math.
Phys. 61 (1978), no. 2, 97–118. MR503187

[19] M. F. Atiyah and R. S. Ward, Instantons and algebraic geometry, Comm. Math. Phys. 55
(1977), no. 2, 117–124. MR494098

[20] H. Bateman, The solution of partial differential equations by means of definite integrals,
Proc. London Math. Soc. (2) 1 (1904), 451–458, DOI 10.1112/plms/s2-1.1.451. MR1576794

[21] W. Barth and K. Hulek, Monads and moduli of vector bundles, Manuscripta Math. 25 (1978),
no. 4, 323–347, DOI 10.1007/BF01168047. MR509589

https://www.ams.org/mathscinet-getitem?mr=891881
https://www.ams.org/mathscinet-getitem?mr=2438072
https://www.ams.org/mathscinet-getitem?mr=76409
https://www.ams.org/mathscinet-getitem?mr=86359
https://www.ams.org/mathscinet-getitem?mr=131423
https://www.ams.org/mathscinet-getitem?mr=95974
https://www.ams.org/mathscinet-getitem?mr=554924
https://www.ams.org/mathscinet-getitem?mr=634238
https://www.ams.org/mathscinet-getitem?mr=642416
https://www.ams.org/mathscinet-getitem?mr=763752
https://www.ams.org/mathscinet-getitem?mr=893593
https://www.ams.org/mathscinet-getitem?mr=702806
https://www.ams.org/mathscinet-getitem?mr=721448
https://www.ams.org/mathscinet-getitem?mr=598562
https://www.ams.org/mathscinet-getitem?mr=934202
https://www.ams.org/mathscinet-getitem?mr=458424
https://www.ams.org/mathscinet-getitem?mr=506229
https://www.ams.org/mathscinet-getitem?mr=503187
https://www.ams.org/mathscinet-getitem?mr=494098
https://www.ams.org/mathscinet-getitem?mr=1576794
https://www.ams.org/mathscinet-getitem?mr=509589


608 SIMON DONALDSON

[22] C. P. Boyer, J. C. Hurtubise, B. M. Mann, and R. J. Milgram, The topology of instanton
moduli spaces. I. The Atiyah-Jones conjecture, Ann. of Math. (2) 137 (1993), no. 3, 561–609,
DOI 10.2307/2946532. MR1217348

[23] S. A. Cherkis and A. Kapustin, Dk gravitational instantons and Nahm equations, Adv.
Theor. Math. Phys. 2 (1998), no. 6, 1287–1306 (1999), DOI 10.4310/ATMP.1998.v2.n6.a3.
MR1693628

[24] S. K. Donaldson, Instantons and geometric invariant theory, Comm. Math. Phys. 93 (1984),

no. 4, 453–460. MR763753
[25] S. K. Donaldson, Nahm’s equations and the classification of monopoles, Comm. Math. Phys.

96 (1984), no. 3, 387–407. MR769355
[26] S. K. Donaldson, Topological field theories and formulae of Casson and Meng-Taubes, Pro-

ceedings of the Kirbyfest (Berkeley, CA, 1998), Geom. Topol. Monogr., vol. 2, Geom. Topol.
Publ., Coventry, 1999, pp. 87–102, DOI 10.2140/gtm.1999.2.87. MR1734402

[27] S. K. Donaldson, Moment maps and diffeomorphisms, Asian J. Math. 3 (1999), no. 1, 1–15,
DOI 10.4310/AJM.1999.v3.n1.a1. Sir Michael Atiyah: a great mathematician of the twentieth
century. MR1701920

[28] S. K. Donaldson, Moment maps in differential geometry, Surveys in differential geometry,
Vol. VIII (Boston, MA, 2002), Surv. Differ. Geom., vol. 8, Int. Press, Somerville, MA, 2003,
pp. 171–189, DOI 10.4310/SDG.2003.v8.n1.a6. MR2039989

[29] J. J. Duistermaat and G. J. Heckman, On the variation in the cohomology of the sym-
plectic form of the reduced phase space, Invent. Math. 69 (1982), no. 2, 259–268, DOI
10.1007/BF01399506. MR674406

[30] R. Earl and F. Kirwan, Complete sets of relations in the cohomology rings of moduli spaces
of holomorphic bundles and parabolic bundles over a Riemann surface, Proc. London Math.
Soc. (3) 89 (2004), no. 3, 570–622, DOI 10.1112/S0024611504014832. MR2107008

[31] Dan Freed, The Atiyah–Singer index theorem, Bull. Amer. Math. Soc. 58 (2021), no. 4,
517–566.

[32] D. Gaitsgory and J. Lurie,Weil’s conjecture for function fields. Vol. 1, Annals of Mathematics
Studies, vol. 199, Princeton University Press, Princeton, NJ, 2019. MR3887650

[33] W. M. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. in Math.

54 (1984), no. 2, 200–225, DOI 10.1016/0001-8708(84)90040-9. MR762512
[34] J. Gravesen, On the topology of spaces of holomorphic maps, Acta Math. 162 (1989), no. 3-4,

247–286, DOI 10.1007/BF02392839. MR989398
[35] P. Griffiths and J. Harris, Principles of algebraic geometry, Pure and Applied Mathematics,

Wiley-Interscience [John Wiley & Sons], New York, 1978. MR507725
[36] G. Harder and M. S. Narasimhan, On the cohomology groups of moduli spaces of vector bun-

dles on curves, Math. Ann. 212 (1974/75), 215–248, DOI 10.1007/BF01357141. MR364254
[37] N. J. Hitchin, Monopoles and geodesics, Comm. Math. Phys. 83 (1982), no. 4, 579–602.

MR649818
[38] N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3)

55 (1987), no. 1, 59–126, DOI 10.1112/plms/s3-55.1.59. MR887284
[39] N. J. Hitchin, A. Karlhede, U. Lindström, and M. Roček, Hyper-Kähler metrics and super-
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