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Atiyah, M. F.; Singer, I. M.

The index of elliptic operators on compact manifolds.

Bulletin of the American Mathematical Society 69 (1963), 422–433.

The authors here describe their solution to the index problem for elliptic op-
erators on closed manifolds. Their result may also be thought of as a beautiful
and far-reaching generalization of Hirzebruch’s Riemann-Roch theorem—both in
statement and in the spirit of the proof.

The authors formulate the index problem in the following general setting. Let
E and F be vector-bundles over the compact manifold X, where everything is C∞

throughout. It then makes sense to speak of a differential operator D from E to
F , and such an operator induces a linear map D : Γ(E) → Γ(F ) from the sections
of E to those of F . When D is elliptic, both the kernel and the cokernel of D are
finite-dimensional, and the difference of these dimensions is by definition the index
of D. Alternately, one has the equality index (D) =

∑
(−1)i dimHi(X;K), where

K is the kernel sheaf of D, as follows from rudimentary sheaf theory, and the local
“onto” property of elliptic operators: H0(X;K) � kerD, H1(X;K) � cokerD,
Hi = 0, i ≥ 2.

The “index problem” is to give a description of this integer in terms of the
topological data implicit in the elliptic operator. To describe these one needs the
following interpretation of the highest-order terms in D. Let T (X) be the cotangent
bundle of X, and let T0(X) be the subset of non-zero vectors in T (X). The pro-
jection T (X) → X will be denoted by π. With this understood, the highest-order
terms of D are seen to define a definite homomorphism σ(D) : π∗E → π∗F of the
pulled-back bundles on T (X). Further, D is elliptic if and only if this homomor-
phism, called the symbol of D, is an isomorphism on T0(X). This isomorphism—or
rather its stable homotopy class [σ(D)]—is to be thought of as the topological
“twist” of the elliptic operator D.

One may relate [σ(D)] in various ways to more standard topological objects.
Maybe the simplest construction is the following one. Let B(X) and S(X), re-
spectively, stand for the unit ball and unit sphere bundle of T (X) endowed with
some fixed Riemannian structure. Let W (X) = B(X)∪S(X) B(X) be the manifold
obtained by glueing two copies of B(X) together along their boundary, i.e., W (X)
is the doubled manifold constructed from B(X). Now one uses σ(D) to construct
a bundle E ∪σ(D) F on W (X) by taking π∗E on one copy of B(X), π∗F on the
other, and glueing them together over S(X) by means of the isomorphism σ(D).
(Alternatively and really equivalently, one may use σ(D) to construct a difference
element in K(B(X), S(X)) and that is the point of view taken in the paper under
review.)

A formula quite equivalent to the index formula of the paper now is of the form
index(D) =

∫
W (X)

ch(E ∪σ(D) F )
∧
π∗A(X). Here ch denotes the Chern character
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and A(X) is a differential form on X which we will not specify here, but which is
an explicit polynomial in the characteristic classes of X.

The index formula easily yields the results of the pioneers in this field such
as Agranovič, Dynin, Gel′fand, Seeley, Vol′pert, etc. The formula is also seen to
generalize the Riemann-Roch theorem of Hirzebruch to (not necessarily) algebraic
complex manifolds and bundles. (To this one need only follow up our earlier ex-
pression for index (D) as an Euler characteristic.)

The proof the index formula, as well as its various consequences in special cases,
is clearly summarized in the note. For the sake of analysts we remark only that the
general setting of operators on vector-bundles—as opposed to systems—is essential
for the proof.

R. Bott

From MathSciNet, July 2021

MR0236950 (38 #5243) 57.50

Atiyah, M. F.; Singer, I. M.

The index of elliptic operators. I.

Annals of Mathematics. Second Series 87 (1968), 484–530.

The earlier proof of the Atiyah-Singer index theorem as given in the book by
R. Palais [Seminar on the Atiyah-Singer index theorem, Ann. of Math. Studies,
No. 57, Princeton Univ. Press, Princeton, N.J., 1965; MR0198494] used cobor-
dism theory and was in this respect modelled on the proof of the Riemann-Roch
theorem due to the reviewer [Neue topologische Methoden in der algebraischen Ge-
ometrie, Ergeb. Math. Grenzgeb., Heft 9, Springer, Berlin, 1956; MR0082174;
second edition, 1962; MR0137706; third edition in English, Springer, New York,
1966; MR0202713]. This proof did not lend itself to certain generalizations (for
example, in the equivariant case) because the corresponding cobordism theories are
not known. The index theorem of the paper under review includes the equivariant
case: Suppose a compact Lie group G operates differentiably on a compact differen-
tiable manifold X such that the action is compatible with a linear elliptic problem
on X. Then the index of this elliptic problem is an element of the representation
ring R(G). In the simplest case the elliptic problem is given by an elliptic linear
differential operator D : C∞(E) → C∞(F ), where E,F are complex vector bundles
overX. The group G operates on the kernel and on the cokernel ofD. Thus we have
two finite-dimensional representations of G. The difference of the two representa-
tions as elements of R(G) is the index of the elliptic problem. The symbol of such
an elliptic problem is an element of K(BX,SX) if one forgets about the G-action.
(For the notation, see the review of the book of Palais [loc. cit.].) If a G-action
is given, then equivariant K-theory must be used and the symbol is an element of
KG(BX,SX). The authors define K and KG for a locally compact space as the
corresponding reduced groups of the one-point-compactification of the space. With
this understanding we have KG(BX,SX) = KG(TX), where TX is the total space
of the covariant tangent bundle. Using “enough operators” (pseudo-differential op-
erators) and homotopy properties which ensure that the index depends only on the
symbol, the authors define the analytical index a-ind: KG(TX) → R(G). This
is a homomorphism of R(G)-modules and has by its very definition the property
that the index of an elliptic problem equals a-ind of its symbol. The definition
of an R(G)-homomorphism t-ind: KG(TX) → R(G) in topological terms is given
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in § 3. The “index theorem” is the main theorem 6.7 of the paper and asserts
that a-ind and the topological index t-ind coincide. For the definition of t-ind and
for the investigation of properties of a-ind and t-ind, the following construction is
fundamental. Suppose X,Y are G-manifolds with X ⊂ Y and X compact. Then
TX ⊂ TY and the normal bundle W of TX ⊂ TY equals N ⊕ N lifted to TX,
where N is the normal bundle of X in Y . Since N ⊕N carries a complex structure,
so also does W . The de Rham complex of the exterior powers of W can be ten-
sored with any complex of vector bundles over TX lifted to W which has compact
support in TX. The result is a complex of vector bundles over W with compact
support, because the de Rham complex is canonically trivialized outside a zero-
section of W . In this way we get a homomorphism KG(TX) → KG(W ). Since W
may be regarded as a tubular neighborhood of TX in TY and since the one-point-
compactification of TY maps onto the one-point-compactification of W , we have a
homomorphism KG(W ) → KG(TY ). The composition is an R(G)-homomorphism
i! : KG(TX) → KG(TY ), where i : X → Y denotes the embedding. (Of course,
many details are omitted in this review. Constructions using the alternating sum
of the exterior powers occur in several earlier papers of Atiyah and others.)

To define t-ind for a compact differentiable G-manifold X we embed X in a
real representation space E of G. This is always possible [R. Palais, J. Math.
Mech. 6 (1957), 673–678; MR0092927]. Let i be the embedding. We have
i! : KG(TX) → KG(TE). Under the embedding j of the origin P in E we have
j! : KG(TP ) = KG(P ) = R(G) → KG(TE). j! is an isomorphism. This is a special
case of the equivariant form of the Bott periodicity theorem [the first author, K-
theory, Benjamin, New York, 1967; MR0224083; Russian translation, Izdat. “Mir”,
Moscow, 1967; MR0224084; Quart. J. Math. Oxford Ser. (2) 19 (1968), 113–140;
MR0228000].

t-ind is defined by j!◦ (t-ind) = i!. The authors show that the definition is
independent of the choice of the embedding. t-ind is the identity of R(G) if (A1)
X is a point. The diagram

KG(TX)
i! ��

t−ind
���

��
��

��
��

KG(TY )

t−ind
����
��
��
��
�

R(G)

(A2)

commutes for any inclusion i : X → Y with X,Y compact G-manifolds. An index
function ind is given if we have for every compact differentiable manifold X an

R(G)-homomorphism KG(TX)
ind→ R(G). If such an index function ind satisfies

(A1) and (A2), then ind = t-ind (Proposition 4.1). For the analytical index, (A1) is
trivial. To prove the main theorem, axiom (A2) has to be checked for the analytical
index. This is not easy because for an operator D on X with symbol γ(D) we
have to construct an operator on Y with symbol i!γ(D) and show that the index
of this new operator equals the index of D. This construction is the essential
analytical part of the proof of the main theorem. “Once this has been done, we
can take Y to be a sphere, and the general index theorem is reduced to the case
of operators on the sphere. For these the problem is easily solved.” At this point
one recognizes that the whole proof has “in spirit, at least” much in common with
Grothendieck’s proof of the Riemann-Roch theorem. Since it is difficult to verify
(A2) directly, it is shown that certain axioms, (B1), (B2′′) and (B3), imply (A2) for
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any index function. In § 8 the axioms (B1) and (B2′′) are proved for the analytical
index; in § 9 the axiom (B3) is proved. A special case of (B3) is the behaviour
of the index function if one takes the Cartesian product of two G-manifolds with
elliptic problems. The analytical index behaves multiplicatively in this case. (B3)
generalizes this multiplicative property to differentiable fibre bundles. In this case
the bundle of “indices along the fibres” may not be trivial over the base and enters
essentially in the formulation (B1) is an excision axiom: Let U be a (non-compact)
G-manifold and j : U → X, j′ : U → X ′ two open G-embeddings into compact
G-manifolds X,X ′. Then the following diagram commutes.

KG(TX)

ind

����
���

���
��

KG(TU)

j∗
������������

j
′∗

����
���

���
��

R(G)

KG(GX ′)

ind

������������

Observe that the one-point-compactifications of TX and TX ′ map onto the one-
point compactification of TU . j∗ and j′∗ are induced by these maps.

The excision property of the analytical index was observed by R. T. Seeley
[Trans. Amer. Math. Soc. 117 (1965), 167–204; MR0173174]. The axiom (B2′′) is
a normalisation axiom for certain operators on S1 and S2. Information on operators
on other spheres follows by using excision and the multiplicative property. The idea
of the proof for the essential property (A2) of the analytical index is sketched by
the authors as follows (§ 1): let i : X → Y be an inclusion of compact manifolds
(we forget the G-action). Let U be a tubular neighborhood of X and Z its double.
Then the excision property (B1) shows that ind i!A = ind k!A, where A ∈ K(TX)
and k : X → Z is the inclusion in the double. Z is fibred over X by spheres.
The multiplicative property and the information on spheres gives the desired result
ind i!A = indA.

This paper contains an impressive amount of analysis. The theory of pseudo-
differential operators (Hörmander, Kohn-Nirenberg, Seeley) is essential to have
“enough operators” to realize all elements of KG(TX) as symbols and to carry
through all constructions.

The analytical index was “calculated” in this paper by topological terms (topo-
logical index defined byK-theory). In the following Parts II [#5244] and III [#5245]
this topological index will be interpreted in two steps. In Part II the topological
index is expressed in terms of fixed-point sets of G. This is done in K-theory. It
leads to a general “Lefschetz fixed-point theorem” where the fixed point set of an
element of G is a disjoint union of submanifolds. For isolated fixed points this is
contained in the fixed point theorem of the first author and R. Bott [Ann. of Math.
(2) 86 (1967), 374–407; MR0212836], a theorem on differentiable maps g with iso-
lated simple fixed points, where g need not be invertible. In Part III the result
is reformulated in cohomological terms. If G is the identity, this gives the index
theorem in its well-known cohomological form [R. Palais, loc. cit.]. In general, it
gives the cohomological form of the fixed-point theorem.

F. Hirzebruch

From MathSciNet, July 2021



SELECTIONS REPRINTED FROM MATHEMATICAL REVIEWS 615

MR0702806 (85k:14006) 14F05; 14D22, 32G13, 32L05, 53C05, 58E05, 58E20,

81E13

Atiyah, M. F.; Bott, R.

The Yang-Mills equations over Riemann surfaces.

Philosophical Transactions of the Royal Society of London. Series A.
Mathematical and Physical Sciences 308 (1983), no. 1505, 523–615.

If P is a principal bundle with group G over a compact oriented Riemannian
manifoldM , the Yang-Mills functional L is defined on the space A of all connections
in P , by the formula L(A) = ‖F (A)‖2, where F (A) is the curvature form of A.
The Euler-Lagrange equations of L are known as the Yang-Mills equations. A
connection A such that F (A) satisfies these equations (i.e. a critical point of L)
is known as a Yang-Mills connection. The study of these equations, particularly
when dimM = 4, is an active area of current research in mathematical physics
with which both authors have been closely associated. In this article the case where
dimM = 2 is examined in detail; although this is “trivial” from the physicists’ point
of view, it leads to some very interesting mathematics. The manifold M has the
structure of a Riemann surface, so one expects the complex structure to play a role.
Indeed, if G = Un, A can be identified with the space of holomorphic structures
on the Hermitian vector bundle E associated to P (the (0, 1)-part of the covariant
derivative defines a ∂̄-operator and hence an almost complex structure, which is
integrable for dimensional reasons). Those holomorphic structures corresponding
to the minimum points (i.e. stable extrema) of L turn out to be related in a
simple way to the stable holomorphic structures of E (in the sense of Mumford).
The theme of the paper is to apply Morse theory to L, in order to obtain the
cohomology of the moduli space of such holomorphic structures. Unfortunately, a
direct attack is fraught with difficulties. For example, the space A is contractible,
so nontrivial results are achieved only if the action of the gauge group G (the
group of automorphisms of P ) is taken into account; L is equivariant with respect
to this action. As G does not act freely on A, it is necessary to consider the
homotopy quotient A//G. The fact that A is infinite-dimensional gives rise to
analytical problems with the Morse theory, and to avoid these the authors utilize
a stratification of A occurring naturally in algebraic geometry, which behaves as a
“gradient flow stratification” for L. A crucial property of this stratification is that
the “lowest stratum” corresponding to the minimum points of L contains essentially
all the information needed to construct the other strata; since the topology of the
space A//G is just that of the classifying space BG and is known, Morse theory
now leads to an inductive formula for the cohomology of the lowest stratum and
hence of the moduli space of stable holomorphic structures. The Betti numbers of
the moduli space had been obtained recently by Desale and Ramanan by entirely
different methods, using the Weil conjectures, but additional results are proved here
concerning the multiplicative structure and the absence of torsion. It will be seen,
therefore, that the paper begins with certain differential equations of mathematical
physics, traverses areas of differential geometry, algebraic topology, and algebraic
geometry, and finally connects up with important results in number theory. It goes
without saying that this review can only be an inadequate sketch of a large project;
recommended summaries are the authors’ own readable and extensive introduction,
and other articles [the authors, Geometry and analysis, 11–20, Indian Acad. Sci.,
Bangalore, 1980; MR0592249; Bott, The Chern symposium 1979 (Berkeley, Calif.,
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1979), 11–22, Springer, New York, 1980; MR0609555]. Some highlights of the paper
will now be indicated.

The first two sections contain a review of Morse theory, introducing a version
needed for the functional L on A//G. Sections 3 and 4 give a detailed treatment
of the Yang-Mills functional and the Yang-Mills equations. The basic material
concerning (Yang-Mills) connections in P and (stable) holomorphic structures of E
is contained in Sections 5 to 8. If E admits a flat connection A, this is certainly
a critical point of L, and it is induced from a connection in the standard flat
bundle M̃ → M by a unitary representation of π1M (the holonomy representation).
Generalizing, it is shown that for any Yang-Mills connection A, the 0-form ∗F (A) is
given essentially by a fixed element X ∈ un, and that the connection is induced via
a projective unitary representation ρ of π1M . If X is in the centre of un, A is said
to be central, and it gives a minimum point of L. A general Yang-Mills connection
A breaks up into a sum of central connections in the summands of some direct
sum decomposition of E, corresponding to the decomposition of ρ into irreducible
summands. This is an important principle: the general critical point (for E) may be
expressed in terms of minima (for subbundles of E). Those Yang-Mills connections
for which the bundle decomposition of E is of “type μ” form a subset Nμ ⊆ A.

These results are then interpreted in terms of holomorphic structures; A will now
be identified with the space C of ∂̄-operators. The group Gc of smooth automor-
phisms of E acts on C, the orbits being equivalence classes of holomorphic structures
(Gc may be identified with the complexification of the gauge group G). Harder and
Narasimhan associated to a holomorphic structure a canonical flag of holomorphic
subbundles of E, so one may write C =

⋃
μ Cμ, where Cμ (a Gc-equivariant subset)

denotes those holomorphic structures for which the flag has type μ. Generically
the flag is trivial (i.e. {0} ⊆ E). In this case E is semistable and the correspond-
ing stratum is denoted Css. From the point of view of equivariant cohomology, Cμ
is equivalent to a product C(1)

ss × C(2)
ss × · · · × C(k)

ss , where E has a decomposition

E = E1⊕E2⊕· · ·⊕Ek of type μ and where C(i)
ss denotes the semistable holomorphic

structures for Ei. The relation with the previous paragraph is provided by the result
of Narasimhan and Seshadri that stable holomorphic structures are precisely those
which arise from irreducible projective unitary representations of π1M [see also S.
K. Donaldson, Differential Geom. 18 (1983), no. 2, 269–277; MR0710055]. In the
most favourable case, where the rank and degree of E are coprime, one has (a) the
subset of stable holomorphic structures Cs is equal to Css, (b) the representation
of π1M corresponding to X ∈ un is irreducible if and only if X is central, and (c)
Cs/Gc and Ns/G are isomorphic compact complex manifolds. Moreover, if Aμ is the
subset of A corresponding to Cμ ⊆ C, then Nμ is the subset of Aμ on which L takes
its minimum value. This suggests that the stratification A =

⋃
μ Aμ is the Morse

stratification of A with respect to L. Rather than go into the analysis needed to
prove this, the authors observe that to get cohomological information from a Morse
function, one only needs to know the stratification. Thus, they suppress L from
now on and work entirely with the stratification C =

⋃
μ Cμ.

In Section 9 it is shown, using an idea first introduced by Bott and Samelson,
that the stratification has the appropriate topological properties (it is “equivariantly
perfect”), from which the inductive formula for the cohomology of the moduli space
Cs/Gc (in the case where the rank and the degree of E are coprime) is obtained.
The authors remark that the ensuing calculations turn out to be astronomical.
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It is instructive, however, to consider the very simple case where M = S2 and
G = SUn (then E has rank n and degree 0). Each Cμ consists of a single Gc-orbit,
since the classification of holomorphic structures here is discrete: E splits as a
sum of holomorphic line bundles. The critical set Nμ consists of a single G-orbit.
The gauge group G has a normal subgroup G0 consisting of those automorphisms
which are the identity over a fixed base point of M ; G0 acts freely on A and
G/G0

∼= G (= SUn here). Dividing by this group rather than by G, one finds
that A/G0 is topologically the loop space ΩSUn, and each Nμ/G0 consists of an
equivalence class of homomorphisms S1 → SUn (i.e. a conjugacy class of geodesics
in SUn). This brings to mind the Morse-theoretic analysis of the energy functional
on ΩSUn carried out by Bott and H. Samelson [Amer. J. Math. 80 (1958), 964–
1029; MR0105694; correction; MR0170351], and indeed the index of an element of
Nμ/G0, calculated from the second variation formula for L in Section 5, is shown
to agree with the index of the corresponding geodesic.

Section 10 extends some of the results to groups G other than Un, using the ad-
joint bundle of P instead of E. A special feature of the functional L on A is that the
same critical points are obtained for any functional of the form A �→

∫
M

ϕ(∗F (A)),
where ϕ is an invariant convex function on g (L is given by ϕ(x) = tr(x∗x)). In
fact, this situation is an infinite-dimensional example of a phenomenon noted by
Mumford and Sternberg for a reductive group G acting on a Kahler manifold X.
To such an action one associates a moment map X → g∗ ∼= g, which may then
be composed with an invariant convex function on g. It turns out that there is a
connection between stability of a critical point of such a function and stability of
the point in the sense of algebraic geometry. These aspects have been studied fur-
ther by Guillemin and Sternberg, and by Kirwan [see F. C. Kirwan , Cohomology
of quotients in symplectic and algebraic geometry, Princeton Univ. Press, Prince-
ton, N.J., 1984]. Section 11 compares the number-theoretic approach of Desale and
Ramanan, and Harder and Narasimhan, with the differential geometric one devel-
oped here. The remaining Sections 12–15 contain technical results and background
information referred to earlier in the article.

Martin A. Guest

From MathSciNet, July 2021

MR0074082 (17,533d) 14.0X

Hodge, W. V. D.; Atiyah, M. F.

Integrals of the second kind on an algebraic variety.

Annals of Mathematics. Second Series 62 (1955), 56–91.

This paper, whose main results were announced earlier [C.R. Acad. Sci. Paris
239 (1954), 1333–1335; MR0068869], is concerned with a study of integrals of
the second kind on an algebraic variety, using as main tool the theory of stacks
(or sheaves or faisceaux). Chapter I deals with simple and double integrals of
the second kind on an algebraic variety of arbitrary dimension. The definition is
expressed in terms of stacks, but, in the case of double integrals of the second kind,
is shown to be equivalent to one of Picard-Lefschetz. The main theorem states
that the number of independent 2-forms of the second kind is R2 − �, where R2

is the second Betti number and � is the Picard number, the maximum number
of inequivalent divisors. Emphasis is laid on geometric interpretations of stack-
theoretic results and on relations with classical theory.

https://www.ams.org/mathscinet-getitem?mr=0074082
https://www.ams.org/mathscinet-getitem?mr=0074082


618 SELECTIONS REPRINTED FROM MATHEMATICAL REVIEWS

Chapter II begins with a summary of the Leray-Cartan spectral theory and
is devoted to the general theory of meromorphic q-forms. Let V denote a non-
singular irreducible algebraic variety of dimension m over the complex field, and let
W be an algebraic subvariety of dimension m− 1. Denote by Ωq(∗W ) the stack of
germs of q-forms holomorphic in V −W and having polar singularities on W . Let
Ω(∗W ) =

∑
q Ω

q(∗W ), and let Ω(∗) be the direct limit of Ω(∗W ), asW runs over the

subvarieties of V . Similarly, denote by Ω̃q(W ) the stack of germs of complex-valued
q-forms of class C∞ on V −W , and having arbitrary singularities on W , and define
Ω̃(W ), Ω̃(∗) in an analogous manner. The authors view as their main problem the

study of the relationship between the analytic stack Ω̃(∗W ) and the stack Ω̃(W ),
the latter depending on the geometry of V relative to its subvarieties. By supposing
W to be ample and taking a fundamental stack F =

∑
p F

p, where F p is the stack

of germs of C∞ p-forms, the authors introduce two spectral sequences Er
p,q(W ) and

Ẽr
p,q(W ). The term E∞

p
,
q(W ) gives a filtration of the group Gp+q(W ), the residue

class group of all meromorphic (p + q)-forms on V with no singularities except

those on W , modulo the derived forms. Similarly, Ẽ∞
p,q(W ) gives a filtration of

Hp+q(W ) ∼= Hp+q(V −W,C), the (p+ q)-th cohomology group of V −W over the

complex field. If W is moreover simple, Er
pq(W ) and Ẽr

pq(W ) are isomorphic for
r ≥ 2. From this one derives

dimGq
q(W ) = dimEq+1

q,0(W ) = dim (w∗Hq(V,C)), q ≥ 1,

where w : V − W → V is the injection map. The study of the general case will
depend on the conjecture on the resolution of singularities of algebraic varieties
by birational transformations. The authors derive several results based on this
conjecture. These include an identification of the author’s definition of forms of
second kind and the definition in terms of residues. Finally, a filtration of Gq∗ =
limW Gq(W ) is suggested, which is birationally invariant and hence should lead to
a birationally invariant spectral sequence.

S. Chern

From MathSciNet, July 2021

MR1840340 (2002k:81182) 81T30; 53C29, 83E30

Atiyah, Michael; Maldacena, Juan; Vafa, Cumrun

An M-theory flop as a large N duality.

Journal of Mathematical Physics 42 (2001), no. 7, 3209–3220.

Dualities in string theory sometimes involve geometric transitions from a geomet-
ric background with D-branes (and therefore involving strings with boundaries), to
a different background with no D-branes in which only closed strings propagate. An
example of this duality is the AdS/CFT conjecture of Maldacena. Another example
is the transition considered by R. Gopakumar and C. Vafa in the context of topo-
logical strings [Adv. Theor. Math. Phys. 3 (1999), no. 5, 1415–1443; MR1796682]
and extended by Vafa to the full type II theory [J. Math. Phys. 42 (2001), no. 7,
2798–2817; MR1840317]. In this duality, one considers type IIA theory on the
background T ∗S3 ×R4 with N D6-branes wrapping S3 ×R4. After the geometric
transition, the background is the resolved conifold with no D-branes, but with N
units of flux through the S2. The purpose of this influential paper is to understand
this duality by lifting the whole construction to M-theory on a seven-manifold of
G2 holonomy.
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The construction goes as follows. Consider the seven-manifold defined as a hy-
persurface in C4 by

(|z1|2 + |z2|2)− (|z3|2 + |z4|2) = V.

This is nothing but the spin bundle over S3, with the topology of R4×S3. Depend-
ing on the sign of V , the three-sphere is identified with the locus z3 = z4 = 0, or
with the locus z1 = z2 = 0. This means that, as V changes sign and goes through
V = 0, we have a flop transition similar to the familiar one in the Calabi-Yau case.
In M-theory, the parameter V gets complexified (like the Kähler parameters in type
II theory) and the true parameter is VM = V +iC, where C is the flux of the 3-form
field of M-theory through S3. Physically, the theories before and after the flop are
supposed to be equivalent. This equivalence is preserved if we mod the theory by
a group action of g on the manifold, so we have schematically

QG[VM ] = QG′ [−VM ]

where Q is M-theory on the corresponding background, the subscript G means that
we modded out by the corresponding group, and G′ is the group that acts on the
flopped theory and that is obtained from G by exchanging z1, z2 with z3, z4.

This simple observation has deep consequences, as shown in this paper. First of
all, for an appropriate choice of the action G which leads to an AN−1 singularity on
the geometry, the left-hand side of the duality describes N = 1 super Yang-Mills
theory on R4 at low energies, with gauge group SU(N). On the other side of the
duality, we obtain a theory with N vacua, and no singularity. This is precisely the
description of the N = 1 super Yang-Mills theory in the infrared, which in this
language is purely geometric.

Furthermore, one can go to type IIA theory by choosing a circular eleventh
dimension of the geometry. Doing this in the appropriate way, the left-hand side
of the duality gives an R3 fibration of S3 with a singularity at the origin. This
is precisely type IIA theory on T ∗S3 with N D6-branes wrapping S3. The right-
hand side gives type IIA theory on the resolved conifold, with N units of flux.
Therefore, the geometric transition in type IIA theory, which involves two very
different backgrounds, turns out to be simply a flop in M-theory.

Another paper which discusses a similar scenario and obtains similar results is
by B. S. Acharya [“On realising N = 1 super Yang-Mills in M-theory”, preprint,
http://arXiv.org/abs/hep-th/0011089]. Further issues raised by this paper have
been explored in [M. Atiyah and E. Witten, “M-theory dynamics on a manifold of
G2 holonomy”, preprint, http://arXiv.org/abs/hep-th/0107177; A. Brandhuber et
al., Nuclear Phys. B 611 (2001), no. 1-3, 179–204; MR1857379].

Marcos Mariño
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K-theory and reality.

The Quarterly Journal of Mathematics. Oxford. Second Series 17 (1966), 367–386.

In this paper, the author introduces a new K-theory. Let X be a topological
space X provided with a homeomorphism τ : X → X such that τ2 = 1. The first
example of such a space is the set of complex points on a real algebraic variety;
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because of this analogy with algebraic geometry, the author calls such an X a “real
space”. The sort of vector-bundle which one has to consider over such an X is
a complex vector-bundle E provided with a conjugate-linear self-map τ ′ over the
map τ : X → X and such that (τ ′)2 = 1. The author calls such an E a “real vector
bundle”. In terms of such bundles, one defines the Grothendieck group KR(X);
this is a ring.

The author’s objective in introducing the ring KR(X) is twofold. (i) It is needed
for the theory of real elliptic operators; in fact, it is shown in § 5 that the symbol
σ(P ) of a real elliptic operator lies in the group KR(B(X), S(X)), where B(X) and
S(X) are appropriate ball and sphere bundles. (ii) It is advantageous for topology,
since it leads to an understanding of the relation between different K-theories. To
support this, the author first shows in § 2 how to modify an earlier proof [the
author and R. Bott, Acta Math. 112 (1964), 229–247; MR0178470] so as to obtain
a periodicity theorem for KR. Next, in § 3 he shows how this leads to an elegant
proof of the periodicity theorem for KO-theory. On the way one encounters various
K-theories already known, and exact sequences between them.

In more detail, let Rp,q be Rp+q with an involution which reverses the first p
coordinates and preserves the last q coordinates; let Bp,q and Sp,q be the unit ball
and sphere in Rp,q . Using these for suspension instead of the usual sphere, one
obtains bigraded groups

KRp,q(X,Y ) = KR∼(X ×Bp,q/X × Sp,q ∪ Y ×Bp,q).

The periodicity theorem shows that KRp,q(X,Y ) = KRp+1,q+1(X,Y ), so one can
write KRp−q for KRp,q . Next, one can consider KR-theory with coefficients in
Y , given on X by KR∗(X × Y ). It is proved that KR-theory with coefficients
in Sp,0 has period 2 if p = 1, 4 if p = 2, and 8 if p = 4. If p = 1 the theory in
question is ordinary complex K-theory. If p = 2 the theory in question is self-
conjugate K-theory. From the case p = 4 the author deduces an isomorphism
KR(X) ∼= KR−8(X); if the involution τ on X is trivial, this reduces to the usual
periodicity theorem for the real case. This requires a lemma, which is proved in §
4 with the aid of Clifford algebras.

{The reviewer is conscious that the paper contains points of interest not men-
tioned above; he pleads that this is a paper of 19 pages which cannot be summarised
adequately in less than 20, and urges topologists to read it.}

J. F. Adams
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Clifford modules.

Topology. An International Journal of Mathematics 3 (1964), no. suppl, suppl. 1,
3–38.

According to the authors, “the purpose of the paper is to undertake a detailed
investigation of the role of Clifford algebras and spinors in the KO-theory of real
vector bundles. On the one hand the use of Clifford algebras throws considerable
light on the periodicity theorem for the stable orthogonal group. On the other hand
the use of spinors seems essential in some of the finer points of the KO-theory which
centre round the Thom isomorphism”.
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Part I is entirely algebraic, and studies Clifford algebras and spinor groups. The
material is essentially known, but its presentation is improved. In particular, the
authors emphasise the grading (over Z2) of the Clifford algebra. They can thus
write formulae which involve signs given by the standard “anticommutative law”
of algebraic topology; in this way the algebra becomes simpler and more natural.
A feature of this approach is that the spinor group with two pathwise-components,
which is a double covering of O(k), arises as naturally as the spinor group with one
pathwise-component, which is a double covering of SO(k). § 4 gives the structure
of the Clifford algebras, and §§ 5, 6 discuss their representation theory.

In Part II the authors give a complete treatment of the “difference bundle con-
struction” in K-theory. This includes a Grothendieck-type construction for the
relative groups K(X,Y ) (9.1) and a discussion of the products in these groups
(10.3, 10.4).

In Part III, §§ 11, 12, the authors set up the Thom isomorphism ϕ for real K-
theory. Their construction of ϕ is clearly good; in particular, if ϕ is applied in a
Whitney sum bundle, it satisfies a product formula. [Since it is one of the main
objects of the paper to prove this formula, it is remarkable that the formula is not
formally stated; the reader is left to deduce it from 11.3.] However, the authors
seem less satisfied with their proof that ϕ is an isomorphism. In fact, the crucial
step (11.5) amounts to case-by-case checking, using the results of R. Bott [Bull.
Soc. Math. France 87 (1959), 293–310; MR0126281], that ϕ has the correct effect
when the base-space is a point.

An alternative construction of the Thom isomorphism has been given in R.
Bott [Bull. Amer. Math. Soc. 68 (1962), 395–400; MR0152995]. This approach
is convenient for computing the effect of representations, but does not lead to
the product formula. It is therefore desirable to prove that the two constructions
coincide. This is done in §§ 13, 14, by studying the sphere as a coset space of the
spinor group.

{The reviewer remarks that the work of D. W. Anderson on KO(BG) apparently
yields a third approach to the Thom isomorphism for real K-theory.}

Having shown in the course of the work that Clifford algebras are related to the
Bott periodicity theorem, the paper ends (§ 15) by showing that they are related
to certain questions about vector bundles over stunted projective spaces and about
vector-fields on spheres.

Although the main interest of the paper lies in real K-theory, it is a feature of
the method that the real and complex cases can be treated in parallel throughout.

J. F. Adams
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Vector bundles and homogeneous spaces.

Proc. Sympos. Pure Math., Vol. III, 7–38, American Mathematical Society,
Providence, R.I., 1961.

This paper summarizes some of the authors’ researches on the K-theory, with
special emphasis on the K-groups of a homogeneous space.

The authors start by defining the functors K−n (n ≥ 0) on the category of pairs
of finite CW complexes. This is done by setting K−n(X,Y ) equal to the homotopy
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classes of basepoint-preserving maps of the nth suspension of X/Y into Z × BU ,
where BU is the universal base-space of the infinite unitary group. (When Y is
vacuous, X/Y is defined as the disjoint union of X with a point * which plays
the role of basepoint.) They then interpret the periodicity format Ω2BU � BU

as a canonical isomorphism K−n(X,Y )
�→→ K−(n+2)(X,Y ), and thereby extend

the definition of Kn to all integers. Now they observe with the aid of the Puppe
sequence that the resulting functors {Kn} satisfy all the axioms of a cohomology
theory save the dimension axiom. They also define a graded ring structure for the
functorK(n) and are finally led to the “abbreviated” functor (X,Y ) → K∗(X,Y ) =
K0(X,Y ) +K−1(X,Y ) from pairs (X,Y ) to Z2-graded rings.

The study of this functor is now based on the following three of its proper-
ties: (1) If p is a point, then Kn(p) = Z (n even), Kn(p) = 0 (n odd). (This
is a restatement of the corresponding formula for πn(Z × BU ).) (2) The usual
Chern-character extends to give a natural transformation of cohomology theories
K∗(X,Y ) � H∗(X,Y ;Q) which is a ring homomorphism. (Here the salient fact is
that the adjoint of the periodicity map, i.e., the map j : S2 × BU → BU takes the
universal character ch ∈ H∗∗(BU ;Q) into X ⊗ ch where X generates H2(S2).) (3)
There is a spectral sequence with E2-term H∗(X,Y ) which converges to a graded
group associated to K∗(X,Y ). Further, the differential operators in this sequence
raise dimension by an odd number. (This theorem may be interpreted as the proper
generalization of the Eilenberg-Steenrod uniqueness theorem; a spectral sequence of
the type H∗(X,Y ;K∗(p)) ⇒ K∗(X,Y ) exists whenever K∗ satisfies all the axioms
of Eilenberg-Steenrod, save possibly the dimension axiom.)

As an example of the power of this approach we cite the following immediate
corollary of (3): If H∗(X,Z) is free of torsion, then K∗(X) is (unnaturally) isomor-
phic to H∗(X), Z2-graded by the even and odd dimensional parts.

The more delicate results announced in this paper depend on the “differentiable
Riemann-Roch theorem” of the author [Bull. Amer. Math. Soc. 65 (1959), 276–
281; MR0110106]. With the aid of both these tools the authors are able to make
considerable progress in their program to prove the K-analogues of the theorems
about the ordinary cohomology of homogeneous spaces and the classifying spaces
of compact Lie groups.

R. Bott
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The geometry and dynamics of magnetic monopoles. (English)

M. B. Porter Lectures.
Princeton University Press, Princeton, NJ ,, 1988, viii+134 pp. pp., $25.00,
ISBN 0-691-08480-7

Let A =
∑3

μ=0 Aμdxμ be a connection one-form on a principal G-bundle (G =

SU(2)) over Minkowski space and ϕ a section of a vector bundle associated with
the G-bundle by a representation, i.e., Aμ and ϕ are Lie algebra-valued functions
on R4. The Yang-Mills-Higgs equations have the following form: (i) DAF = 0;
DA∗F = −[ϕ,DAϕ]; DA∗DAϕ = 2λϕ(|ϕ|2−1), where F = dA+A∧A, DA = d+A,
and λ is a constant.
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The purpose of this book is to investigate soliton-like solutions of these equations,
called magnetic monopoles. The finiteness of the energy gives the following behavior
at infinity for solutions of (i): |F | = O(r−2); (ii) |DAϕ| = O(r−2), |ϕ| = 1− k/2r+
O(r−2), where r2 = x2

1 + x2
2 + x2

3, k is the degree of the map |ϕ|−1ϕ : S2
R → S2,

where S2
R is a sphere of large radius R and S2 is the unit sphere in the Lie algebra.

The integer k is called the magnetic charge of the monopole solution.
The existence of static solutions of (i), (ii) with λ �= 0 and k = 1 was first proved

by ’t Hooft and Polyakov in 1974. In 1975 Bogomol′ny̆ı and Prasad-Sommerfield cal-
culated the limit of the
’t Hooft-Polyakov solution as λ → 0 and noted that this limit not only satis-
fies (i) and (ii) with λ = 0 and k = 1, but also gives the minimum of the energy∫
R3(F, F )+(DAϕ,DAϕ) for fields A,ϕ satisfying conditions (ii). The corresponding

variational equations on R3 are the Bogomol′ny̆ı equations F = ∗Dϕ. In 1977–78
Manton showed the existence of static solutions of the Bogomol′ny̆ı equations with
magnetic charge k > 1 (multimonopoles) and showed that Bogomol′ny̆ı equations
are equivalent to self-dual Yang-Mills equations F = ∗F in Euclidean R4 when the
connection A has the form A = ϕdx0 + A1dx1 + A2dx2 + A3dx3. So the Penrose
twistor theory (results of Atiyah, Ward, Hitchin, Drinfel′d, Manin) is applied to
these equations. Between 1979 and 1985 all multimonopole static solutions of the
Bogomol′ny̆ı equations were found and described in a series of remarkable works
(Weinberg, 1979, Jaffe, Taubes, 1980, Ward, 1980, 1981, Prasad, Rossi, 1981, Cor-
rigan, Goddard, 1981, Forgács, Horváth, Palla, 1981, Hitchin, 1982, 1983, Nahm,
1982, Taubes, 1983, 1985, Hurtubise, 1983, 1985, Donaldson, 1984).

This book gives an excellent exposition of all the main methods for construction
of k-monopoles. Let us consider the space Ak of all solutions (A,ϕ) of Bogomol′ny̆ı
equations with magnetic charge k. The group G of gauge transformations acts on
Ak to produce the parameter space of all static k-monopoles Mk = Ak/G. It is a
(4k − 1)-dimensional manifold. A tangent vector ċ of Mk may be represented by

a vector Ȧ, ϕ̇ in A which is orthogonal to the gauge group orbit through (A,ϕ),

which means that D∗
AȦ + [ϕ, ϕ̇] = 0; then h(ċ, ċ) =

∫
R3(Ȧ, Ȧ) + (ϕ̇, ϕ̇) defines a

Riemannian metric on Mk. Manton (1982) has argued that the geodesic flow on
Mk with respect to h(ċ, ċ) is the low-energy approximation to the true evolution of
dynamic monopoles.

The book under review contains several deep results in the direction of the
realisation of Manton’s program.

Very briefly, the main contents of the book are the following: (1) The translation
group of R3 acts freely on Mk and so one can introduce a reduced monopole space
M0

k of dimension 4k−4. The spaceM0
k has a Donaldson parametrization by rational

scattering functions (Chapter 2). (2) The metric h(ċ, ċ) is finite and complete
(Chapter 3). (3) The manifold Mk with this metric is hyper-Kähler (Chapter 4).
(4) Mk with the hyper-Kähler metric is equivalent to its twistor space Zk and this
twistor space is found (Chapters 5, 6). (5) The space M0

2 has an explicit description
and this is used for finding the conformal structure of M0

2 . The metric on M0
2 is an

SO(3)-invariant anti-self-dual Einstein metric (Chapters 7, 8, 9). (6) An explicit
form for the metric on M0

2 can be found (Chapters 10, 11). (7) The geometry of
geodesics in M0

2 becomes understood; asymptotic expansions for the behavior of
two monopoles near the “collision states” are found (Chapters 12, 13, 14).
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The book also contains detailed background material, intriguing comparisons
with the KdV equations and many interesting unsolved problems.

G. M. Khenkin

From MathSciNet, July 2021

MR0089473; 19,681d 53.3X

Bott, Raoul

Homogeneous vector bundles.

Annals of Mathematics. Second Series 66 (1957), 203–248.

Let M be a compact connected Lie group, G the complexification of M , U a
closed complex subgroup of G such that X = G/U = M/V (where V = U ∩M) is
compact and simply-connected. Then G is a complex analytic principal U -bundle
over X, and hence any complex analytic representation ϕ̃ of U on a vector space E
induces a complex analytic vector bundle E onX. Let SE denote the sheaf of germs
of complex analytic cross-sections of E, and let H∗(X,SE) denote the cohomology
of X with coefficients in SE. Then G operates in a natural fashion on H∗(X,SE)

giving a representation Φ̃. The author’s problem is to determine Φ̃ explicitly in
terms of ϕ̃. This is the analogue of a result of Frobenius on representations of finite
groups.

Let ϕ, Φ denote the restrictions of ϕ̃, Φ̃ to V , M respectively. Then it is sufficient
to determine Φ. The author’s main theorem (Th. I) asserts:

H∗(X,SE) =
∑

W ⊗H∗(u, v,Hom(W,E)),

where W ranges over all irreducible M -modules (representation spaces), u, v are
the real Lie algebras of U , V respectively, and the terms on the right-hand side
are relative cohomologies of Lie algebras. This theorem has a number of important
corollaries, one of which is essentially a theorem of Borel-Weil (unpublished).

The spaces X defined above have been studied in detail by H. C. Wang [Amer.
J. Math. 76 (1954), 1–32; MR0066011], who has shown that X is Kählerian if and
only if its Euler characteristic is non-zero. Moreover, if X is Kählerian then it is
actually a rational algebraic variety [A. Borel, Proc. Nat. Acad. Sci. U.S.A., 40
(1954), 1147–1151; MR0077878; M. Goto, Amer. J. Math. 76 (1954), 811–818;
MR0066396]. In this case the author proves the following important theorem (Th.
IV), which was conjectured by Borel and Hirzebruch: if ϕ is irreducible then Φ is
irreducible or zero. In particular, therefore, Hq(X,SE) �= 0 for at most one value
of q. The particular value of q (if it exists) is explicitly computed from ϕ by a very
simple formula involving the roots of M .

Th. I is proved by using chain-complexes of C∞-differential forms on X with
values in E. The proof of Th. IV uses the following: (i) the Borel-Weil theorem, (ii)
the Leray spectral sequence for fibre bundles, (iii) the analytic Künneth formula
of Grothendieck [Mem. Amer. Math. Soc. no. 16 (1955); MR0075539], (iv)
the theorem of Kodaira on the vanishing of certain higher dimensional cohomology
groups [Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 1268–1273; MR0066693]. Thus
Th. IV depends on Th. I only so far as (i) is concerned, and so one could avoid
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using the cohomology of Lie algebras by relying instead on the essentially simpler
proof of Borel-Weil.

M. F. Atiyah
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Mathematical Notes, 31.
Princeton University Press , Princeton, NJ , 1984, i+211 pp., $17.50,
ISBN 0-691-08370-3

If X is a (nonsingular) projective algebraic variety acted on linearly by the com-
plexification G of a compact Lie group K, the quotient X/G will not in general have
good properties. One way to obtain a sensible quotient is to take the “symplectic
reduction” μ−1

K (0)/K, where μK : X → k∗ is the moment map for the symplectic
action of K. Another way is to consider the algebro-geometric quotient X/G, i.e.
the variety associated to the subring of the coordinate ring of X which consists of
G-invariant functions. Under reasonable conditions, these two quotients coincide:
both are the ordinary quotient Xs/G, where Xs is a Zariski open subset of X (the
set of “stable” elements). For example, if G = C∗ acts by scalar multiplication
on X = Cn+1, one obtains a good quotient only by first deleting the origin in
Cn+1. The quotient is then CPn, which is also the quotient of S2n+1 (≤ Cn+1)
by K = S1. (This example is not projective, of course, but the theory still ap-
plies.) In this book the situation is explored in some detail, in order to calculate
the cohomology of the quotient. Both the “symplectic” and “algebro-geometric”
approaches are given, leading to very explicit formulae for the Betti numbers.

Part I, the symplectic approach, is based on an application of Morse theory
to the real-valued function ‖μK‖2 on X. The author has to extend the classical
theory of Morse and Bott somewhat, and uses some recent ideas of Atiyah and Bott
concerning equivariant Morse theory [M. F. Atiyah and R. Bott, Philos. Trans. Roy.
Soc. London Ser. A 308 (1983), no. 1505, 523–615; MR0702806]. It is shown that
the Morse inequalities hold, and that in fact they are equalities. Thus one has a
relation between the cohomology of X and that of each of the stable manifolds Sβ

(where X =
⋃
Sβ). Of primary interest is the stratum S0 containing the set μ−1

K (0)
of minimum points. However, a significant feature of the decomposition is that each
of the other strata is related to the stable manifold containing the minimum points
of a function ‖μH‖2 for some subgroup H of K. Thus it is possible to set up an
inductive procedure to find the cohomology of μ−1

K (0)/K (in terms of that of X and
G). It is not necessary to assume that X is a projective variety; indeed the theory
is developed here for any compact symplectic manifold acted on symplectically by
K.

In Part II, the algebro-geometric approach, a stratification {Sβ} of X is defined
purely algebraically, based on work of Kempf. It is then shown that this has the
essential properties of the “Morse stratification” of Part I, so that one obtains the
formulae for the cohomology of Xs/G. Whereas the previous approach is valid for
a symplectic manifold, this approach generalizes to the case of a variety over any
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algebraically closed field. For such varieties, Betti numbers may be obtained via
the Weyl conjectures, and this is discussed in Section 15.

The ramifications of this work extend well beyond the computation of Betti num-
bers. First, much inspiration was provided by Yang-Mills theory for connections in a
principal bundle over a Riemann surface [Atiyah and Bott, op. cit.]. In that case, an
infinite-dimensional Lie group acts symplectically on an infinite-dimensional mani-
fold; the corresponding function ‖μ‖2 is the Yang-Mills functional. The interaction
between differential geometry and algebraic geometry in this example suggested
that similar general principles might apply elsewhere. One general principle which
features in Part I is the role of convexity in Lie groups. For example, an orbit
M of the coadjoint action of a Lie group K has a natural symplectic structure,
invariant under K, for which the moment map μK is just the given inclusion of
M in the dual of the Lie algebra k∗. Any maximal toral subgroup T of K also
acts symplectically, and the moment map μT is obtained by composing μK with
the projection from k∗ to t∗. It is an old result of Kostant that μT (M) is a convex
subset of t∗. This was extended recently to any symplectic action of a torus by
Atiyah and by Guillemin and Sternberg, using Morse theory. The convex set is the
hull of the common critical points for the functions μx

T : m �→ μT (m)(x) as x varies
in t. The Morse theory of the function μx

T is closely related to that of ‖μK‖2, and
in fact this convex set is used to define the indexing set for the stratification {Sβ}
referred to above. Another important idea explored in the book is the connection
between the previously unrelated concepts of stability in critical point theory (i.e.
in dynamical systems) and stability in algebraic geometry: the minimum stratum
S0 turns out to be just the open set Xs. This was observed in the situation of
the Yang-Mills equations on Riemann surfaces [Atiyah and Bott, op. cit.], where
the minima (i.e. stable critical points of the Yang-Mills functional) correspond to
holomorphic bundles over the Riemann surfaces which are stable (in the sense of
Mumford).

The notions of convexity and stability were discussed independently by V. Guille-
min and S. Sternberg [Invent. Math. 67 (1982), no. 3, 491–513; MR0664117; ibid.
77 (1984), no. 3, 533–546; MR0759258]. Finally we note that when the “reasonable
conditions” of the first paragraph above are not satisfied, it is still possible to
develop the algebraic approach. This has been done by the author [Ann. of Math.
(2) 122 (1985), no. 1, 41–85].

Martin A. Guest
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