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AND YET IT MOVES:

PARADOXICALLY MOVING LINKAGES IN KINEMATICS

JOSEF SCHICHO

Abstract. The possible configurations of a mechanical linkage correspond to
the solutions of a system of algebraic equations. We can estimate the dimension
of the solution set by counting free parameters and equational constraints.
But this estimate does not always give the correct answer: sometimes the
linkage moves although it should not. In this paper, we give mathematical
explanations for this unexpected mobility.

Look at Figure 1: you see a mechanism that is able to draw an ellipse. If you
press gently on the blue bar (connected to the right endpoint of the grey segment
which is fixed), then the whole vehicle will start to move and bounce so that the
red point traces the ellipse. Historically, it was a famous challenge in the 19th-
century to find a mechanism that draws a straight line segment. Mathematicians
even tried to prove the nonexistence of an exact solution. But then the French
engineer Peaucellier and the Russian mathematician Lipkin independently found
an exact solution. Starting from the mechanism in Figure 1, we can do the same

Figure 1. A mechanism that is able to draw an ellipse. The short
gray horizontal bar is fixed on the x-axis, whereas all the other bars
are allowed to move, according to the rotational joints which link
them one to another.
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thing as well (even though this was not the solution of Peaucellier/Lipkin): you
can change some of the lengths so that the ellipse degenerates into a line segment
traced twice in a full round.

Kempe’s universality theorem. A few years after the invention of the “straight line
mechanism” by Peaucellier and Lipkin, Kempe [31] proved that every plane alge-
braic curve can be drawn by a mechanism moving with one degree of freedom! His
construction uses the implicit equation of the algebraic curve, and the linkage draws
a bounded subset of the curve. Kempe himself admits that the mechanisms con-
structed by his general construction are quite complicated. One of the objectives
in this article is to explain how to construct a mechanism that draws a given ratio-
nal curve, i.e., a curve that it is given by a parametrization by rational functions.
Compared with Kempe, this construction gives simpler results when it applies (not
every algebraic curve is rational).

Unexpected mobility. Most of the mechanisms in this paper will be paradoxical, in
the following sense: by a systematic counting of degrees of freedom and constraints,
one can estimate if a given mechanism moves. For a paradoxical mechanism, this es-
timate predicts that the mechanism is rigid: there are sufficiently many constraints
so that there should be no freedom left for motion, except moving the mechanism as
a whole like a rigid body. Still, the mechanism does move nontrivially. We discuss
five mathematical tools that somehow “explain” the unexpected mobility:

• edge colorings of graphs;
• factorization of polynomials over skew coefficient rings;
• symmetry as a rule changer for counting variables and constraints;
• a projective duality relating a set of relative positions to a set of geometric
parameters;

• compactification, i.e., a closer analysis of “limit configurations at infinity”.

Links and joints. We need to introduce a few concepts from kinematics (please do
not worry, we will keep the amount of definitions at a minimal level). A linkage
(or mechanism) in 3-space is composed of rigid bodies called links (or bars, rods)
that are connected by joints (e.g., hinges or spherical joints); examples occur in me-
chanical engineering and robotics, but also in sports medicine—the human skeleton
may be considered as a quite complex linkage—and in chemistry, at a microscopic
scale. If two links are connected by a joint, then the type of joint determines a set
of possible relative positions of one link with respect to the other. A revolute joint
(or R-joint or hinge) allows a one-dimensional set of rotations around an axis which
is fixed in both links; this set is a copy of SO2. This type of joint appears most
frequently, for example, in doors and windows or in connection with wheels (see
also Figure 2, left). A spherical joint (or S-joint) allows a three-dimensional set of
rotations around a point which is fixed in both links; this set of motions is a copy
of SO3. An example is the hip joint of the human skeleton (see Figure 2, middle).
And a prismatic joint (or P-joint) allows a one-dimensional set of translations in a
fixed direction; this set is theoretically a copy of R, but in reality, it is a bounded
interval. Teachers and students in mathematics often operate such a joint when
moving a blackboard up and down (see Figure 2, right, for a different example).
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Figure 2. A hinge (revolute joint), a hip joint (spherical), and a
trolley on a crane (prismatic joint)

Configurations. If two links are not directly connected by a joint, then the set of
possible relative positions of one with respect to the other is determined by other
links and joints forming chains that connect the two given links. In general, the
description is more complicated, and it is one of the main tasks of kinematics to
determine these sets. In any case, they are subsets of the group SE3 of direct
isometries, also known as Euclidean displacements. The set of all possible relative
positions of any pair of rigid bodies of a linkage L is called the configuration space
of L. For the type of joints mentioned above (revolute, spherical, and prismatic), it
is possible to express the constraints coming from the joints by algebraic equations
in the joint parameters. Therefore, the configuration space is an algebraic variety.
Its dimension is called the mobility of L.

A linkage is given by combinatorial data, namely the graph indicating which rigid
bodies are connected by joints and the type of joints such as revolute, spherical,
prismatic; and by geometric parameters determining the fixed position of the joint
axis in each of the two links attached to any R-joint and the fixed position of the
anchor point in each of the two links attached to any S-joint. The computation
of the configuration space of a given linkage can be reduced to solving a system
of algebraic equations with parameters, with the size of the system determined by
the combinatorics. These systems form a rich source of computational problems in
computer algebra and polynomial system solving (see [45] and the references cited
there).

Structure of the paper. The paper has six sections. In Section 1, we discuss com-
binatorial methods for estimating the dimension of the configuration space, based
on counting variables and equational conditions; this is necessary to make precise
what “paradoxical” means. Section 2 deals with planar linkages whose links are
line segments joined by revolute joints, also known as moving graphs; we discuss
graphs that should be rigid but actually move. Section 3 deals with spatial linkages
in the plane with revolute joints, and uses dual quaternions to construct exam-
ples of simply closed linkages that are paradoxically movable. Section 4 deals with
symmetries and explains how they can change the counting rules. Section 5 deals
with a particular type of linkage called multipods or Gough–Stewart platforms;
here, projective duality is a powerful mathematical tool that allows us to construct
paradoxical examples. Section 6 is concerned with the problem of finding neces-
sary conditions for mobility, based on the idea of analyzing the “configurations at
infinity” of a mobile linkage. In the three subsections of Section 6, moving graphs,
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simply closed loops with revolute joints, and multipods are revisited from the point
of view of what happens at infinity.

1. Predicting mobility

Given the combinatorics of a linkage, i.e., the number of its rigid bodies and
which of them are connected by joints, it is possible to estimate the mobility by
counting free variables and equational constraints. In kinematics, this is called the
Chebychev/Grübler/Kutzbach (CGK) formula. In structural rigidity, this is called
Maxwell’s rule.

Moving graphs. In this section, we start with the two-dimensional situation. Every
link is a line segment in the plane R2. In the plane, it does not make sense to
distinguish revolute joints and spherical joints, and we do not consider prismatic
joints. The combinatorics of the linkage is conveniently described by a graph G =
(V,E), with vertices corresponding to joints and edges corresponding to links. If a
line segment has three or more (say k) joints connecting to other links, then we split
it up into several edges: we get k vertices corresponding to joints and we connect
them in all possible ways by

(
k
2

)
edges. For instance, the green link in Figure 1 will

correspond to a triangle in the graph, which is geometrically degenerate because
its three vertices are collinear. We assume that the linkage has no dangling links,
i.e., no vertices of degree 1, because they would rotate freely around the connected
vertex.

For a graph G = (V,E), an edge length assignment is a vector λ ∈ RE indexed
by the edges with positive real coordinates λe for all e ∈ E. A configuration of
(V,E, λ) is a collection (ρv)v∈V with ρv ∈ R

2, such that for any edge e = (u, v),
we have ||ρu − ρv|| = λe. Two configurations ρ, ρ′ are equivalent if there is a direct
isometry σ : R2 → R2 of the plane such that σ(ρv) = ρ′v for all v. If we choose two
vertices v, w ∈ V such that ρv �= ρw, then there is a unique representative ρ′ in the
equivalence class of ρ such that ρv = (0, 0) and ρw = (0, c) for some c > 0; we then
say that ρ′ is a normalized configuration.

Remark 1.1. In rigidity theory, one often defines two configurations to be equivalent
if there is an isometry of the plane taking the points of the first configuration to
the points of the second configuration—in other words, configurations obtained by
reflections are equivalent. For questions on rigidity, it is not important whether
we factor out the group of SE2 of direct isometries or the group E2 of direct and
indirect isometries.

For a given graph G = (V,E) with edge length assignment λ, its normalized
configurations are the solutions of a system of algebraic equations of the form

(xa − xb)
2 + (ya − yb)

2 = λ2
ab

for each edge {a, b} ∈ E, and the normalization conditions

xv = yv = xw = 0, yw > 0.

The number of nonzero variables is 2|V | − 3, and the number of equations is |E|.
We leave out the inequality, because it is inessential for the dimension count. The
number max(0, 2|V | − 3− |E|) is called the CGK estimate; it is an estimate for the
dimension of the set of equivalence classes of configurations. In kinematics, this
dimension is called the mobility of the linkage. If the dimension is zero, then the
linkage is rigid; if it is zero, then the linkage is mobile.
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Figure 3. Two planar linkages with six joints and nine links with
the same underlying graph. The left one is rigid, the right one is
mobile.

Generic mobility. For a concrete instance, the CGK estimate comes without any
warranties. However, we can say something definite for the generic case. Here we
use the word “generic” in the following sense. Assume that a certain statement
depends on instances parametrized by an open subset P of a vector space (in our
case, instances are in RE). Then we say that the statement is generically true if
the subset of instances such that the statement is false is contained in an algebraic
subvariety of P of strictly smaller dimension.

Proposition 1.2. Let G = (V,E) be a graph. Let λ ∈ RE be a generic length
assignment. Let Xλ ∈ R2|V |−3 be set of normalized configurations of (V,E, λ).
If 2|V | − 3 − |E| ≥ 0, then Xλ is either empty or a real manifold of dimension
2|V |−3−|E|. In particular, if 2|V |−3−|E| = 0, then a generic length assignment
allows only finitely many normalized configurations.

Proof. Let f : R2|V |−3 → R|E| be the map

(xa, ya)a∈V �→ ((xa − xb)
2 + (ya − yb)

2){a,b}∈E

(in the domain, remove the three coordinates known to be zero). This is a differen-
tial map, which assigns to each normalized configuration of points in R

2 the square
of the lengths of edges. Therefore Xλ = f−1(λ).

If the image of f does not contain an open neighborhood of λ, then it also does
not contain λ because λ is chosen generically. Hence Xλ is empty and there is
nothing left to prove.

Otherwise, let U be an open neighborhood of λ and apply Sard’s theorem to the
map f |f−1(U). It implies that the set of critical values does not contain λ. Hence the

Jacobian of f has rank E at every point of f−1(U), and this shows the claim. �

Generic rigidity. If |E| = 2|V | − 3, then two cases are possible: either the image
of the map f : R2|V |−3 → R|E| in the proof contains an open subset, or the image
of the map is contained in a subset of lower dimension. In the first case, the graph
is rigid: a generic configuration cannot move continuously, by Proposition 1.2. In
the second case, a generic length assignment does not have any configuration. The
following theorem determines which of the two cases holds.

Theorem 1.3. Let G = (V,E) be a graph such that |E| = 2|V |−3. Then there is an
open set of edge assignments λ with a finite and positive number of configurations
if and only if |E′| ≤ 2|V ′| − 3 for every subgraph G′ = (V ′, E′) of G.
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This theorem was proved by Pollaczek-Geiringer [39] and rediscovered 40 years
later by Laman [32] (formulated as a criterion for the statement on a given graph
that the f -image of a generic point defines a rigid length assignment). The graphs
that satisfy the necessary and sufficient condition above are called Laman graphs.
Here is the proof for the necessity: if there is a subgraph G′ = (V ′, E′) with
|E′| > 2|V ′| − 3, then the algebraic system describing normalized configurations of
the subgraph is overdetermined. So, for generic edge length assignments, there is
no configuration for the subgraph, and therefore also no configuration for the graph
G itself.

In dimension 3, the CGK estimate for the mobility of a graph G = (V,E) is equal
to 3|V |−6−|E|. Proposition 1.2 holds with that bound: if λ ∈ R|E| is a generic edge
assignment, and the normalized configuration space Xλ is not empty, then it has
dimension 3|V |−6−|E|. The condition |E′| ≤ 3|V ′|−6 for every subgraph (V ′, E′)
is still necessary for the statement that Xλ is generically not empty, but it is not
sufficient: Figure 4 shows the “double banana”, a graph with eight vertices and 18
edges, such that a generic assignment of its vertices to points in R3 is flexible. The
Jacobi matrix of the map f mapping normalized configurations to edge assignments
(see Proposition 1.2) is quadratic and singular. So the three-dimensional analogue
of Theorem 1.3 is not true, and the search for another combinatorial analogue is
an active research topic in rigidity theory (see [28]).

1

2

3
4

5
6

7

8

Figure 4. The smallest graph that is generically mobile and still
fulfills the three-dimensional analogue of Laman’s condition for
generic rigidity: 3|V | − 6 = |E|, and 3|V ′| − 6 ≥ |E′| for every
subgraph (V ′, E′). The blue part may revolve around the line
through two vertices.

Molecules. For some classes of graphs, the three-dimensional analogue of Theo-
rem 1.3 is true. The most interesting class appears in a statement which used to
be called the “Molecular Conjecture”, until it was proved in [30]. It is of special
interest because it makes a rigidity statement on linkages that appear as models of
molecules: atoms are modeled as balls with cylinders attached. A molecular joint
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Figure 5. A kinematic model of the Methoxyethanol molecule
C3H6(OH)2. The cylinders are joints allowing a rotation around
the central axis of the cylinder. Note that the axis always passes
through the centers of the joined atoms.

is a cylinder that is joined to an atom at both of its ends (see Figure 5). From a
kinematic point of view, a molecule model is a linkage with R-joints, such that for
each link, all axes of joints attached to this link meet in a fixed point (the center
of the atom).

The question of rigidity of molecule models can be reduced to the question of
rigidity of particular graphs (see [27]). For any graph, we can define its square by
drawing an edge between any two vertices of graph distance 2. A graph is called
a square graph if it can be obtained as the square of a subgraph. Now, start with
a molecule and draw a graph G with vertices corresponding to atoms and edges
corresponding to cylinders in the molecular model. It is clear that every motion of
the molecule fixes the length of each edge. However, every such motion also fixes
the angle between two cylinders attached to the same atom. But this is equivalent
to the statement that the motion fixes the length between the two atoms that are
on the other end of the two cylinders. If you add an edge for any two such atoms,
then you get exactly the square of G.

2. Overconstrained linkages

Let us call a linkage paradoxical if a generic linkage with the same combinatorial
structure is rigid, but the linkage itself is mobile. For example, an instance of a
Laman graph which is mobile in the plane is paradoxical.

Should we expect paradoxical linkages? Let us do a simple variable count, as in the
CGK estimate, to see if we should be surprised by the existence of paradoxical
linkages. Fix a combinatorial structure, for instance a Laman graph G = (V,E).
For a generic instance, the number of nonequivalent configurations is finite. These
configurations are real solutions of a system of algebraic equations; let NG be the
number of complex solutions of these systems. Note that the number of complex
solutions does not depend on the choice of the generic instance, as long as the choice
is generic, in contrast to the number of real solutions, which would depend on the
choice of a generic instance.

For any system of equations that has finitely many solutions, it is possible to
compute a single univariate polynomial, such that the solutions of the system are
in bijection with the zeroes of the polynomial. In theory, it is possible to compute
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such a polynomial as follows. First, introduce a new variable together with a
generic linear equation between the new variable and the original variables. Second,
eliminate all original variables. You obtain a single polynomial in the new variable.
(In practice, it turns out that the elimination is quite costly.) The process can
even be carried out in the presence of parameters, which will then also appear in
the coefficients of the univariate polynomial. Let us therefore assume that we have
now, for each graph G = (V,E), such a polynomial FG, with coefficients depending
on an edge length assignment λ. The degree of FG would then have to be equal to
NG, because it has NG complex solutions and we may assume that FG is squarefree.

Now, a labeled graph (V,E, λ) is mobile if and only of all NG + 1 coefficients
of the polynomial are zero, i.e., the polynomial FG vanishes identically and there
are infinitely many configurations. (We have to take nonreal configurations into
account, but let us ignore this point for the moment.) The instances of the graph
form a family of dimension |E| parametrized by the edge lengths. In order to find
a paradoxical linkage, we need to find a solution of a system in |E| variables with
NG + 1 equations. So we need to compare these two numbers. If the number |E|
of variables is bigger than or equal to the number NG + 1 of equations, then we
should not be surprised by the existence of paradoxical linkages.

Currently, we do not know any lower bounds for NG, but there are conjectured
lower bounds which are exponential in |E|, so the system of equations that would
have to be fulfilled for the parameters of a paradoxical linkage would be highly
overdetermined. This is also true for small graphs: for 5 ≤ |V | ≤ 12, the numbers
NG are all known [9], and we always have |E| < NG + 1. Consequently, the very
existence of paradoxical linkages is itself paradoxical! At least, this is so for the type
of linkages we considered in this comparison of number of variables and number of
equations, namely moving graphs in the plane.

Bipartite graphs. The smallest mobile Laman graphs have six vertices. One is the
complete bipartite graph K3,3. In [15], Dixon describes a construction to make
arbitrary bipartite graphs mobile. The set V of vertices is partitioned into two
disjoint subsets V1, V2. Put all vertices in V1 on the x-axis and all vertices of V2 on
the y-axis. For all edges—say between vertex i on the x-axis and vertex j on the
y-axis—the configuration has to satisfy a length condition x2

i +y2j = λij . If there is
no vertex coinciding with the origin, then we can simultaneously decrease all values
x2
i and increase all values y2j by the entity ε (sufficiently small). This shows that

the linkage is actually mobile.

Figure 6. A mobile complete bipartite graph K4,4. Its points
form two rectangles sharing their symmetry axes.



AND YET IT MOVES: PARADOXICALLY MOVING LINKAGES IN KINEMATICS 67

Using computer algebra, Walter and Husty [47] proved that Dixon’s construction
is one of two possible mobile K3,3’s; in all other cases, K3,3 is rigid. The second
mobile K3,3, also found in [15], is a mobile K4,4 with two points removed; see
Figure 6. The configuration has a finite symmetry group, namely the symmetry of
a rectangle. Indeed, the points form two rectangles sharing their symmetry axes.

Note that Dixon I applies to arbitrary bipartite graphs. In contrast, the symmet-
ric construction Dixon II does not scale, it just applies to K4,4 and its subgraphs.

NAC colorings. Another construction that does scale is based on the possibility of
partitioning the set E of edges into two nonempty subsets Er, Eb of red and blue
edges. We assume that every cycle in G is either unicolored or has at least two
edges of both colors; especially, triangles are always unicolored. Such a partition is
called NAC (no almost (unicolored) cycle) coloring. For each connected component
of the subgraph Ri of (V,Er) we assign a complex number zi, and for each vertex
of the subgraph Bj of (V,Eb), we assign a complex number wj . Then we choose
a real parameter t parametrizing a periodic motion, as follows: Map any vertex in
Ri ∩Bj to the point zi + eitwj ∈ C. Now C is a model for the plane R2. Hence we
have constructed, for any real value of t, a configuration of the graph in R

2. The
construction is continuous in t, so we may call it a motion. The blue edges always
keep their orientation while the red edges are rotated with uniform speed, as in
Figure 7.

Figure 7. A mobile graph with NAC coloring. The blue edges
remain parallel to the original orientation, and the orientation of
the red edges rotates with speed that is independent of the edge,
as long as it is red.

As a special case of the above construction, we may choose the complex numbers
zi and wj to be real. Then the configuration corresponding to the “time” value
t = π/2 has the following property: all red edges are parallel to the first coordinate
axis and all blue edges are parallel to the second coordinate axis. The whole motion
can be constructed by taking a very small moving subgraph, with three vertices and
two edges, and completing it by parallel copies of edges. This moving graph is quite
boring: at any time, all red edges are parallel and all blue edges are parallel. But
wait—we can do the same with other graphs as well! Let us start with a moving
quadrilateral. Then we add more edges that are parallel to one of the four edges
of the quadrilateral. We get a bigger graph with the property that every motion of
the quadrilateral induces a motion of the bigger graph; see Figure 8 for an example.

In Section 6, we will see that the existence of NAC coloring is not only sufficient,
but also necessary for the existence of a length assignment that makes a given
graph mobile in R

2. This result requires a few tools from algebraic geometry.
More examples of graphs moving in the plane and NAC colorings can be found in
https://jan.legersky.cz/project/movablegraphs/.

https://jan.legersky.cz/project/movablegraphs/
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Figure 8. A moving Laman graph with eight vertices and 13
edges. These two figures are 2D not 3D! To see this picture cor-
rectly, please switch off your spatial perception for a moment. They
show two of infinitely many possible configurations of the graph in
R2, with the same edge lengths. Every edge is parallel to one of
the four sides of the red quadrilateral. The red quadrilateral has
infinitely many configurations: any configuration of the red quadri-
lateral can be extended to a configuration of the whole graph.

3. Revolute loops and dual quaternions

Let n ≥ 4. An nR chain is a linkage in 3-space consisting of n+1 links connected
by n revolute joints. In robotics, the first link is called the base and the last link is
called the hand or end effector. Each joint can be controlled by an electric motor
in such a way that the end effector performs a particular task.

If we firmly connect the first and the last link of an nR chain, then we get an nR
loop: a linkage with n links connected cyclically by n revolute joints. According to
the CGK formula, the mobility is max(0, n− 6). If n ≥ 7, then a generic nR loop
is generically mobile. A generic 6R linkage is rigid; the number of configurations,
including complex solutions, is 16 (see [44, 11.5.1]). For n = 5 and n = 4, we obtain
an overdetermined system of equations.

Remark 3.1. Revolute loops may be considered as special cases of linkages of graph
type, in the following way: we pick two distinct points on each joint axis and
connect them by an edge. For each link, we draw four additional edges connecting
the points on the two axes that belong to the link, so that every link carries a
complete graph K4, which is geometrically a tetrahedron. We may imagine that
the link, as a rigid body, is this tetrahedron, and every edge between the the two
points on a rotation axis is a hinge. Let us call such a revolute loop a tetrahedral
nR loop.

Note that the graph has 2n vertices and 5n edges. See Figure 9 for an example
of a tetrahedral 6R loop.

Even though revolute loops may be considered a subclass of linkages of graph
type, it is advantageous to introduce new techniques especially suited for them.

4R loops. The classification of mobile 4R loops is due to Delassus [12]. He proved
that there are three types of mobile 4R linkages:

• Planar. All rotation axes are parallel. Essentially, this is a quadrilateral
moving in the plane. The third coordinate is not changed in any of the
moving links. A familiar example is shown in Figure 10(a).



AND YET IT MOVES: PARADOXICALLY MOVING LINKAGES IN KINEMATICS 69

Figure 9. A thumbnail movie of a mobile 6R loop. Each of the
six links is realized as a tetrahedron. Each tetrahedron has two
edges, opposite to each other, playing the role of R-joints (hinges)
connecting the link to its two neighbors. The grey tetrahedron is
not moving.

• Spherical. All rotation axes pass through a single point (see Figure 10(b)).
Essentially, this is a moving spherical quadrilateral. The planar case may
be considered as a limit case of the spherical case.

• Skew isogram. Bennett [3] discovered a mobile 4R linkage such that the
axes of joints attached to the same link are skew, for all four links; see
Figure 11. We describe it below in more detail.

Let L1, . . . , Ln = L0 be the rotation axes in some configuration of an nR loop.
For i = 0, . . . , n − 1, we assume that the lines Li and Li+1 belong to the ith
link. Since the link is assumed to be a rigid body, the normal distance and the
angle between Li and Li+1 do not change as the linkage moves: they are invariant

(a) Two planar 4R loops (b) A spherical 4R loop

Figure 10. The windshield wiper in (a) consists of two planar 4R
loops that have two links in common: one common link is the wheel
in the center driven by a motor. The second common link is the
window. The picture is taken from http://en.wikipedia.org/

wiki/Windscreen_wiper. The spherical 4R loop in (b) occurs in
paper folding/origami: four creases meeting in a point play the
roles of the rotation axes (hinges).

http://en.wikipedia.org/wiki/Windscreen_wiper
http://en.wikipedia.org/wiki/Windscreen_wiper
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parameters. Assume that none of the angles is zero, i.e., Li and Li+1 are not
parallel. Then there is a unique line Ni intersecting both Li and Li+1 at a right
angle. The distance si between Ni ∩ Li and Ni−1 ∩ Li is called the offset. The
angles, normal distances, and offsets are 3n invariant geometric parameters of the
linkage; in robotics, they are called the invariant Denavit/Hartenberg parameters
[13]. We use the following notation.

• Angles. αi is the angle between the lines Li and Li+1.
• Distances. di is the normal distance between the lines Li and Li+1.
• Offsets. si is the distance between two points on Li, namely between the
intersection with the common normal of Li and Li+1 and the intersection
with the common normal of Li and Li−1.

For a given nR loop with fixed invariant parameters, a configuration is deter-
mined by the n angles at the rotation axes. The 3n invariant Denavit/Hartenberg
parameters together with the n configuration parameters determine the positions
of the n rotation axes and the position of the links uniquely up to SE3 (recall that
SE3 is the group of direct isometries from R3 to itself). These 4n parameters fulfill
a condition, called the closure equation: we attach an internal coordinate system to
each link, with the axis Li being the x and the common normal Ni being the z-axis.
Then the transformation of the ith coordinate system to the (i+ 1)-th coordinate
system is the composition of the translation by a vector of length di parallel to the
z-axis, the rotation around the z-axis by the angle αi, the translation by a vector
of length si parallel to the x-axis, and a rotation around the x-axis determined by
the ith configuration parameter. The product of all these 4n direct isometries is
equal to the identity, and this statement gives the closure equation.

Because the two sides of the closure equation have values in a group, it is more
than a single equational constraint. Since the group SE3 is a smooth manifold of
dimension 6, we can choose six local coordinate functions in a neighborhood U of
the identity such that within U , the identity is the only point such that all six
functions vanish. Then the closure equation is a condition that can be expressed by
six equational constraints, namely the six functions evaluated at the left side of the
closure equation, plus some open conditions that have no effect on the dimension
of the solution set. For any positive integer k, let us call a condition which can be

Figure 11. The skew isogram is a mobile 4R loop, so that the
rotation axes in the same link are always skew. It is the only
mobile 4R loop which is neither planar (all axes are parallel) nor
spherical (all axes are concurrent).
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locally defined by k a condition of codimension k. Then the closure equation is a
condition of codimension 6.

A skew isogram is a 4R linkage such that the invariant Denavit/Hartenberg
parameters d0, . . . , s3 satisfy the conditions

d1 = d3, d0 = d2, α1 = α3, α0 = α2,

d1
sin(α1)

=
d0

sin(α0)
, s0 = s1 = s2 = s3 = 0.

(1)

Dual quaternions. In order to prove that the skew isogram is mobile, we use an alge-
braic way suggested in [46] to parametrize SE3. The algebra DH of dual quaternions
was invented by Clifford [10]. Modern references for dual quaternions in kinematics
are [37, 42]; here we list the relevant definitions and properties.

• The algebra H of Hamiltonian quaternions is the four-dimensional vector
space over R generated by 1, i, j,k, together with a bilinear and associative
multiplication satisfying i2 = j2 = k2 = ijk = −1.

• Conjugation on quaternions is defined as the linear map H → H sending 1
to itself, i to −i, j to −j, and k to −k. It is an anti-automorphism: for any
p, q ∈ H, we have pq = q p.

• The norm of a quaternion h is defined as N(h) := hh = hh. It is always
a nonnegative real number. Moreover, N is a semigroup homomorphism
from (H, ·) to (R, ·).

• The algebra D of dual numbers is the associative and commutative algebra
over R generated by 1, ε, where ε2 = 0. For a dual number a + εb, we call
a its primal part and εb its dual part.

• The algebra DH of dual quaternions is obtained by scalar extension (i.e.,
DH := H ⊗R D). Its vector space dimension over R is 8, with basis
(1, i, j,k, ε, εi, εj, εk). Multiplication is bilinear over D, and conjugation is
D-linear.

• The norm N extends to a semigroup homomorphism from (DH, ·) to (D, ·).
Its image is the set of dual numbers with positive primal part together with
zero.

We define the S ⊂ DH as the set of dual quaternions with norm in R
∗. It is a

multiplicative subgroup of (DH, ·). The subset R∗ ∈ S is a normal subgroup of S.

Theorem 3.2. The quotient group S/R∗ is isomorphic to SE3.

Sketch of proof. The isomorphism is determined by a group action of S/R∗ on R3.
We may regard R

3 as the abelian normal subgroup T of S/R∗ of classes represented
by dual quaternions of the form 1 + xεi + yεj + zεk (this subgroup is going to
be the subgroup of translations in SE3). The substitution of ε by −ε is an outer
automorphism of S/R∗ of order 2—let us call it τ—which fulfills the following
property: if h ∈ S/R∗, then h−1τ (h) ∈ T . This implies that for all h ∈ S/R∗ and
v ∈ T , the element h−1vτ (h) = (h−1vh)(h−1τ (h)) is in T , and this defines a right
action of S/R∗ on T . The bijections of T in the image of this action are direct
isometries, and this defines a group isomorphism S/R∗ ∼= SE3. �

By Theorem 3.2, we have constructed an embedding of SE3 into the projective
space P(DH) ∼= P

7, as the subset defined by a quadratic form S = 0, namely the
dual part of the norm, and by a quadratic inequation N �= 0, namely the primal
part of the norm.
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There is a bijection between elements of order 2 in SE3 and lines in R3: every
line corresponds to a half turn round that line (a rotation by the angle π). A point
in SE3 ⊂ P(DH) has order 2 if and only if its scalar part is zero. Here we have two
linear equations, namely the coefficient of 1 and the coefficient of ε, defining a P5

in P(DH). The intersection of this P5 with the quadric hypersurface defined by S
(a.k.a. the Study quadric) is isomorphic to the Plücker quadric, and the remaining
six coefficients are the Plücker coordinates of lines.

Let l ∈ DH be a dual quaternion representing an element of order 2 in SE3. Then
l2 = −N(l) is a negative real number; without loss of generality, we may assume l2 =
−1. The line connecting [1] and [l] is contained in the Study quadric: its elements
are the rotations around the line L corresponding to l. (Note that [1] denotes the
equivalence class of the dual quaternion 1 in P7 and does not indicate a reference to
the bibliography.) These elements form a group; indeed, the vector space generated
by 1 and l is a subalgebra isomorphic to C over R, and the projectivization of this
two-dimensional real algebra is a Lie group isomorphic to SO2. We call this group
the revolution with axes L (we prefer not to use the word “rotation” because a
rotation is a single group element). A parametric representation of the revolution
is t �→ (t + l), where the parameter t ranges over the real projective line; the
parameter t = 0 corresponds to [l], and the parameter t = ∞ corresponds to [1]. In
general, the parameter t corresponds to the cotangent of half of the rotation angle.

Remark 3.3. Conversely, assume that we have a line in S passing through [1]. Then
we can parametrize it by a linear polynomial in t with leading coefficient 1, i.e., by
a polynomial (t + h) with h ∈ S. Because N(t + h) = t2 + (h + h̄)t + N(h) has
to be real for all t ∈ R, it follows that h + h̄ ∈ R: the scalar part of h is real (its

dual part is zero). Then a reparametrization of the line is s �→ (s + h−h̄
2 ), setting

s = t+ h+h̄
2 . This reparametrization shows that the line parametrizes a revolution

with axis corresponding to [h − h̄], except in the case when N(h − h̄) = 0. In the
exceptional case, the line will parametrize a translation along a fixed direction.

Let us now study conics passing through [1] and contained in the Study quadric.
Any such conic has a quadratic parametrization t �→ (t2 + at+ b) where a, b ∈ DH.
Does this quadric polynomial factor into two linear polynomials? And if yes, do the
linear polynomials parametrize revolutions? To answer these questions, we study
DH[t], the noncommutative algebra of univariate polynomials with coefficients in
DH, where the variable t is supposed to be central, i.e., it commutes with the
coefficients.

Quaternion polynomials. As a preparation, let us ask the analogous question for
the noncommutative algebra H[t]. We will show that here, every polynomial can be
written as a product of linear factors; in other words, the skew field of quaternions
is algebraically closed! The proof is taken from [22].

Lemma 3.4 (Polynomial division). Let A,B ∈ H[t], B �= 0. Then there exist
unique polynomials Q,R ∈ H[t] such that A = QB+R and either deg(R) < deg(B)
or R = 0.

Proof. See [25, Lemma 1]. �

If deg(B) = 1 in Lemma 3.4, say B = t − h, then R is a constant in H. The
constant is zero if and only if (t− h) is a right factor of A. If this is true, then we
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also say “h is a right zero of A”. So, the questions is, Does every polynomial A of
positive degree have a right zero? And maybe we are also interested in the question
of how to find it.

A right zero of A is also a right zero of the norm polynomial N(A) = ĀA. We
know that the norm polynomial is in R[t]. It is also the sum of four squares—if
A = A0 + A1i + A2j + A3k, then N(A) = A2

0 + A2
1 + A2

2 + A2
4. If N(A) has a real

zero r, then this real zero is also a zero of A0, A2, A2, A3; hence it is a zero of A,
and we have found what we wanted to find.

What do we do if N(A) has no real zeroes? In this case, we choose a quadratic
irreducible factor M ∈ R[t]. By Lemma 3.4, there are Q,R ∈ H[t], with deg(R) < 2
or R = 0, such that A = QM +R. We distinguish three cases.

(1) If R = 0, then M is a right factor of A. Every right zero of M is also
a right zero of A. So it suffices to show that M has a right zero. But
we know that M has a complex zero. So, assume that z = a + ib is a
complex zero of M , for some a, b ∈ R, b �= 0. Then we have the equation
M = (t− a− ib)(t− a+ ib) between complex polynomials. But now we can
replace the complex number i by the dual quaternion i, which also fulfills
the equation i2 + 1 = 0. It follows that M = (t − a − ib)(t − a + ib) = 0,
and a− ib is a right zero of M and also a right zero of A.

(2) If deg(R) = 1, say R = ut+v for suitable u, v ∈ H, u �= 0, then h := −u−1v
is a right zero of R. Since

(2) RR = (A−QM)(A−QM) = N(A) +M(−QA−AQ+QQM)

is a multiple of M , and deg(RR) = deg(M) = 2, it follows that M is a left
multiple of R. It follows that h is right zero of M . Hence it is also a right
zero of A = QM +R.

(3) If deg(R) = 0, then equation (2) is self-contradictory: the right side is a
multiple of M , and the left side is a nonzero constant. So, this case cannot
occur.

Theorem 3.5. Every polynomial in H[t] can be written as a product of linear
polynomials.

The proof is clear by now: given A of positive degree, we can find a right h,
write A = A′(t− h), and iterate.

How many distinct factorizations do there exist? Starting with one factorization,
we may get infinitely many distinct factorizations by multiplying with constants and
their inverses in between the linear factors. In order to get rid of these “essentially
same” factorizations, it suffices to assume that the polynomial A and the linear
factors are monic, i.e., they have leading coefficient 1.

If A is a multiple of an irreducible real quadric M (the first case in the above case
distinction), then A has infinitely many right zeroes (see [22]). But if not, then the
number of distinct factorizations is finite. Indeed, the only nondeterministic step in
the iterative procedure sketched above is the choice of the sequence of irreducible
factors used for factoring out the right zeroes. In particular, we have the following.

Proposition 3.6. A monic polynomial of degree d with generic coefficients has
exactly d! distinct factorizations into monic linear factors.

The comparison with polynomial factorization in C[t] is illuminating: there, the
factorization is unique. But if we consider two factorizations which differ only by the
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order of the factors as being distinct, then we have again d! distinct factorizations.
In the case of H[t], permutation of factors would not lead to the same product,
because H[t] is not commutative; hence permutation is not a method to get more
factorizations, and all d! factorizations are different.

Mobility of the skew isogram. Feeling well prepared? Then, let us go back to polyno-
mials over the dual quaternions. The connection between linkages and factorizations
of dual quaternion polynomials is the following observation.

Proposition 3.7. Let P ∈ DH[t] be a polynomial of degree n that parametrizes a
curve in the Study quadric. Assume that P can be written as a product of linear
factors parametrizing revolutions. Then there exists an open (n+ 1)R chain and a
motion of this chain such that P parametrizes the motion of the end effector.

Proof. We write P = P1 · · ·Pn; for r = 1, . . . , n, the linear factor Pr parametrizes
a revolution, say with axis Li. We connect the basis to the first link by an R-joint
with axis L1, the first link to the second link by an R-joint with axis L2, and so on.
We move the chain so that the relative motion of the (i+1)-st link with respect to
the ith link is parametrized by Pi. Then the link of the end effector is parametrized
by P1P2 · · ·Pn = P . �

Here is a concrete example: the polynomial P1 = t− i parametrizes a revolution
around the x-axis. The polynomial P2 = t+ i+ εj parametrizes a revolution with a
parallel rotation axis. We may think of P1 as the motion of a rotating wheel, and P2

as the relative motion of a rod joined to the wheel, which is moved so that it always
stays parallel to the y-axis. The rod is our end effector: its motion is parametrized
by P1P2 = t2 + 1− εk. It consists of translations, by a vector following a circle in
the yz-plane.

Let us assume that we have given a polynomial P ∈ DH[t] that parametrizes
a curve in the Study quadric. We can try to copy the factorization strategy that
worked in H[t]: factorize the norm polynomial N(P ), choose a quadratic irreducible
factor M (let us assume that N(P ) has no real zeroes for now), compute the
remainder of P modulo M ; if this remainder is a linear polynomial R = ut + v
for some u, v ∈ DH, compute a right zero h := u−1v, factor out (t − h) from the
right, and iterate. This is going to work for generic coefficients. Moreover, since
N(P (t0)) is in R (and not in D \ R) for all t0 ∈ R, the norm polynomial N(P )
is in R[t]. Therefore it has a factorization into irreducible factors in Mr ∈ R[t],
r = 1, . . . , deg(P ). The right factors (t − hr) produced by our strategy satisfy the
equation (t− hr)(t+ hr) = Mr, so by Remark 3.3, the linear factor will generically
parametrize a revolution. So, at least generically, everything is fine!

The application of our strategy leads to the following characterization of skew
isograms. It was first found in [8] by different methods.

Theorem 3.8. For a generic conic in the Study quadric passing through [1], there
is a skew isogram such that the conic parametrizes the motion of the second link.
(In particular, this skew isogram is mobile.)

Proof. Let P = t2 + at + b be a quadratic parametrization of the conic, with
a, b ∈ DH. The norm N(P ) is a real polynomial that has only nonnegative values.
By genericity, it has no double zeroes, and it can be written as a product M1M2

of two distinct quadratic irreducible factors. For i = 1, 2, we construct as above
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a factorization P = (t − ri)(t − wi) such that N(t − wi) = Mi. (It follows that
N(t− ri) = N(t− w2−i), for i = 1, 2.)

The linear polynomials t−r1, t−w1, t−r2, t−w2 parametrize lines on the Study
quadric. Each of them corresponds to a subgroup of rotations around a line in R3.
Let L1,K1, L2,K2 be these four lines, respectively. We construct a mobile 4R loop
as follows: the base link contains the lines L1 and L2; the first link contains the
lines L1 and K1; the second link contains the lines K1 and K2; and the third link
contains the lines L2 and K2. For each t ∈ (R∪{∞}), we get a configuration of the
4R loop: the relative displacement of the first link with respect to the base link is
the rotation t − r1; the relative displacement of the third link with respect to the
base link is the rotation t−r2; the relative motion of the second link with respect to
the first link is the rotation t−w1; and the relative motion of the second link with
respect to the third link is the rotation t− w2. The relative position of the second
link with respect to the base link can be computed in two ways, via the first link or
via the third link. In both ways, the result is (t−r1)(t−w1) = (t−r2)(t−w2) = P .

Once the lines are constructed, it is straightforward to compute the invariant
Denavit/Hartenberg parameters of the 4R loop; we omit this calculation. The
result is exactly what is shown in equations (1). It follows that the 4R loop is a
skew isogram. �

The paper [8] also contains the converse statement: for any skew isogram, the
relative motion of two links that are not connected by a joint is parametrized by
a conic curve on the Study quadric that passes through [1]. In [25], factorizations
of cubic polynomials in DH[t] are used to construct paradoxically mobile 5R loops
and 6R loops.

Drawing rational curves. It is time to lift the veil of mystery about the ellipse circle
shown in Figure 1. This example is taken from [19], which contains a construction
of a linkage that draws a rational plane curve. In [34], the construction is extended
to rational space curves. An online illustration with several examples can be found
at http://www.koutschan.de/data/link/.

The ellipse with implicit equations (x+a)2

a2 + y2

b2 = z = 0 has a rational parametri-
zation

(x, y, z) = p(t) :=

(
−2a

t2 + 1
,

2bt

t2 + 1
, 0

)
.

For any t ∈ R, the dual quaternion 1+ε( −a
t2+1 i+

bt
t2+1 j) represents a translation that

maps the origin to p(t). The equivalence class of a dual quaternion is not changed
when we multiply it with t2 + 1. So we set P := t2 + 1 + ε(−ai + btj) and try to
factorize. The norm polynomial is (t2+1)2, hence our only choice of an irreducible
factor is M = t2 + 1. The remainder of P modulo M is R = ε(−ai+ btj). But now
something is wrong: even though R has a right zero, namely h = − b

ak, there is no
common zero of R and M except in the case a = ±b. (If a = ±b, then the ellipse is
a circle, and we are not interested.) The argument we used in the quaternion case
fails because N(R) = 0.

There is a way out: instead of factorizing P , we can factorize Q := (t− i)P . The
displacement [t− i] fixes the origin, hence the displacement [Q(t)] maps the origin
to the point p(t), just like the translation [P (t)]. After all, there are many motions
such that the origin traces the ellipse, and we just choose a different one.

http://www.koutschan.de/data/link/
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The remainder of Q modulo M is ε(b − a)(it − j), and this time we do have a
common right zero of M and R! Any dual quaternion of the form −k − ε(cj+ dj)
is fine. For simplicity, we set d = 0. Now we can factor (t+ k+ εcj) from the right
and proceed. The final result is

Q = (t− k+ (a/2 + b/2)εj)(t− k+ (−a/2 + b/2− c)εj)(t+ k+ εcj)

= (t− h1)(t− h2)(t− h3).

(We leave the remaining steps as an exercise—they are not problematic and give a
unique result.)

In order to construct a linkage with mobility 1, we could use another factorization
with a different linear factor on the left. But such a factorization does not exist:
the norm polynomial of Q is (t2 + 1)3, so there is no choice of choosing different
factors of the norm polynomial. We need to mix a different quadratic irreducible
polynomial into our soup.

Let d ∈ R and define h0 := 2k + dεj. The polynomial (t − h0)(t − h1) has
exactly two factorizations—one we know already, the second one is (t−h4)(t−h5),
for some h4, h5 ∈ DH. Then the polynomial (t − h5)(t − h2) also has exactly two
factorizations, and we can define two more dual quaternions such that the second
factorization is (t−h6)(t−h7). Finally, let h8, h9 ∈ DH such that (t−h7)(t−h3) =
(t − h8)(t− h9). The different factorizations giving the same result correspond to
paths in the directed graph G in Figure 12 with equal starting and ending vertex.

1
t−h1 �� 2

t−h2 �� 3
t−h3 �� 4

5
t−h4 ��

t−h0

��

6
t−h6 ��

t−h5

��

7
t−h8 ��

t−h7

��

8

t−h9

��

Figure 12. This graph displays different factorizations of equal
products in the polynomial ring of dual quaternions. For any two
directed paths between two vertices, the two products of the linear
polynomials appearing as edge labels in each path are equal. The
dual quaternions h0, . . . , h9 are defined as follows: h0 = 2k + dεj,
h1 = k− (a/2+ b/2)εj, h2 = k− (−a/2+ b/2− c)εj, h3 = −k− εcj,
h4 = k+a+b+4d

6 εj, h5 = 2k+−2a−2b+d
3 εj, h6 = k+−11a−5b−6c+4d

18 εj,

h7 = 2k + 4a−8b+12c+d
ε j, h8 = −k + −8a+16b+3c−2d

9 εj, h9 = 2k +
4a−8b+d

3 εj. Here, a, b, c, d are arbitrary real constants.

The linkage drawing an ellipse now consists now of eight links corresponding
to the eight vertices of G. Two links are connected by a joint if and only if the
vertices are connected by an edge. The label of the edge—a linear polynomial in
DH—parametrizes the relative position of the target link with respect to the source
link. As t varies, the linear polynomials parametrize a revolution. Therefore, the
two links are connected by an R-joint. Now we fix the link corresponding to vertex 4.
Then the relative motion of the link corresponding to vertex 1 maps the origin to
the point p(t) on the ellipse.
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Note that b = 0 is allowed; in this case, the ellipse degenerates to a line segment
traced twice, and we have constructed a linkage that draws this line.

4. Symmetry

The second construction by Dixon of a moving K4,4 is symmetric. Indeed, sym-
metry may change the counting rules and can sometimes be the explanation of
paradoxical mobility. We discuss here two cases in more detail: line symmetry and
plane symmetry. Both cases appeared in Bricard’s families of moving octahedra
in [5]. Schulze [43] was the first to describe paradoxical moving symmetric graphs
systematically, in every dimension.

Line symmetry. We assume that we have a graph G = (V,E) such that |E| = 3|V |−
6, and an assignment (λ)e∈E of a positive real number for each edge. Generically,
the configuration set, i.e., the set of all maps V → R3 respecting edge lengths
modulo SE3, is finite: we have 3|V | − 6 variables and |E| equations. Let us now
assume that we have a graph automorphism τ : V → V that preserves the edge
assignment. Assume also that τ has order 2, does not fix a vertex, and does not
fix an edge—a priori, an edge could be fixed if τ permutes its two vertices. Then

|V | consists of n := |V |
2 pairs of conjugated vertices, and E consists of 3n− 3 pairs

of conjugated edges. In order to construct line symmetric configurations, we fix a
line L ⊂ R3; let σ : R3 → R3 be the rotation around L by π. For any conjugated
pair (v, τ (v)) of vertices, we pick one point pv anywhere in R3; the second point is
determined by pτ(v) := σ(pv). The number of variables to specify all points is 3v.
There is also a two-dimensional subgroup of SE3 fixing L, generated by rotations
around L and translations into the direction of L. We use two of the variables to get
a canonical representative. Hence the number of variables to specify an equivalence
class of configurations is 3n− 2. The number of equations is equal to the number
of pairs of conjugated edges, which is 3n−3, because conjugated edges always have
the same length. Hence the expected mobility is 1.

The smallest line symmetric moving graph is the 1-skeleton of an octahedron,
with six vertices and 12 edges. The group of graph automorphisms is isomorphic
to the Euclidean symmetry group of a regular octahedron, which has 48 elements.
There is a unique automorphism of order 2 without fixed vertex and fixed edge,
corresponding to the point reflection of the regular octahedron. The construction
applies, and we get a moving line symmetric octahedron (see Figure 13, left side).
Bricard [7] proved that there are three types of moving octahedra, and the line
symmetric mechanism is one of the three.

Proposition 4.1. Let Γ be a centrally symmetric convex polyhedron with only
triangular faces. Then its 1-skeleton G = (V,E) allows a line symmetric motion.

Proof. By Euler’s formula, the number of edges is 3|V | − 6. The point reflection
acting on Γ defines an automorphism of the graph which satisfies the required
properties: order 2, no fixed vertex, no fixed edge. Our construction applies: for
any conjugated pair of vertices, we choose one point generically and the second
by line reflection. By the above counting of indeterminates and constraints, the
expected mobility is 1. �

For instance, we may construct a line symmetric moving icosahedron with 12
vertices and 30 edges.
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Figure 13. The left side shows a flexible octahedron that is sym-
metric by a line reflection. The right side shows a flexible octahe-
dron that is symmetric by a plane reflection. Corresponding edges
are shown in the same color.

Remark 4.2. Be careful: the point symmetry defines only the graph automorphism!
It is geometrically different from the line symmetry in all configurations we allow.
Point symmetric configurations do also exist, but only finitely many.

Another classical example is Bricard’s line symmetric 6R loop. Any 6R loop
consists of six links, cyclically connected by revolute joints that allow rotations
around an axes which is common to the two attached links; generically, a 6R loop
is rigid.

Recall that configurations can be found by solving the closure equation (see
Section 3): we attach an internal coordinate system to each link and parametrize
the transformation Ti from the ith link to the (i+ 1)-th link (where the sixth link
is the zeroth link) by the ith configuration parameter φi. As mentioned above,
Ti(φi) is the composition of the translation by a vector of length di parallel to the
z-axis, the rotation around the z-axis by the angle αi, the translation by a vector
of length si parallel to the x-axis, and a rotation around the x-axis determined by
the ith configuration parameter φi. The configuration set is the set of solutions
(φ0, . . . , φ5) of the closure equation

T0(φ0)T1(φ1)T2(φ2)T3(φ3)T4(φ4)T5(φ5) = e,

where e is the identity of the group SE3. The functions T0, . . . , T5 depend on the
invariant Denavit/Hartenberg parameters, and as a consequence we have T0 = T3,
T1 = T4, and T2 = T5. Recall that the closure equation is a codimension 6 condition,
because SE3 is a six-dimensional group, hence the CGK formula estimates that there
are only finitely many solutions.

Proposition 4.3. If the 18 invariant Denavit/Hartenberg parameters d0, . . . , s5
satisfy the conditions

di = di+3, αi = αi+3, si = si+3 for i = 0, 1, 2,

then there is generically a one-dimensional set of line symmetric configurations.

Proof. The condition of the invariant Denavit/Hartenberg parameters implies the
equations φ0 = φ3, φ1 = φ4, and φ2 = φ5. The closure equation reduces to

(T0(φ0)T1(φ1)T2(φ2))
2 = e.

We ignore the solutions of T0(φ0)T1(φ1)T2(φ2) = e (these are at most finitely many).
This means, we search for configuration parameters such that the transformation of
the coordinate system of the zeroth link to the coordinate system of the third link
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is a half turn x. This is a codimension 2 condition: as we mentioned in Section 3,
the set of involutions in SE3 is a four-dimensional manifold. The half turn x is the
claimed line symmetry: it maps the ith link to the (i+3)-rd link, for i = 0, 1, 2. �
Remark 4.4. Is there a good reason to explain the mobility of a line symmetric
linkage by the closure equation, instead of just considering them as special cases
of line symmetric linkages of graph type, as in Remark 3.1. Here is one: we may
replace some of the revolute joints by other types of joints, like prismatic joints, as
in hydraulic rams, or helical joints, as commonly seen in the form of nuts and bolts.
In both cases, such a joint allows a one-parameter subgroup of displacements of
the connected links, and exactly the same proof of mobility is valid. On the other
hand, a loop with helical joints cannot be considered as a linkage of graph type,
because its closure equation is not even algebraic.

Yet another classical example, the line symmetric Gough–Stewart platform, will
be explained in Section 5. Also Bennett’s skew isogram, discussed in Section 3, is
a line symmetric mechanism.

Plane symmetry. Plane reflections are involutions in the group E3 of isometries
reversing the orientation. They are of course not direct isometries, but they still
may be responsible for paradoxical mobility of various types of linkages, similar
to half turns in the case of line symmetric linkages. Let us start with 6R loops.
In a plane symmetric configuration of a 6R loop, there exists a plane reflection
mapping link 0 to link 5, link 1 to link 4, and link 2 to link 3. The existence
of a plane symmetric configuration has the following implication on the invariant
Denavit/Hartenberg parameters:

d0 = d5, d1 = d4, d2 = d3,

α0 = α5, α1 = α4, α2 = α3,

s1 = −s0, s2 =− s5, s0 = s3 = 0.

(3)

Conversely, the above condition imply plane symmetric mobility, as follow.

Proposition 4.5. Assume that the 18 invariant Denavit/Hartenberg parameters of
a 6R loop satisfy condition (3). Then the 6R loop generically has a one-dimensional
set of plane symmetric configurations.

Proof. The relations between the functions in the closure equations are the follow-
ing:

RT0(φ0)R = T0(−φ0), RT1(φ1)R = T5(−φ1),

RT2(φ2)R = T4(−φ2), RT3(φ3)R = T3(−φ3),

where R is the reflection by the coordinate plane Π spanned by the first and second
axes. Instead of solving the closure equation, we find all quadruples (φ0, φ1, φ2, φ3)
such that RXR = X, where X := T0(φ0)T1(φ1)T2(φ2)T3(φ3). An element X ∈ SE3

fulfills the equation RXR = X if and only if it is a rotation with an axis orthogonal
to Π or a translation by a vector in Π. These rotations and translations form
a manifold of dimension 3 (isomorphic to SE2), hence the condition above is a
codimension 6 − 3 = 3 condition. In general, there is a one-dimensional set of
solutions.

For every solution (φ0, φ1, φ2, φ3) of RXR = X, the six-tuple

(2φ0, φ1, φ2, 2φ3, φ2, φ1)
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is a solution of the closure equation,

T0(2φ0)T1(φ1)T2(φ2)T3(2φ3)T4(−φ2)T5(−φ1)

= T0(φ0)XT3(φ3)RT2(−φ2)T1(−φ1)R

= RT0(−φ0)RXRT3(−φ3)T2(−φ2)T1(−φ1)R

= RT0(−φ0)RXRX−1T0(φ0)R = e.

Hence we again get a mobile 6R loop, also known as Bricard’s plane symmetric 6R
linkage. �
Remark 4.6. As in Remark 4.4, we may replace some of the revolute joints by
prismatic or helical joints; see [2]. Care has to be taken for the special role of the
zeroth joint and the third joint, because these two joints are supposed to be mapped
to their own inverse by the plane symmetry. This is not possible at all for helical
joints. Prismatic joints are fine, but the direction vector has to be perpendicular
to the symmetry plane and not parallel to it.

For linkages of graph type, there is also a construction of plane symmetric link-
ages that are paradoxically mobile. We assume that we have a graph (V,E) such
that is generically rigid and satisfies |E| = 3|V | − 6, for instance the 1-skeleton of a
convex polyhedron with triangular faces. Assume that we have a graph automor-
phism τ : V → V of order 2 that fixes 2m vertices and 2m − 2 edges, for some
m ≥ 1. Choose a generic edge assignment that respects the involutive symmetry.
Fix a plane Π in R3, and let R : R3 → R3 be the reflection at Π. A configuration
(pv)v∈V is symmetric with respect to the plane Π if and only if R(pv) = pτ(v) holds

for all v ∈ V . The number of indeterminates is 3 |V |−2m
2 + 4m− 3 = 3

2 |V |+m− 3:
for each 2-orbit in V , the realization is determined by three indeterminates, and
for each fixed point, we have two indeterminates because the point must lie in
Π. The symmetry group of the plane has dimension 3, which reduces the num-
ber of indeterminates of equivalence classes by 3. The number of equations is
|E|−2m+2

2 + 2m − 2 = 3|V |−2m−4
2 + 2m − 2 = 3

2 |V | + m − 4. Again, we obtain a
paradoxically mobile graph.

So, how do we find graphs with an automorphism of order 2 fixing 2m vertices
and 2m− 2 edges? Say, the graph is the 1-skeleton of a convex polyhedron Γ with
triangular faces. If Γ is symmetric with respect to the half turn around a line
passing through two vertices, then we get a involution with two fixed points and
no fixed edge, so that m = 1. This works, for example, for the octahedron (see
Figure 13 right side) and for the icosahedron.

Remark 4.7. In the construction above, there are two geometric symmetries playing
entirely different roles: the line symmetry of the convex polyhedron defines a graph
automorphism of order 2 with the right properties; the plane symmetry defines a
condition on the configurations that we consider. See also Remark 4.2.

Here is an example of a generically rigid graph with 12 vertices and 30 edges
and with an automorphism of order 2 that fixes four vertices and two edges: take
a 6R loop and construct a graph as in Remark 3.1, by putting two vertices on each
of the four rotation axes. In this case, the plane symmetric construction just gives
plane symmetric 6R loops, which we have constructed in another way.

Remark 4.8. A different notion of line/plane/point symmetry for motions is used,
for instance, in [48] (for line reflections): here one considers the set of displacements
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that are reflections at a moving line, plane, or point, followed by a fixed reflection.
Because the composition of two point reflections is a translation, a point symmetric
motion would be purely translational.

5. Multipods and group-leg duality

The Prix Vaillant 1904 asked for curves in the Lie group SE3 of direct isometries
such that “many” points in R3 move on spheres. Connecting the moving points
by bars with the centers of these spheres, we obtain a multipod, also known as
Gough–Stewart platform, which is a linkage consisting of a fixed base and a moving
platform that are connected by legs of fixed length that are attached to platform
and base by spherical joints (see Figure 14). Flight simulators or other linkages
that are supposed to make irregular motions are often manufactured as hexapods
with additional prismatic joints at each leg that change its length; in this section,
as already stated, the leg lengths remain constant. Each leg gives a codimension 1
condition on the displacement of the platform with respect to the base, hence the
CGK formula gives the estimate max(0, 6− n) for the mobility an n-pod. Strictly
speaking, each leg may be considered as a link that may also revolve around the line
connecting its two anchor points, but we disregard this component of the motion.
So, pentapods are generically mobile, and hexapods are generically rigid.

A displacement R
3 → R3 of the platform relative to the base is given by a

special orthogonal matrix M ∈ SO3 and the image y ∈ R3 of the origin of the
base. We set x := −M ty = −M−1y to be the preimage of the origin of the
platform and r := 〈x, x〉 = 〈y, y〉, where 〈·, ·〉 is the Euclidean scalar product.
If we take coordinates m11, . . . ,m33, x1, x2, x3, y1, y2, y3, and r, together with a
homogenizing variable h, in P16, then a direct isometry defines a point in projective
space satisfying h �= 0 and

(4)

MM t = M tM = h2 · idR3 , adj(M) = hM t,

M ty + hx = 0, Mx+ hy = 0,

〈x, x〉 = 〈y, y〉 = rh,

where adj(M) is the adjugate matrix. Recall that A · adj(A) = adj(A) · A =
det(A) · idR3 for any A ∈ R3×3, therefore the above equations imply det(M) = h3.
The equations (4) define a variety X of dimension 6 and degree 40 in P16, whose
real points satisfying h �= 0 are in one-to-one correspondence with the elements
of SE3. We call it the group variety; its projective space P16 containing X is called
group space.

Mathematically, a leg is a triple (a, b, d), where a ∈ R3 is a point of the base,
b ∈ R

3 is a point of the platform, and d ∈ R is a positive number, the length of the
leg. We define the leg variety Y as the cone over the Segre variety Σ3,3

∼= P3×P3 in

the projective space P̌16; recall that the Segre variety is a subvariety of a projective
space of dimension 15 and degree

(
3+3
3

)
= 20, hence Y has dimension 7 and degree

20. The values of projective coordinates of a leg (a, b, d) are u := 1, ai, bj and
zij := aibj for i, j = 1, 2, 3, and the corrected leg length l := 〈a, a〉 + 〈b, b〉 − d2.
Note that the indices i and j in ai and bj refer to coordinates in R3 and not to
leg numbers. In total, we have 17 variables including the homogenization variable
u. So, we have the homogeneous variables of a projective space of dimension 16
containing Y . We call it leg space and denote it by P̌16.
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The reason for this very specific choice of coordinates is the following. The
algebraic condition 〈Ma+ y − b,Ma+ y − b〉 = d2 is bilinear in these coordinates:

(5) lh+ ur − 2

3∑
i=1

aixi − 2

3∑
j=1

bjyj − 2

3∑
i,j=1

zijmij = 0.

Hence it defines a duality between group space and leg space. Every point in
group space, in particular every group element, corresponds to a hyperplane in leg
space; every point in leg space, in particular every leg, corresponds to a hyperplane
in group space. More generally, to every k-plane in group space there is a dual
(15− k)-plane in leg space, for k = 0, . . . , 15.

The duality has various implications for multipods, whether they are paradoxical
or not. To start with, choose six generic legs. They span a generic 5-plane in leg
space. The dual 10-plane in group space is also generic and, since it has codimension
6, intersects X in deg(X) = 40 points (real or complex). Hence a generic hexapod
has 40 configurations, possibly complex. This result has been proved by various
methods; see [17, 35, 36, 40, 41].

Now, we choose five generic legs. They span a generic 4-plane in leg space,
dual to a generic 11-plane in group space, which intersects X in a curve C of
degree 40: the configuration curve of a generic pentapod. We can compute its
genus. We first compute the Hilbert series of X from a generating set of its ideal:

H(X)(t) = 1+10t+18t2+10t3+t4

(1−t)7 . Because C is a codimension 5 subvariety of X

defined by five linear forms, we may compute the Hilbert series of C from the
Hilbert series of X:

HC(t) = HX(t)(1− t)5 =
1 + 10t+ 18t2 + 10t3 + t4

(1− t)2

= 1 + 12t+ 41t2 + 80t3 + 120t4 + · · · .

This implies that C is a curve of genus 41 and its embedding in P11 is half canonical.

The Bricard/Borel infinity-pod. Here is the infinity-pod that was given by the two
winners of the Prix Vallaint, Borel [4] and Bricard [6]. We intersect X with the
3-space defined by

r + βh− 2αm11 = m11 −m22 = m12 +m21 = m33 − h = x3 + y3

= m13 = m23 = m31 = m32 = x1 = x2 = y1 = y3 = 0,

where α, β ∈ R are real parameters such that α �= 0. The result is a quartic curve
defined by the equations

m2
11 +m2

12 − h2 = x2
3 − 2αm11h+ βh2 = 0

and by the linear equations above. It parametrizes a motion C contained in the
two-dimensional stabilizer of the third axes L, generated by rotations around L and
translations in the direction of L. The dual 12-plane in leg space is defined by

z12 − z21 = z11 + z22 − αu = a3 − b3 = l − 2z33 − βu = 0.

A leg (a, b, d) in the intersection with Y if and only if

a1b2 − a2b1 = a1b1 + a2b2 − α = a3 − b3 = a21 + a22 + b21 + b22 − d2 − β = 0.

For any point (a1, a2, a3) in the base such that (a1, a2) �= (0, 0), there is a unique
point (b1, b2, b3) in the platform and a length such that the motion C keeps the
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distance of base and platform point equal to d. To get the platform point corre-
sponding to a given base point (a1, a2, a3), we invert its projection (a1, a2) on the

circle with radius
√
|α| and keep the third coordinate; if α < 0, then we also have

to rotate the projection by an angle of π.
In the degenerate case α = β = 0, one of the equations of the quartic curve is a

perfect square, and the reduced equations m2
11 + m2

12 − h2 = x3 define a conic in
a 2-space. In leg space, we have one less linear equation: z12 − z21 = z11 + z22 =
l − 2z33 = 0, or equivalently

a1b2 − a2b1 = a1b1 + a2b2 = a21 + a22 + b21 + b22 − d2 = 0.

Here we get a four-dimensional set of possible legs with two components, namely
the set of legs where the platform point or the base point lies on the z-axis. The
motion is just a revolution around the z-axis.

Planar multipods. We consider now the linear subspace Lp ⊂ P̌16 of dimension 9 in
the leg space defined by the equations

a3 = b3 = z13 = z23 = z31 = z32 = z33 = 0.

Its intersection Yp with the leg variety consists of all legs such that the two anchor
points lie on a fixed plane. The variety Yp is the Segre variety Σ2,2

∼= P
2 × P

2; let

us call its elements informally planar legs. The degree of Yp is
(
2+2
2

)
= 6.

A multipod such that all its base points are coplanar and all its platform points
are coplanar is called a planar multipod (see Figure 14). To obtain the configuration
of a planar multipod, one has to intersect the dual space of the linear span of all
legs with the group variety X. The linear span of the legs is contained in Lp, hence
the dual space of the linear span contains the dual space L⊥

p . This linear space
does not intersect the group variety, otherwise we would have a displacement that
preserves the length of all legs in Yp, which is impossible. What we can say is that
the projection P16 ��� P9 with center L⊥

p projects the group variety to a subvariety

Xp ∈ P9 of dimension 6 and degree 20 by a map that is generically 2:1. Hence the
configurations of a planar multipod come in pairs: for every configuration, there is
a conjugated configuration. It can be obtained by an outer automorphism of SE3,
namely the conjugation by the reflection with respect to the plane containing the
anchor points.

It is surprisingly easy to construct paradoxically mobile planar hexapods. Here
is the reason.

Theorem 5.1 (Duporcq [16]). Let y1, . . . , y5 ∈ Yp be five generic planar legs. Then
there exists a planar leg y6 ∈ Yp such that the configuration space of the pentapod
defined by (y1, y2, y3, y4, y5) is equal to the configuration space of the hexapod defined
by (y1, y2, y3, y4, y5, y6).

Proof. Let V ⊂ P̌16 be the linear span of y1, . . . , y5. Its dimension is 4. The
dimension of Yp is 5. Both V and Yp are contained in Lp

∼= P
9, hence the intersection

Yp ∩ V is finite. Its cardinality is equal to the degree of Yp, which is 6. We know
already five points; we choose y6 to be the sixth.

For both, the pentapod and the hexapod, the configuration set of the pentapod
is the intersection of the group variety X with the dual space V ⊥. The linear
condition imposed by the 6-leg does not impose an independent condition because
it lies in the linear span of the other five. �
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a1
a2

a3

a4

a5

a6

b1

b2

b3

b4
b5b6

Figure 14. A planar hexapod. For any configuration, there is
also a conjugated configuration that can be obtained by reflection
on the green base plane.

Line-symmetric multipods. Another class of paradoxically mobile hexapods is the
class of line symmetric hexapods. They can be obtained as special cases of line
symmetric moving graphs (see Section 4). The graph consists of two octahedra
G1, G2 together with six edges each joining one point of G1 to one point of G2,
so that these six edges provide a graph symmetry between G1 and G2. The au-
tomorphism τ of the whole graph G maps each vertex v1 of G1 to the vertex in
G2 connected with the unique vertex in G1 that is not connected with v1 (see Fig-
ure 15). This graph automorphism does not fix any vertex or any edge. We fix a
line L of symmetry and embed G so that the half turn around L maps each vertex
v to the image of τ (v), generically with respect to this condition. By the count in
Section 4, the configurations are solutions of an algebraic system in 16 unknowns
and 15 equations, implying mobility.

It pays to analyze the situation again by group-leg duality, following an analysis
from [4]. Let Li ⊂ P

16 be the linear subspace in group space defined by the linear
equations M = M t and x = y; it intersects X in the subset Xi of all displacement
of order 2 or 1. Note that the order 2 elements in SE3 are exactly the rotations
around lines by an angle of π. These are six equations, hence dim(Li) = 10. The
dual subspace L⊥

i in leg space has dimension 5 and is defined by the equations
l = u = zii = ai + bj = zij = 0 for i, j = 1, . . . , 3, i �= j. We have a situation that
mirrors the planar hexapod case: the subspace L⊥

i does not intersect the leg variety,
otherwise there would be a leg which does not change length in all involutions. But
the projection P̌16 ��� P̌10 with center L⊥

i projects the leg variety Y to a subvariety
Yi ∈ P̌10 of dimension 7 and degree 10 by a map that is generically 2:1. Hence the
legs of a multipod with involutive displacements come in pairs: if (a, b, d) is a leg,
then (b, a, d) is also a leg. This can also be shown directly: if σ ∈ SE3 has order 2,
then

||σ(a)− b|| = ||σ2(a)− σ(b)|| = ||σ(b)− a||.
Group-leg duality induces a duality between the projective subspace Li of dimen-
sion 10 that contains Xi and the projective image space P̌

10 that contains Yi. Let
us call the elements in Yi twin pairs of legs; each such pair of legs is constituted
by a leg (a, b, d) and by its conjugated leg (b, a, d). Generically, three twin pairs in
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Figure 15. A graph consisting of two octahedra and six addi-
tional edges with a graph automorphism of order 2 that does not
fix any vertex or any edge. The automorphism is shown by vertex
orbits: conjugated vertices have equal labels. By symmetric count-
ing of variables and equations, a generic line symmetric embedding
does move. In this motion, the two octahedra are rigid, and we
obtain a mobile hexapod.

Yp correspond to three hypersurfaces in Li. Since dim(Xi) = 4, the intersection
of these three hypersurfaces and Xp is a curve. So, we have explained again the
paradoxical mobility.

But there is more. We have not just constructed a mobile hexapod, we have even
constructed, at the same time, a mobile icosapod! Here is the precise statement.

Theorem 5.2. Let p1, p2, p3 be three generic twin pairs of legs. Let C ⊂ Xs be
the configuration curve of the hexapod defined by all six legs. Then there exist
seven additional twin pairs, maybe complex, such that C is the set of all order 2
displacements compatible with all 20 legs.

Proof. The three twin pairs span a generic 2-plane in V ⊂ P̌10. The subvariety
Yi ⊂ P̌10 has dimension 7, hence V and Y intersect in deg(Yi) = 10 points. Three
of them correspond to p1, p2, p3, and the remaining seven are the additional pairs
we require. The linear span of all ten points is equal to the linear span of p1, p2, p3,
namely V , hence the conditions for displacements do not change. �

In [18] it is shown that there exist examples where all 20 legs are real. The proof
is based on a result on quartic spectahedra in [11, 38].

6. Compactification

In enumerative algebraic geometry, for instance for the problem of counting ra-
tional curves on a projective variety, compactifications of moduli spaces are known
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as a powerful tool. Here, we compactify the algebraic varieties in which the config-
uration spaces are naturally embedded: products of subgroups of SE3 in the case
of linkages with revolute joints, SE3 itself in the case of multipods, and products of
the plane in the case of moving graphs.

6.1. Moving graphs. In Section 2, we saw that if a graph (V,E) has NAC coloring,
then it also has a flexible labeling. Here we use compactification to prove the
converse, too. The proof is taken from [23].

Theorem 6.1. A graph (V,E) has a flexible labeling λ if and only if it has NAC
coloring.

For example, the graph in Figure 16 has no NAC coloring and therefore never
moves for any labeling λ.

Figure 16. A graph that does not have NAC coloring. Conse-
quently, the graph is rigid for every possible labeling of its edges.

Let (V,E, λ) be a graph with an edge assignment. We would like to projectivize
in order to compactify; for this purpose, it is convenient to change the notion of a
configuration slightly. A homogeneous configuration is an assignment of vertices by
points in R2 such that for any two edges e = (i, j), f = (k, l), the equality

λe||pk − pl||2 = λf ||pi − pj ||2

holds. For each vertex k ∈ V with assigned point pk, we write pk = (xk, yk) and
zk := xk + iyk, wk := xk − iyk. In other words, the complex numbers z1, . . . , z|V |
represent the vertices in the Gaussian plane of complex numbers. In order to
normalize, we require p1 = (0, 0).

The homogeneous configuration p defines a point in P|V |−2 × P|V |−2 as follows:
its first component has projective coordinates (z2 : · · · : z|V |), and its second com-
ponent has coordinates (w2 : · · · : w|V |). The equality above reads

(6) λe(zk − zl)(wk − wl)− λf (zi − zj)(wi − wj)

in these projective coordinates. This is a bihomogeneous equation of bidegree (1, 1).
The set of all solutions of (6) is a projective subvariety of P|V |−2 × P|V |−2, the
configuration variety of (V,E, λ). Equivalent homogeneous configurations define
the same point in the configuration variety: since we fixed p1 = (0, 0), equivalent
configurations are related by a rotation or a scaling; but such a transformation just
multiplies all z-coordinates by a complex nonzero constant and all w-coordinates by
a different complex nonzero constant, hence does not change the points in P|V |−2.

A point α ∈ P|V |−2 × P|V |−2 corresponds to a homogeneous configuration if and
only if it fulfills two extra conditions. First, the conjugate has to coincide with
the flip of the first and second component; if this condition fails, then some of the
corresponding points in the plane have nonreal coordinates. Second, for some edge
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e = (i, j), we have (zi − zj)(wi − wj) �= 0. By (6), the choice of the edge has no
influence on the validity of this extra condition.

The boundary of the configuration set is defined as the set of points in the
configuration variety that fail to satisfy the two extra conditions. In particular, for
some edge e = (i, j), or equivalently for all edges, we have (zi − zj)(wi − wj) = 0.
For each point β in the boundary, we define a coloring of the edges of the graph in
the following way: the edge (i, j) is colored red if zi − zj vanishes at β, and it is
blue otherwise.

Lemma 6.2. For any point β in the boundary of the configuration variety, the
coloring defined by it is NAC coloring.

Proof. Assume, for the sake of contradiction, that all edges are red. Then the first
projection of β to P|V |−2 has only zero coordinates, which is impossible.

Assume, for the sake of contradiction, that all edges are blue. For any edge (i, j),
we have (zi−zj)(wi−wj) = 0 and zi−zj �= 0. It follows that the second projection

of β to P|V |−2 has only zero coordinates, which is impossible.
Assume, for the sake of contradiction, that (i1, . . . , ik, i1) is cycle such that

(ir, ir+1) is red for all r = 1, . . . , k − 1, and (ik, i1) is blue. Then zi1 = · · · = zik
and zik �= zi1 , which is impossible.

Assume, for the sake of contradiction, that (i1, . . . , ik, i1) is cycle such that
(ir, ir+1) is blue for all r = 1, . . . , k − 1, and (ik, i1) is red. Then wi1 = · · · = wik ,
hence wik = wi1 . In addition, we also have zik = zi1 as (ik, i1) is red. Therefore
the form (zi1 − zik)(wi1 − wik) vanishes with order m ≥ 2 at β. The order of this
form is the same for every edge, and because (ir, ir+1) is blue, the forms zr − zr+1

have order 0 for r = 1, . . . , k−1. Hence the order of the forms wr −wr+1 is at least
m, for all r. Then the form wi1 − wik vanishes with order at least m, and this is a
contradiction. �

Proof of Theorem 6.1. If (V,E, λ) is flexible, then its configuration set is a projec-
tive variety K of positive degree in P|V |−2 × P|V |−2. For any edge (i, j) ∈ E, the
form (zi − zj)(wi − wj) has to vanish somewhere in K. Therefore, K meets the
boundary. By Lemma 6.2, it follows that (V,E) has NAC coloring.

Conversely, assume that we have NAC coloring of the edges. Then we make the
graph moving by a construction given in Section 1: the red edges always keep their
direction and move by translations only, while the blue edges rotate with uniform
speed. �

A weakness of Theorem 6.1 is that its constructive part—the construction of
flexible labelings—produces only a particular type of motions that we may call
uniform speed motions. Also, these motions sometimes map different nonadjacent
vertices to the same point in the plane. For example, in the case of the complete
bipartite graph K3,3, all uniform speed motions map at least two pairs of vertices
to the same point in the plane, and the moving graph looks like a moving parallel-
ogram. Deciding if a given graph has labeling with a generically injective motion
is much harder than deciding the existence of a flexible labeling; see [24].

6.2. Revolute loops. The complete classification of mobile 4R loops was given
by Delassus (see Section 3). The complete classification of mobile 5R loops was
given in [29] with the help of computer algebra. For 6R loops, the classification is
still open; the difficult part is to come up with necessary conditions for mobility.
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In this subsection, we will give necessary criteria for mobility of nR loops, where
n = 4, 5, 6.

Let d1, . . . , dn (normal distances), s1, . . . , sn (offsets), and α1, . . . , αn (angles)
the invariant Denavit/Hartenberg parameters; we assume that none of the angles is
0 or π. For r = 0, . . . , n−1, we set wr = cot(αr/2), cr := cos(αr), and br := dr

sin(αr)
.

Then we define the 2n complex quadratic polynomials

Q±
r (x) =

(
x+

br+2cr+2 − brcr
2

− sr
2
i

)2

+
i

2
(brsr+1 ± br+2sr+2 ± s2br+2cr+1 + sr+2brcr+1)

− −sr+1sr+2cr+1 ± brbr+2cr+1

2

+
s2r+1 + s2r+2 − b2r + b2r+1 − b2r+2 − b2r+1c

2
r+1

4
∈ C[x],

where the indices are understood modulo n.

Theorem 6.3. If the nR loop with invariant Denavit/Hartenberg parameters is
mobile, then one of the following conditions holds.

(1) There exists r ∈ {0, . . . , n− 1} such that br = ±br+1 and sr = 0.
(2) We have n = 6, and for r = 0, 1, 2, the polynomials Q+

r and Q+
r+3 have a

common zero, or the polynomials Q−
r and Q−

r+3 have a common zero; here,

Q−
r+3 is the complex conjugate of Q−

r+3.

In order to derive one of these conditions, we express the closure equation in
a more algebraic way, using dual quaternions. For r = 0, . . . , n − 1, the dual
quaternion gr := (1−srεi)(wr−k)(1−dik) is the displacement that transforms the
internal coordinate system of link r to the internal coordinate system of link r + 1
(modulo n), if the configuration parameter is 0. The closure equation is an equation
in the variables t0, . . . , tn−1, which denote the cotangents of the half configuration
angles: the dual quaternion

x(t0, . . . , xn−1) := (t0 − i)g0(t1 − i)g1 · · · (tn−1 − i)gn−1

is a multiple of 1, hence seven of its eight coefficients are 0. The variables t0, . . . , tn−1

may also assume the value ∞; in this case, the corresponding factor (tr − i) is re-
placed by the scalar 1, or is simply omitted. In this section, we will avoid this
technicality.

We focus on solutions on the boundary, but this time we do not consider tr = ∞
as boundary. Instead, we define the boundary of (P1)n as the set of n-tuples
(t0, . . . , tn−1) such that t2r + 1 = 0 for at least one r. Indeed, if we remove the
boundary, then we get a group variety isomorphic to (SO2)

n, with an isomorphism
respecting real structures. The statement that t2r + 1 = 0 for at least one r is
equivalent to the statement N(x(t0, . . . , tn)) = 0, by the multiplicativity of the
norm. Boundary solutions can never be real; at least one of the variables must be
equal to ±i.

Note. Throughout this paper, we use i for the first quaternion unit in H, i for
the imaginary unit in C, and i for a running integer. In this section, both i and i
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will appear, sometimes in the same expression, but we will try to avoid using i for
an integer.

Unfortunately, the closure equation often has many solutions that are not of
interest. But we can obtain more equations by cyclic permutation of its factors, or
by using quaternion conjugation to bring some factors to the other side, as in

λ(t0 − i)g0 = νgn−1(tn−1 + i)gn−2 · · · g1(t1 + i)

for some scalars λ, ν that are not both equal to 0. This condition can be expressed
by polynomial equations, namely the 2-minors of the 2× 8 matrix whose rows are
the coordinates of (t0 − i)g0 and of gn−1(tn−1 + i)gn−2 · · · g1(t1 + i). After having
added all these reformulations of the closure equations to our system of equations,
we look for solutions on the boundary. These are called bonds.

We leave it as an exercise to prove that at least two of t0, . . . , tn−1 must be ±i.
Hint. Use a formulation of the closure equation with factors on both sides, and
then take the norm on both sides. There are many examples with exactly two of
t0, . . . , tn−1 being ±i. If, say, t21 + 1 = t2k + 1 = 0 for some k < n, and t2i + 1 �= 0
for i �= 1, k, then we say that the first joint and the kth joint are entangled in the
respective bond. We can then prove the following equations:

(7)
(t1 − i)g1(t2 − i)g2 · · · (tk − i) = 0,

(tk − i)gk(tk+1 − i)gk+1 · · · (t0 − i)gn(t1 − i) = 0.

If the number of coordinates tr with t2r+1 = 0 is bigger than 2, then equation (7) also
holds for some k > 1, up to cyclic permutation, by [26, Lemma 2 and Theorem 3].

Equation (7) together with t21 + 1 = t2k + 1 = 0 is quite restrictive and often has
implications on the invariant parameters that are hard-coded in g0, . . . , gn−1. The
case k = 2 can be dismissed as follows. Assume

(i− i)g1(i− i) = 0.

Then it follows that w1 = d1 = 0; geometrically this means that the first two
rotation axes are equal, except that they have opposite orientation in the closure
equation. This degenerate case contradicts our assumption that none of the angles
is 0 or π; and so, we always have k > 2 (and modulo n, this also excludes k = 0).

If k = 3, then we get the equation

(i− i)g1(t2 − i)g2(i− i) = 0,

up to orientation of the first and/or third axis. This is a system of inhomogeneous
linear equations for t2. It has a solution in three cases: either the three axes are
parallel, or the three axes are concurrent, or the equations

s1 = 0, b1 = b2

are true. This is almost equal to condition (1) in Theorem 6.3, for r = 1. If we
put the opposite orientation on the third axis, we obtain s1 = 0 and b1 = −b2.
Compare also with Bennett’s condition for the mobility of a 4R loop in Section 3.

The analysis of the case k = 4 is more involved; however, it is necessary in order
to explain mobility of 6R linkages in which no three consecutive axes fulfill the
Bennett condition. Assume that n = 6, and we have a bond �t that entangles the
first and fourth joints. Without loss of generality, we may assume t1 = t4 = i. Then
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we obtain the equations

(8)
(i− i)g1(t2 − i)g2(t3 − i)g3(i− i) = 0,

(i− i)g4(t5 − i)g5(t0 − i)g0(i− i) = 0.

Excluding some degenerate cases (four parallel lines or four lines meeting in a point),
the first equation allows two solutions for (t2, t3), while the second equation allows
two solutions for (t0, t5). These partial solutions are not independent. They have
to satisfy another reformulation of the closure equation

λ(i− i)g1(t2 − i)g2(t3 − i)g3 = νg0(t0 + i)g5(t5 + i)g4(i + i)

for some complex numbers λ, ν that are not both equal to 0. In [33], it is shown
that the dual quaternions on both sides of the equations above have to be of the
form (1 + xε)(j + ik), where x ∈ C is a common zero of the polynomials Q+

1 and
Q+

4 . In particular, these two polynomials do have a common complex zero.

If t1 = i and t4 = −i, then the polynomials Q−
1 and Q−

4 have a common zero;
this is shown in a similar way.

Proof of Theorem 6.3. If n = 4 or n = 5, then we necessarily have two entangled
joints that have exactly one joint between them, in the cyclic order of joints. In the
above discussion, we can reduce to the case k = 2, which shows the first condition.

If n = 6 and only “opposite” joints are entangled, i.e., zeroth and third, first and
fourth, second and fifth, then we reduce to the case k = 3. In this case, [33] shows
that all three opposite pairs of opposite joints are entangled. �

Suppose that we have the maximal number of eight bonds entangling opposite
axes, for all three pairs of opposite axes. This assumption leads to a system of
algebraic equations in the invariant Denavit/Hartenberg parameters (18 variables).
Using computer algebra, we can compute the solution set (see [33]). It turns out
that there are two components F1 and F2, of dimensions 6 and 7, respectively.
Both are families of mobile 6R loops that were unknown before bonds were used
in kinematics. But the family F1 (the one of dimension 6) has a five-dimensional
subfamily which is classical: Bricard’s orthogonal 6R loops, characterized by the
vanishing of c0, . . . , c5 (i.e., all angles are right angles) and s0, . . . , s5 (i.e., all offsets
are 0), and the single equation b20 − b21 + b22 − b23 + b24 − b25 = 0.

6.3. Multipods. This subsection contains a necessary condition for a multpod to
be mobile. We assume that the leg set of the multipod is equal to {(al, bl, dl) |
l ∈ L}, where L is an index set, al ∈ R3, l ∈ L are the anchor points at the base,
bl ∈ R

3, l ∈ L are the anchor points at the platform, and dl ∈ R
3, l ∈ L are the leg

lengths. Our condition is a geometric condition on the anchor points; it does not
depend on the leg lengths.
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In order to explain the geometric condition, we need to recall the following two
geometric concepts.

• An orthogonal projection is a surjective linear map p : R3 → R
2 that maps

the plane orthogonal to the kernel isometrically to the image plane.
• The group M of inversive transformations from (R2 ∪ {∞}) to itself is
generated by inversions at circles, direct isometries, and similarity trans-
formations. It is also known as the group of Möbius transformations.

It is well known that M is a Lie group of dimension 6, isomorphic to the complex
projective group PGL2(C).

Theorem 6.4. If a multipod with leg set {(al, bl, dl) | l ∈ L} is mobile, then one of
the following conditions is true.

(1) There exist orthogonal projections pa : R3 → R2 and pb : R
3 → R2 and an

inversive transformation m : R2 → R2 such that m(pa(al)) = pb(bl) for all
l ∈ L.

(2) There exist lines Ga, Gb ∈ R
3 such that al ∈ Ga or bl ∈ Gb for all l ∈ L.

Recall the Bricard/Borel multipod with infinitely many legs, described in Sec-
tion 5. All its legs (a, b, d) satisfy the condition

a1b2 − a2b1 = a1b1 + a2b2 − α = 0

for some fixed α ∈ R, α �= 0. Here, condition (1) is fulfilled: pa and pb are both
the orthogonal projection to the first two coordinates, and m is the inversion at a
circle with radius

√
|α|, followed by a point reflection in case α < 0.

Condition (2) is equivalent to the existence of a partition of the set of legs into
two subsets, with the first subset having collinear anchor points in the base and
the second subset having collinear anchor points in the platform. Let us called
such a configuration a combined collineation. The existence of such a combined
collineation already implies mobility for a suitable choice of leg lengths. To see
this, we start with a configuration such that the lines Ga and Gb coincide—the leg
lengths have to chosen so that such a configuration exists. Then we can rotate the
platform around this line (similar as the double banana in Figure 4).

In order to prove Theorem 6.4, we compactify the group variety X ∈ P16. The
boundary of X is defined as the intersection of X with the hyperplane H : h =
0, with the variable set as in Section 5. In [20] it is shown that B is a variety
of dimension 5 and degree 20. The variety X—which has degree 20—and the
hyperplane H intersect tangentially along B, with intersection multiplicity 2. It is
defined by the equations

MM t = M tM = adj(M) = Mx = M ty = 0;

here the projective coordinates are the entries of M ∈ C3×3 and x, y ∈ R3 together
with r and h (which is 0). The condition adj(M) = 0 is equivalent to rank(M) ≤ 1.
The boundary has only a single real point, with r = 1 and M , x, y, and h being 0.

Sketch of proof of Theorem 6.4. The projective closure of the configuration has to
intersect the hyperplane H somewhere on the boundary. If β is the intersection
point, then the dual hyperplane β∗ in leg space must contains all legs of the mul-
tipod. The analysis in [20] of the boundary shows that the claim follows. We
illustrate this by two examples.
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First, assume that β is given by

(m11 : · · · : m33 : x1 : x2 : x3 : y1 : y2 : y3 : r : h)

= (1 : i : 0 : i : −1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 2 : 0).

Then the dual hyperplane β∗ has equation −2z11 + 2z22 + 2u − 2i(z12 + z21) = 0.
We claim that condition (1) is fulfilled. Let pa, pb : R3 → R2 be the projection
to the first two coordinates, and let m : R2 → R2 be the inversive transformation

(u, v) �→
(

u
u2+v2 ,

−v
u2+v2

)
. Let ((a1, a2, a3), (b1, b2, b3), d) be a leg. It corresponds to

a real point in leg space contained in β∗. Both the real part and the imaginary part
of the linear form defining β∗ have to vanish, so we get

−2a1b1 + 2a2b2 + 2 = 2a1b2 + 2a2b1 = 0.

This is equivalent to the statement m((a1, a2)) = (b1, b2).
Second, assume that β is given by

(m11 : · · · : m33 : x1 : x2 : x3 : y1 : y2 : y3 : r : h)

= (1 : i : 0 : i : −1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0).

Then the dual hyperplane β∗ has equation −2z11 + 2z22 − 2i(z12 + z21) = 0. We
claim that condition (2) is fulfilled, with both lines Ga, Gb ∈ R

3 being equal to the
third axis. If ((a1, a2, a3), (b1, b2, b3), d) is a leg, then the fact that the corresponding
real point in leg space is contained in β∗ implies the equation

−2a1b1 + 2a2b2 = 2a1b2 + 2a2b1 = 0,

which is fulfilled if and only if a1 = a2 = 0 or b1 = b2 = 0. �

For many mobile multipods, the curve of configurations intersects the hyperplane
in several points. The number of intersection points is related to the degree of the
configuration curve embedded in P16. The correlation between the degree of the
mobility curve of a hexapod and the number of special geometric events (projections
related by an inversive transformation, or combined collineations) motivates the
question on the maximal number of such events. Here are the answers.

Theorem 6.5. Assume that the six-tuple of points in the base and the six-tuple of
points in the platform are not similar, and that neither the base nor the platform
consist of coplanar points.

(a) The number of combined collineations is at most 16. If every anchor point
appears in at most one leg, for both base and platform, then the maximal
number of combined collineations is 4.

(b) The number of orthogonal projections related by an inversive transforma-
tions is at most 7.

The proof of (a) is left as an exercise. For the proof of (b), we refer to [21].
It is conjectured in [21] that for a generic choice of six points in R3, there exists

a second six-tuple of points, such that the maximal number of seven projections
related by an inversion is reached; such a six-tuple would then be unique up to
similarity. The conjecture continues to state that there is a unique scaling and choice
of leg length such that the so-constructed hexapod is mobile, with a mobility curve
of maximal degree 28. For a numeric random choice, the conjecture can be tested
by a construction taking about 300 seconds using computer algebra. Using this
construction, the conjecture has been verified for 50 random choices. Theoretically,
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it is still possible that these 50 random choices were picked on some unknown
subvariety with nongeneric behavior, but it is quite unlikely.

7. Open problems

Generic hexapods are rigid. The subset of mobile hexapods in (R3 ×R3 ×R)6 is
semialgebraic, so we know that there exists a description by algebraic equations and
inequalities. Its Zariski closure—defined only by equalities—is a reducible algebraic
variety which we do not understand very well. How many irreducible components
does it have? What is the dimension of each of the irreducible components? Are
the components unirational? If we could answer these questions, then we could say
we have classified mobile hexapods. Now, we have only partial answers, some of
them are more than 100 years old (Bricard and Borel, see Section 5). There is no
prize money any more, but the classification of mobile hexapods is still a challenge.

Another old open question has been mentioned in Subsection 6.2: the classifi-
cation of mobile 6R loops. The situation is analogous: the subset of mobile 6R
loops in R

18 is semialgebraic, and its Zariski closure is a reducible algebraic variety
which we do not understand very well. In the kinematics literature [1,14], there are
lists of known families, meaning irreducible algebraic varieties contained in our big
unknown variety. Some of them are irreducible components, and at least one other
known family has turned out to be properly contained in an irreducible component
(see the last paragraph of Section 3).

In rigidity theory, the open problem which is discussed most is to find a three-
dimensional analogue for Theorem 1.3. The paper [28] mentions a complete al-
gorithmic criterion and several partial combinatorial criteria. My own favorite
problem is to find a three-dimensional analogue for Theorem 6.1, aiming at a com-
binatorial criterion for the existence of a flexible length assignment. M. Gallet, G.
Grasegger, J. Legersky, and I are currently studying 1-skeletons of convex triangu-
lar polyhedra, and it could be that we have found an interesting necessary criterion
for this subcase—we will let you know!
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[26] G. Hegedüs, J. Schicho, and H.-P. Schröcker. The theory of bonds: A new method for the
analysis of linkages. Mechanism and Machine Theory, 70 (2013), no. 0, 407–424.

[27] B. Jackson and T. Jordán, Rigid components in molecular graphs, Algorithmica 48 (2007),
no. 4, 399–412, DOI 10.1007/s00453-007-0170-8. MR2324740

[28] C. Jialong and M. Sitharam, Maxwell-independence: a new rank estimate for the 3-
dimensional generic rigidity matroid, J. Combin. Theory Ser. B 105 (2014), 26–43, DOI
10.1016/j.jctb.2013.12.001. MR3171781

https://www.ams.org/mathscinet-getitem?mr=1577497
https://www.ams.org/mathscinet-getitem?mr=3771397
https://www.ams.org/mathscinet-getitem?mr=1575556
https://www.ams.org/mathscinet-getitem?mr=2931883
https://www.ams.org/mathscinet-getitem?mr=0068936
https://www.ams.org/mathscinet-getitem?mr=3641807
https://www.ams.org/mathscinet-getitem?mr=3557808
https://www.ams.org/mathscinet-getitem?mr=3353832
https://www.ams.org/mathscinet-getitem?mr=3550355
https://www.ams.org/mathscinet-getitem?mr=195853
https://www.ams.org/mathscinet-getitem?mr=3988122
https://www.ams.org/mathscinet-getitem?mr=4087212
https://www.ams.org/mathscinet-getitem?mr=2324740
https://www.ams.org/mathscinet-getitem?mr=3171781


AND YET IT MOVES: PARADOXICALLY MOVING LINKAGES IN KINEMATICS 95

[29] A. Karger, Classification of 5R closed kinematic chains with self mobility, Mech. Mach. Th.,
pp. 213–222, 1998.

[30] N. Katoh and S.-i. Tanigawa, A proof of the molecular conjecture, Discrete Comput. Geom.
45 (2011), no. 4, 647–700, DOI 10.1007/s00454-011-9348-6. MR2787564

[31] A. B. Kempe, On a general method of describing plane curves of the nth degree by linkwork,
Proc. Lond. Math. Soc. 7 (1875/76), 213–216, DOI 10.1112/plms/s1-7.1.213. MR1575631

[32] G. Laman, On graphs and rigidity of plane skeletal structures, J. Engrg. Math. 4 (1970),

331–340, DOI 10.1007/BF01534980. MR269535
[33] Z. Li and J. Schicho, A technique for deriving equational conditions on the Denavit–

Hartenberg parameters of a 6R linkage that are necessary for movability, Mech. Mach. Theory,
94 (2015), 1–8.
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