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1. Random matrices: what, why and how

Consider one of the compact classical groups: the orthogonal, unitary, and sym-
plectic groups (O(n), U(n) and Sp(2n), respectively), as well as the subgroups
SO(n) and SU(n). These come naturally equipped with an invariant Haar prob-
ability measure and a Lie group structure as submanifolds of Euclidean space. A
random matrix from one of the classical groups is a random matrix distributed
according to the corresponding Haar measure.

The modern random matrix theory (RMT) traces its origins to the fields of
statistics (through the work of Wishart [16]) and of high energy physics (through the
work of Wigner [15]). Random matrices also appeared, however implicitly, in Weyl’s
work on the representation theory of compact Lie groups, and in particular in his
integration formula. As follow up of a famous encounter of Dyson and Montgomery,
it also became clear that random matrices appear in the study of Riemann’s zeta
function, although, in spite of much progress, that connection still remains elusive.

Given a classical group (which, for the purpose of this review, will be taken to be
U(n) unless stated otherwise), there are several very natural questions. A sample
follows.

(1) How does one sample a random matrix Xn?
(2) What is the joint distribution of the eigenvalues {eiθk}nk=1 of Xn? Define

Ln = n−1
∑n

k=1 δθk , the empirical measure of eigenvalues of Xn. Does Ln

converge (as n → ∞)? At what speed?
(3) Let f : S1 → C be a smooth function. What can be said about the fluc-

tuations of Sn(f) :=
∑n

k=1 f(e
iθk), for n large? What about nonsmooth

functions, such as fz(θ) = log |z − eiθ|, z ∈ S1?
(4) What is the limit (as n → ∞) of the point process of eigenvalues, rescaled

so that the expected spacing is 1?
(5) Take a p×pminorXn,p ofXn. What can be said about the joint distribution

of the entries of Xn,p?

(In question (4) above, a process on S1 is a random atomic measure; equivalently,
it is a random configuration of points in S1.)
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There are many answers to the first question. (Meckes gives six, of which my
favorite starts with a matrix of independent and identically distributed (i.i.d.) com-
plex standard Gaussians, and applies the Gram-Schmidt algorithm. That one gets
the Haar measure is a small miracle, and the algorithm can be adapted to other
situations.)

The answer to the second question requires more work. First, Weyl’s integration
formula gives that the joint density of the eigenvalues is

(1.1)
1

n!(2π)n

∏

1≤j<k≤n

|eiθj − eiθk |2
n∏

�=1

dθ� =
1

n!(2π)n
|Δ(θ)|2

n∏

�=1

dθ�,

where Δ(θ) is a Vandermonde determinant. Based on symmetry considerations, it
is not hard to see that the expectation of Ln is the normalized Lebesgue measure m
on [0, 2π]. That Ln actually converges to m (weakly, in probability) requires other
tools, my favorite being the use of the theory of concentration of measure, which
gives an exponential in n2 rate of convergence. The precise constant in that rate
is given by the theory of large deviations. Amazingly, Meckes manages to concisely
develop both theories just enough so that both these statements can be proved.

The third question is where the miracles of the theory of random matrices really
begin to show up. Indeed, if θk were i.i.d., then S̄n(f) := Sn(f) − ESn(f) would
fluctuate at scale

√
n, and in fact S̄n(f)/

√
n would converge in distribution to the

Gaussian law. However, for random matrices, due to repulsion between eigenvalues,
the variable S̄n(f) itself, with no further rescaling, converges to a nondegenerate
Gaussian (as long as f is continuously differentiable). One of the most beautiful
proofs of that fact is based on the following result of Diaconis and Shahshahani.
For a positive integers, consider the functions fa(z) = za, and thus Sn(fa) = TrXa

n.
Then for k < n/2a, the 2k-th moment of |Sn(fa)| coincides with the 2k-th moment
of (the modulus of) a complex Gaussian of variance k. Moreover, for different a’s,
the expectation of products of |Sn(fa)|2kas factors to products of moments, as long
as the total degree is smaller than n. This beautiful fact (whose proof uses some
representation theory of the compact Lie groups, which Meckes develops) can then
be used, together with concentration of measure, to derive the central limit theorem
(CLT) for Sn(f), for general smooth test functions f . It can also be used to handle
the characteristic polynomial of Xn, using the development of log |z − x| in power
series, although this is much more delicate and beyond the scope of the book.

To answer the fourth question, one returns to (1.1) and notes that the joint
density of eigenvalues can be written as a determinant

n

det
k,�=1

Kn(θk, θ�),

for appropriate kernel Kn; this means that the process of eigenangles is a determi-
nantal process with kernel Kn. One feature of such processes is that the number of
points falling in an interval can be represented as a sum of independent Bernoulli
variables, of parameters equal to the eigenvalues of the restriction of Kn to that
interval. Another is that it is enough to understand the convergence of the kernel in
order to deduce the convergence of the correlation functions of the associated point
processes. Indeed, based on the theory of determinantal processes (which Meckes
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develops, again precisely to the extent needed), the rescaled point process of eigen-
angles is seen to converge to the sine process, i.e., the stationary determinantal pro-
cess with kernel sin(x)/x, the famous point process from the Dyson–Montgomery
lore.

Finally, the fifth question requires more classical probabilistic analysis. The an-
swer is that the joint law of the entries of Xn,p is close, in the strong sense of total
variation, to a product of (identical) Gaussians, if p2 = o(n), and differs asymp-
totically from such product (again, in variation distance) if p2/n > c for any fixed
c. Related statements, due to Chatterjee and Meckes, hold for various projections
of Xn. The proof goes through Stein’s method, which is a method of deriving ex-
plicit bounds on the error in variation distance between a given distribution and
the Gaussian law, and gives Meckes an excuse to introduce and develop yet another
tool.

The last chapter of the book is devoted to a brief introduction to the rela-
tion with the Riemann zeta function ζ. Recall the Dyson–Montgomery conjec-
ture that states that the empirical measure of (normalized) spacing between con-
secutive zeros of ζ should asymptotically coincide with the empirical measure
of spacings between eigenvalues of Xn. Further, Selberg had proved a CLT for
log ζ(1/2 + it)/

√
1/2 log log T , when t is sampled uniformly in [T, 2T ] and T is

large, and Montgomery conjectured the form of moments of |ζ(1/2 + it)| under
the same conditions. Keating and Snaith proved both the CLT and the moment
conjecture, when ζ(1/2+ it) with t uniform in [T, 2T ] is replaced by the character-
istic polynomial det(I −Xn) with Xn random from U(n) with n = log T , and they
used this to make various predictions concerning ζ. This turned out to be a rich
area of research, currently very active (see comments below), and Meckes’ chapter
provides a proof of the Keating–Snaith results on the random matrices side, as well
as a review of some of the conjectures and numerical work, and a partial guide to
the rich literature concerning this topic.

2. Further topics and perspective

It is maybe appropriate to put some of the previous discussion in perspective.
The theory of random matrices, and in particular its part motivated by physics,
developed the notion of matrix ensembles, parametrized by β = 1, 2, 4 and corre-
sponding to ensemble of matrices invariant by conjugation with elements of O(n),
U(n), and S(n), respectively. In the joint distributions of eigenvalues of these en-
sembles, the Vandermonde determinant in (1.1) is raised to power β. In particular,
the circular orthogonal ensemble (COE), corresponding to β = 1, does not lead a
determinantal process, and the COE does not correspond to the law of eigenvalues
of a random orthogonal matrix. The circular unitary ensemble (CUE) (correspond-
ing to β = 2) does however coincide with the law of eigenvalues of a random matrix
sampled from U(n).

In fact, circular ensembles can be extended to any β > 0 by replacing in (1.1)
the power of |Δ(θ)| by β. These matrices possess a very nice link to the theory
of orthogonal polynomials on the unit circle, which we will not discuss, referring
instead to [12], [13] for a comprehensive introduction. In particular, by a change
of basis that does not modify the spectrum, the CUE matrix can be put into
a 5-diagonal form, and the randomness captured by the Verblunsky coefficients
associated to the orthogonal polynomials corresponding to the spectral measure of
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these matrices. That the Verblunsky coefficients for the CUE (and more generally,
for the CβE) are independent was observed by Killip and Nenciu [9], exhibiting
again a small miracle in RMT.

The logarithm of the characteristic polynomial appearing in question (3) and
in Chapter 7 of Meckes’ book, originally studied by Keating and Snaith, has led
to rich and exciting recent developments, linked also to studies of the Riemann
zeta function. Indeed, the process Wn(z) = Sn(log |z− ·|) possesses logarithmic (in
n) variance, and in fact is (asymptotically) a Gaussian logarithmically correlated
field. A conjecture of Fyodorov, Hiary, and Keating [6] predicts the fluctuation
of its maximum and links it to the fluctuations of the maximum of the Riemann
zeta function on short intervals. Both sides of this correspondence have seen rapid
development in the last few years (see [2], [4] and references therein), although on
both sides the conjecture is still open. It is interesting to note that on the RMT
side, the representation in terms of Verblunsky coefficients discussed in the previous
paragraph is crucial in the analysis of [4]. We mention in passing high order corre-
lations results by Rudnick and Sarnak that apply also to more general L-functions,
and a proof of (a modification of the) Dyson–Montgomery correspondence in the
function field case by Katz and Sarnak [8].

Finally, a big chunk of modern random matrix theory deals with the topic of
universality, that is the fact that many asymptotic quantities such as spacing dis-
tributions and laws of characteristic polynomials (as processes) do not depend much
on the specific matrix model but rather only on the parameter β. Meckes’ book
does not touch upon this vast area (in particular, as noted above it deals exclusively
with β = 2 and with a limited class of models). We recommend [5, 14] for modern
perspectives on the universality questions.

3. Summary

Random matrix theory sits at the lucky intersection of many branches of math-
ematics, as the analysis of random matrices involves tools from algebra, combi-
natorics, spectral theory, analysis, probability, and operator algebras. There ex-
ist now several textbooks on random matrices, written from different perspectives
[1,3,5,7,8,11,14]. The current book restricts its attention to random matrices from
the classical compact groups, with emphasis on deriving the background material
along the way, while not trying to be encyclopedic. The choice of material, which
includes answers to the questions in Section 1 as well as chapters on geometric
applications of RMT and on the link with the Riemann zeta function, reflects the
author’s interests and has a definite algebraic emphasis that differentiates it from
other books. By necessity, many topics do not appear—besides the topics men-
tioned in Section 2, these include CLTs in mesoscopic scales, transport methods,
links with free probability, and links with integrable probability. The book was
written from a very personal perspective of an author who clearly likes the subject
and shares her enthusiasm with the reader and who tells a story that is not well
covered in book form in the existing literature. The writing is clear and flowing,
and makes for a very accessible book that is a pleasure to read. My only minor
quibble is that in the middle of some of the proofs, the proof interupts and a lemma
or theorem from the literature is imported without proof; it may have been better
to spell out upfront what would be imported in such way.
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The book makes for a wonderful companion to a topics class on random matrices,
and an instructor can easily use it either as a stand-alone text or as complementing
other textbooks.

Elizabeth Meckes passed away recently at the young age of 40 [10]. This book
is a tribute to her passion for mathematics and her ability to tell a compelling
mathematical story.
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