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The study of tensor products in functional analysis goes back to the work of
Grothendieck. Starting with Banach spaces X and ), he considered possible norms
on the algebraic tensor product X ® Y which are compatible with the norm struc-
tures on X and ). The interest comes from the fact that there are many such
norms, and the completions with respect to these norms provide a variety of differ-
ent new Banach spaces that encode information about linear maps of various types.
We will be interested in C*-algebra norms on tensor products of C*-algebras.

Grothendieck’s study of tensor norms exposed a great number of finer structural
properties that a Banach space might enjoy and was the impetus for many of
the deeper problems and theories in that area. The study of C*-algebra norms
on tensor products of C*-algebras has played a similar role for the theory of C*-
algebras. Many structural properties of C*-algebras can be formulated in terms of
the behaviour of this tensor theory.

Pisier’s book presents much of the tensor theory of C*-algebras which has devel-
oped over the past 60-plus years.

In the last decade, connections between this area and questions in quantum
information theory and in computational complexity theory have been made. In
fact a recent, not-yet published preprint [2] most likely solves one of the biggest
problems in the field using methods from computational complexity and the theory
of nonlocal games. We are referring to the set of equivalent problems due to Connes,
Kirchberg, and Tsirelson.

Motivated by these results and connections, the next decade is likely to see an
increased interest in these theories, and Pisier’s book is the clearest presentation of
the C*-algebraic approach to these ideas.

We now give an overview of this area and of the material covered in Pisier’s
book.

Recall that a C*-algebra is a Banach x-algebra with the special axiom that
la*a|| = ||la||?>. Such algebras always have a faithful (isometric) *-representation as
a closed self-adjoint subalgebra of B(#), the space of all bounded linear operators
on a Hilbert space H. The commutative examples have the form Cy(X) for some
locally compact Hausdorff space X.

If G is a discrete group, C*(G) is the universal C*-algebra for unitary representa-
tions of G. Every unitary representation p : G — U(H) extends to a representation
of the group algebra C[G]. Taking the supremum over all group representations
yields a normed *-algebra whose completion is called C*(G). For every represen-
tation p, there is a unique quotient map of C*(G) whose restriction to G is p. In
particular, if Fo, is the free group on countably many generators (g, ), then C*(F)
has the property that given arbitrary unitary operators U,, € B(#), there is a repre-
sentation 7 of C*(Fw,) such that 7(g,) = U,. Since every C*-algebra is spanned by
its unitary elements, there is a quotient of C*(F,) onto every separable C*-algebra.
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A von Neumann algebra is a unital C*-subalgebra of B(#) which is closed in
the strong operator topology (SOT), the topology of pointwise convergence. The
double commutant theorem of von Neumann shows that if A C B(#) is a unital

C*-algebra, then 0T = A", where A" = {t € B(H) : at = ta for all a € A} and
A" = (A"). A von Neumann algebra is called a factor if it has trivial centre. Work
in the 1930s by Murray and von Neumann showed that every von Neumann algebra
decomposes into a direct sum of three types. Type I algebras are isomorphic to B(H)
for some Hilbert space H. Type II; algebras have a trace that maps the projections
onto [0, 1], and type Il have a semifinite trace that maps the projections onto
[0,00]. In type III von Neumann algebras, every proper projection is the range of
an isometry in the algebra. In particular, they constructed a unique II; factor R
which is hyperfinite, meaning that there is an increasing sequence of subalgebras
isomorphic to full matrix algebras so that R is the SOT closure of the union. This
algebra plays an important role in our story.

Given two C*-algebras A; and As, we consider possible C*-norms on the alge-
braic tensor product A; ® As. The completion in such a norm yields a C*-algebra
tensor product. One way to obtain such a norm is to choose faithful representations
m; + A; = B(H;). There is a natural way to form a Hilbert space H; ® Ha, and the
map

(m1(a1) @ ma(az))(z @ y) = mi(a1)z @ ma(az)y

extends to a bounded linear map on H; ® Hs. This yields a representation of
A1 ® Ag, which can be closed inside B(#H; ® Hz). This is called the spatial tensor
product. We will call this A1 ®min A2 because a theorem of Takesaki showed that
this C*-norm does not depend on which faithful representations are used, and that
it is smaller than any other C*-tensor norm on A; ® As. One condition imposed
by Grothendieck was that the norm should be a cross-norm: |la ® b|| = ||a|| ||b]-
Takesaki’s result shows that this is automatic for C*-algebra tensor products.

Takesaki also showed that there is a maximal tensor product norm. Given A
and As, consider all pairs of representations m; : A; — B(#H) such that m1(4;) and
ma(Az) commute. This extends to a x-representation of Ay ® As that we call 7y - o.
For u € A1 ® As, define ||u||max = sup ||m1 - m2(u)|| where the supremum runs over
all such pairs. The completion is called A1 ®ax A2. Every other C*-tensor product
is a quotient of the maximal tensor product and has the minimal tensor product as
a quotient.

An operator system is a self-adjoint unital subspace S of a unital C*-algebra A.
For any n > 1, M, (A) has a unique C*-algebra structure which induces norms on
M, (S). If ¢ : S — B(H) is a linear map, there is a natural map ¢, : M,(S) —
M, (B(#)) by acting by ¢ on each matrix entry. We say that ¢ is positive if it takes
positive elements of S to positive elements of B(H). We say that ¢ is completely
positive (CP) if each ¢,, is positive for n > 1; and is CCP if in addition each ¢,, is
contractive (has norm at most 1); and is UCP if in addition ¢(1) = 1. Operator
systems and completely positive maps play a central role in C*-algebra theory.
Arveson showed that B(#) is an injective object in the category of operator spaces
and CCP maps. That is, if S C T are operator systems and ¢ : S — B(H) is a CCP
map, then there is a CCP map ¢ : T — B(H) that extends ¢. When a C*-algebra
is called injective, it is in this sense, i.e., that it is an injective object in the category
whose objects are operator systems and whose morphisms are CCP maps.
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An operator space is any subspace X of a unital C*-algebra A, endowed with the
family of norms on M, (X) induced by the inclusion M, (X) C M, (A). These are
the objects referred to in the title of Pisier’s book. There is an analogous theory of
completely bounded maps for operator spaces, that parallels the theory of operator
systems and completely positive maps.

Often it is useful to forget all of the structure of a C*-algebra, except the fact
that it is either an operator system or operator space, and study the tensor theory
within those two categories. This is one of the themes of Pisier’s book.

In a remarkable series of papers in the mid-1970s, Connes revolutionized the
study of von Neumann algebras. In particular, he developed a structure theory
for the injective factors, and showed that there is a unique injective factor of type
Iy, Iy, and IIIy for 0 < A < 1. Here X represents the spectrum of a certain
automorphism group. Later Haagerup showed there is a unique injective I1I; factor,
and the complicated 111y case was explored by Araki, Woods, Kreiger, and Connes.
Connes asked a question about the structure of II; factors in these papers that has
become known as the Connes embedding problem. We will describe this in more
detail later in the article.

Connes’ work was connected to tensor products by work of Lance and of Choi
and Effros. Lance called a C*-algebra A nuclear if A® B has a unique C*-norm for
every C*-algebra B. In the language introduced above, this means that A® i, B =
A Qumax B for all B. A C*-algebra A has the completely positive approzimation
property (CPAP) if the identity map id4 is a pointwise limit of a net of CCP
maps that factor through matrix algebras. Choi and Effros used Connes’ work to
show that A is nuclear iff A has CPAP iff the second dual A** is an injective von
Neumann algebra. Kirchberg found this independently.

Kirchberg called a C*-algebra A ezact if whenever 0 — J — B — B/J — 0 is
an exact sequence of C*-algebras, then

0— J ®min A = B ®min A = B/J Qumin A = 0

is also exact. This also has a formulation in terms of CCP maps: say that a map
between C*-algebras is nuclear if it is the point norm limit of a net of CCP maps
that factor through matrix algebras. A C*-algebra is exact iff there is a faithful
representation which is a nuclear map. So nuclear C*-algebras are exact, as are
subalgebras of nuclear C*-algebras. A deep result of Kirchberg which is important
in the classification of simple, nuclear C*-algebras is that every separable exact
C*-algebra imbeds into a single nuclear C*-algebra known as the Cuntz algebra,
O,. This is a simple nuclear C*-algebra with trivial K-theory.

Lance said that a C*-algebra A has the weak expectation property (WEP) if for
every representation 7 : A — B(H), there is a UCP map ® : B(H) — w(A)” so that
¢la = ida. When A is nuclear, 7(A)” is always injective and thus A has WEP.
However WEP is considerably weaker than nuclearity. He showed that if A has
WEP and A C C, then A ®pax B C C ®max B for all B, the important issue being
that this is an (isometric) injection.

A pair (4, B) of C*-algebras is a nuclear pair if AQmin B = AQ®max B. Kirchberg
showed that (C*(Fw),B(l2)) is a nuclear pair. This led him to show that A has
WEP iff (C*(Fw),A) is a nuclear pair. Pisier takes this latter property as his
definition of WEP. Moreover Kirchberg showed that A is nuclear iff A is both exact
and WEP. He conjectured that C*(F) has WEP, i.e., C*(Foo) ®min C*(Foo) =
C*(Foo) ®@max C*(Fo ). Since every separable C*-algebra is a quotient of C*(Fo), it
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would follow that every separable C*-algebra is QWEP (a quotient of a WEP C*-
algebra). Kirchberg made a remarkable connection by showing that his conjecture
is equivalent to the Connes embedding problem.

Choi and Effros introduced the lifting property (LP): a unital C*-algebra A has
LP if whenever B is a unital C*-algebra with ideal J and ¢ : A — B/J is UCP,
there is a UCP map ¢ : A — B so that ¢ = q¢ (where ¢ : B — B/J is the quotient
map). They showed that if A is separable and nuclear, then it has LP. Kirchberg
introduced a variant called the local lifting property (LLP): a unital C*-algebra
A has LLP if whenever B is a unital C*-algebra with ideal J, ¢ : A — B/J is
UCP, and E C A is a finite-dimensional operator system, the restriction ¢|g lifts
to a UCP map ¢ : E — B so that ¢|g = q¢». He showed that A has LLP if
and only if (A4, B(1?)) is a nuclear pair. Again Pisier takes this as his definition of
LLP. Kirchberg’s result from the previous paragraph shows that C*(F,) has LLP.
If Kirchberg’s conjecture were correct, this would imply that separable C*-algebras
with LLP also have LP. It is suspected that this fails in the nonseparable case even
for the C*-algebra of a free group on uncountably many generators.

Junge and Pisier showed that B(I?) does not have LLP by showing that B(I2)®max
B(1%) # B(I?) ®min B(1?). Pisier asked, and recently answered, the question of
whether there were nonexact C*-algebras with both WEP and LLP by construct-
ing an explicit separable example. Ozawa showed that B(I?) ®min B(I?) does not
have WEP.

Now we return to the Connes embedding problem. What he asked was whether
every II; factor in B(I?) imbeds into an ultrapower of the unique injective II; factor
R. Let U be a nonprincipal ultrafilter on N. Form the von Neumann algebra

I(R) ={a = (an) : an, € R and ||a]| := sup ||a,|| < oo}.

Let 7 be the trace on R, and set J = {a € [*°(R) : limy 7(a}a,) = 0}. Then J is
an SOT-closed ideal, and the ultrapower, RY = [*°(R)/J, is a II; von Neumann
algebra with trace 7(a + J) = limy, 7(ay,). It is possible to avoid the use of R and
instead use an ultrapower of matrix algebras (M;, ,7;), where 7; is the trace on M;
normalized so that 7;(1;,) = 1.

If the Connes embedding problem has a positive answer, then one can show
that every von Neumann algebra has QWEP. From this it follows that every C*-
algebra has QWEP and Kirchberg’s conjecture is valid. Conversely, if Kirchberg’s
conjecture is true, then every von Neumann algebra has QWEP. This leads to the
fact that the trace factors through a homomorphism into RY.

In the past decade connections were made between this tensor theory and
Tsirelson’s problems in quantum mechanics. Briefly, imagine that Alice and Bob
have separated labs that are in some entangled state. Furthermore, imagine that
Alice can perform one of several measurements indexed by X, with outcomes in-
dexed by A and that Bob can also perform one of several measurements indexed
by Y with outcomes indexed by B. We will let p(a, b|z,y) denote the conditional
probability density that Alice obtains outcome a and Bob obtains outcome b, given
that they performed measurements x and y, respectively. Such conditional densities
are also referred to as quantum correlations.

There are at least four possible mathematical models for describing the set of
all possible quantum correlations and the Tsirelson problems are concerned with
whether or not various pairs of these models lead to the same sets of densities. In
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[3] and [4] it was shown that two of these models produce the same sets of densities
if and only if Kirchberg’s conjecture about tensor products is valid. The preprint
[2] obtains a separation between these two sets of densities, using computational
complexity and the theory of nonlocal games. Thus, their paper shows that the
Connes embedding problem and all of the various versions of Kirchberg’s conjecture
have negative answers. It is now known that all four models yield different sets of
densities, and it is not known which model, if any, corresponds to the correlations
that one can obtain physically.

Pisier’s book is a rather complete exploration of questions around tensor prod-
ucts of C*-algebras, and in particular the connections with the Connes embedding
problem and the various forms of Kirchberg’s conjecture. It covers much of the
material in this review, including a study of nuclear and exact C*-algebras and the
WEP and LLP properties. The material is very nicely organized, and like his other
books, is very well written. A reader is expected to be familiar with a fair bit of
material about C*-algebras, von Neumann algebras, and completely positive maps.
This book is jam packed with information, and should be an invaluable guide to
anyone interested in these ideas.

One other nice book worth mentioning is [I]. This book expects less background
of the reader, and covers much of the early material, especially nuclear and exact C*-
algebras and the WEP property. For the complete picture and the recent advances,
Pisier’s book is the place to go.
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