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RECTANGLES, CURVES, AND KLEIN BOTTLES

RICHARD EVAN SCHWARTZ

Abstract. In this article I will survey some results about inscribing triangles
and quadrilaterals in Jordan curves. I will focus on the recent result of Josh
Greene and Andrew Lobb, which says that for any smooth embedded loop C
and any aspect ratio λ, there are four points in C which make the vertices of
a rectangle of aspect ratio λ.

1. Introduction

This article starts with the question of picking out four special points on a curve
in the plane and ends with a discussion of Shevchishin’s theorem that you cannot
embed a Klein bottle in R4, four-dimensional Euclidean space, if it is Lagrangian.
I will explain below what this means.

The notorious Toeplitz conjecture, which goes all the way back to 1911, asks
whether any Jordan curve contains four points which make the vertices of a square.
(The edges of the square might intersect the curve in a messy way.) Such a collection
of points is called an inscribed square. Figure 1 shows an example of a red square
inscribed in a hexagon. The Toeplitz conjecture is also popularly known as the
square peg conjecture.

Figure 1. A square inscribed in a hexagon

It is important to remember that a Jordan curve is any continuous loop in the
plane. If you put reasonable constraints on the curve, then the result has been
known for a long time. In 1913, A. Emch [E] proved the result for convex curves.
In 1929, L. G. Shnirelman [Shn] proved the result for sufficiently smooth curves.
In general, the problem is that the curve could be unreasonable. Perhaps you start
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with a polygon and then make little changes to the curve on small scales. Then
you go in with a microscope and make even smaller changes, and so on.

The square peg problem has a long and sprawling history. See, for instance,
[AA], [ACFSST], [CDM], [E], [FG], [H1], [H2], [Jer], [Mak1], [Mak2], [Ma1], [Ma2],
[M], [N], [NW], [S1], [Shn], [St], [Ta], [Tv], [Va]. B. Matschke’s paper [Ma1] gives
a survey of what had been known up to 2014, and I. Pak’s book [P] has an even
more recent survey.

One can relax the question and ask about inscribed rectangles. The first general
result along these lines, due to H. Vaughan, is that every Jordan curve (no matter
how wild) has an inscribed rectangle. Meyerson’s paper [M] cites a lecture that
Vaughan gave about the proof at University of Illinois at Urbana-Champaign in
1977. My own involvement in this business is that I proved in [S2] that every
point on a Jordan curve, with at most four exceptions, is the vertex of an inscribed
rectangle.

As an aside, M. Meyerson [M] proved in 1980 that all but at most two points of
any Jordan curve are vertices of inscribed equilateral triangles. This kind of result
is not known for any other shape of triangle (e.g., right-angled isosceles), though
M. Neilson [N] shows that a dense set of points in any Jordan curve are vertices of
inscribed triangles of any desired shape.

Just like triangles, a rectangle has a shape to it, namely its aspect ratio, the
ratio of its length to its width. One can ask whether every Jordan curve has an
inscribed rectangle of any given aspect ratio. In 2018, C. Hugelmeyer made the
first progress on this problem, showing in [H1] that every smooth embedded loop

has an inscribed rectangle of aspect ratio
√
3. He later showed the following result

in [H2]: For any smooth embedded loop, at least one third of the aspect ratios (as
measured in a natural way) arise as aspect ratios of inscribed rectangles. This result
involved a clever conversion of the problem into a question about certain Moebius
bands intersecting in R4. Roughly speaking, Hugelmeyer constructs a continuous
one-parameter family of embedded Moebius bands, all having the same boundary.
Using topological methods and a bit of measure theory, he then shows that at least
one third of the pairs have to intersect away from their boundaries.

This year (as of this writing, 2020), Josh Greene and Andrew Lobb [GL] made
a breakthrough on the aspect ratio problem for inscribed rectangles. They proved
that any smooth Jordan curve has inscribed rectangles of every aspect ratio. Their
proof builds in Hugelmeyer’s idea, and it considers a related one-parameter family
of Moebius bands embedded in R4. The added twist is that they use the additional
structure ofR4 coming from its identification withC2, the space of pairs of complex
numbers, and this allows them to bring in tools from symplectic geometry. They
then use symplectic methods to show that every pair of Moebius bands in this family
must intersect each other away from the common boundary. This breakthrough was
the subject of a recent article by Hartnett in Quanta Magazine [Q].

Where do the Klein bottles come from? Well, if two Moebius bands meet along a
common boundary, then their union is a Klein bottle with a kind of seam along the
boundary. Suitably smoothing out this seam, you wind up with a Klein bottle. As I
will explain, Greene and Lobb arrange for both the embeddings and the smoothing
to be compatible with symplectic geometry, and the result is that the Klein bottle
has the special property of being Lagrangian.



RECTANGLES, CURVES, AND KLEIN BOTTLES 3

In this article, I will give an account of some of my favorite results in this area and
then focus on the Greene–Lobb result. More honestly, I will give an account of the
results whose proofs I actually understand well enough to give a nice explanation.
The reader should know that my taste is partly dictated by my ignorance of the
wider field. I am probably omitting a lot of beautiful material just by accident.

Here is an outline of the paper. In the brief §2, I will say a few words about
Jordan curves. In §3 I will sketch proofs of Meyerson’s theorem and of the square
peg result for Jordan curves which are locally graphs of functions, as well as a
few other related results. The material in §3 is not needed for the Greene–Lobb
result. In §4 I will explain the ideas behind the Greene–Lobb result, using some
of the symplectic geometry as a black box. At the end of §4 I will discuss an even
stronger recent result of Greene and Lobb.

2. Jordan curves

2.1. Basic definition. A Jordan curve is the image J = f(S1) of a continuous and
one-to-one map f : S1 → R2. Here S1 is the unit circle. The famous Jordan curve
theorem says that R2 − J has two components, one bounded and one unbounded.
The bounded one is called the inside and the unbounded one is called the outside.
There are many proofs of the Jordan curve theorem; see, e.g., [Tv].

The case for polygons is fairly elementary: Color the points of R2 − J black or
white according to whether a generic ray emanating from the point intersects J an
odd or an even number of times. (The argument given in §3.4 below justifies the
claim that this parity does not depend on the line.) These black and white regions
turn out to be the inside and the outside regions.

If you want to avoid using the Jordan curve theorem, which in general is rather
tricky to prove, let me suggest an alternate definition. Say that a special Jordan
curve is the image h(S1) where h : R2 → R2 is a homeomorphism—i.e., a bijection
which is continuous and whose inverse is continuous. In this case, J automatically
inherits the topological properties of S1, such as having an inside and an outside.
The Jordan curve theorem and the two-dimensional Shoenflies theorem together
say that every Jordan curve is special.

2.2. Polygonal approximation. For every Jordan curve J there is a sequence
{Jn} of (embedded) polygons such that d(Jn, J) → 0 as n → ∞. Here, d(Jn, J)
is the infimal value of ε so that every point of J is within ε of Jn and vice versa.
This metric is called the Hausdorff metric. One way to get this result is to apply a
sledgehammer from complex analysis. Take the Riemann map from the unit disk to
one side of J in the plane. Then look at the images of circles of radius 1−ε as ε → 0.
This gives a family of smooth approximating curves which one can approximate by
polygons in an easy way.

Now I’ll describe a more elementary method based on the one in [Tv].1 The
method uses a square grid. The finer the grid, the better the approximation.

Let J = J0 be the image of a map f0 : S1 → R2. We think of S1 as R/Z so that
it makes sense to speak of a linear map on an arc of S1. Place J inside a square
grid that is fine enough so that for each square Q, the set f−1

0 (Q) is contained in

1After reading Tverberg’s construction carefully, I think that he might need to add the maxi-
mality assumption to his selection of squares, as I do.
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an arc AQ,0 ⊂ S1 that is (say) less than 1/3 the length of S1. Note that f0 maps
the endpoints of AQ,0 into the boundary of Q.

Call Q maximal if there is no other square R such that AQ,0 ⊂ AR,0. Pick a

maximal square Q. We create f1 : S1 → R2 by setting f1 = f0 on S1 − AQ,0 and
making f1 linear on AQ,0. The image J1 = f1(S

1) is still embedded because this
new curve intersects Q only in a straight line segment and otherwise is a subset of
J0. For any other square R we have AR,1 ⊂ AR,0. In particular, there is no R such
that AQ,0 ⊂ AR,1.

We repeat the construction, producing maps f2, f3, . . . and Jordan curves
J2, J3, . . . until we reach some J ′=Jk which intersects each square in a line segment.
In particular, J ′ is an embedded polygon. Each modification we make only affects a
small arc and, moreover, once we make a modification the maximality assumption
guarantees that it is not erased at a later time. So, J ′ remains close to J .

There is one additional case where we use this kind of polygonal approximation.
Following Meyerson, say that a triod is the union of three continuous arcs joined
at a single point, like the letter Y , and otherwise disjoint from each other. The
triod is polygonal if it is a finite union of line segments. The same kind of polygonal
approximation idea shows that an arbitrary triod can be approximated by polygonal
triods.

3. Some results about inscribed shapes

3.1. Triangles with an arbitrary shape. Let Δ be a triangle. Say that another
triangle T has the same shape as Δ if there is an orientation preserving similarity
which maps Δ to T . Such a map is the composition of a rotation, a dilation, and
a translation. In this section I will prove that every point of every differentiable
Jordan curve is the vertex of an inscribed triangle of any given shape. This result
is, in a sense, the triangular analogue of the Greene–Lobb result.

Let J be a differentiable curve, and let p0 be a point on J . Let pt be a
parametrization of J so that as t ranges from 0 to 1 the point pt moves all the
way around J , say counterclockwise. For each choice of t ∈ (0, 1) there is a unique
point qt so that the points (p0, pt, qt) are vertices of a triangle Tt which has the
same shape as Δ. In Figure 2, I have drawn Tt in red when t is near 0 and in blue
when t is near 1.

Figure 2. A family of triangles
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Notice that in Figure 2 the point qt, in yellow, starts out on the inside of J when
t is near 0 and switches to the outside when t is near 1. Since qt varies continuously,
there must be some time u ∈ (0, 1) for which pu ∈ J . But then all the vertices of
Tu lie in J . This completes the proof.

The proof gives a bit more: Any point of differentiability on any Jordan curve
is the vertex of triangles of arbitrary shape.

3.2. Meyerson’s theorem. Meyerson’s theorem says that all but at most two
points of an arbitrary Jordan curve J are vertices of inscribed equilateral triangle.
In this section I will give a proof that is complete modulo details of polygonal
approximation. The proof here is somewhat like Meyerson’s proof and, of course, is
based on his ideas, but it relies more heavily on polygonal approximation to make
the analysis simpler.

Lemma 3.1. Suppose that p0 ∈ J is some point, and there exist two other points
p′1, p

′
2 in the region bounded by J such that p0p

′
1p

′
2 is an equilateral triangle. Then

J has an inscribed equilateral triangle with vertex p0.

Proof. Let B and U denote the bounded and unbounded components of R2 − J .
Let ρ be the 60-degree rotation about p0 such that R(p′1) = p′2. Consider extending
the rays p0p

′
1 and p0p

′
2 outward until they first hit J at points p1, p2. Without loss

of generality p0p1 is not longer than p0p2. Hence R(p1) ∈ J ∪B. Let q1 be a point
of J maximally far from p0. We have R(q1) ∈ J∪U . So, by continuity there is some
r1 ∈ J such that R(r1) ∈ J . Our equilateral triangle has vertices p0, r1, R(r1). ♠

Recall that a triod is a continuous version of the letter Y . Call the triod good if
there is an equilateral triangle inscribed in the triod having one end of the triod as
vertex. Otherwise call it bad. Call such triangles end-inscribed triangles. The key
observation is that any three vertices of J are the endpoints of a triod that stays
entirely in the region bounded by J . This is easy to see if J is a special Jordan
curve. Just take one for the round disk and map it over.

Suppose for the moment that all triods are good. Choose any a, b, c ∈ J and take
a triod staying entirely inside J and having a, b, c as endpoints. Since this triod is
good, there is an equilateral triangle inscribed in it having one of a, b, c as vertex,
say a. But then the previous lemma applies to this triangle and shows that J has
an inscribed equilateral triangle with a as vertex. So, to prove Meyerson’s theorem
we just have to show that all triods are good.

We will prove that all triods are good in three steps: polygonal triods, end-
straight triods, general triods. The polygonal case really shows the meat of the
argument. The other cases just amount to fooling around with approximations and
limits.

Lemma 3.2. A polygonal triod is good.

Proof. Assume not, for the sake of contradiction. Let A denote the union of the
first two legs of T . Let a be the endpoint of T not in A. For any x ∈ T , let Ax

denote the result of rotating A by 60 degrees clockwise about x. When x ∈ T −∂A,
we have ∂A ∩ Ax = ∅ and A ∩ ∂Ax = ∅. Otherwise we would get the desired
triangle. This means that the mod 2 intersection number Ix between A and Ax is
well-defined and constant for all x ∈ T − ∂A.

Let b be an endpoint of A. The two arcs A and Ab make a 60-degree angle at
b. If they intersect anywhere besides b we are done. So, assume that they intersect
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nowhere else. By compactness, Ax and A cross exactly once, at x, for x sufficiently
close to b. Hence Ix = 1 for all x ∈ T − ∂A. In particular, Ia = 1. But then we
have an inscribed equilateral triangle with vertex a. ♠

A triod is end straight if the triad is polygonal sufficiently near the ends.

Lemma 3.3. An end-straight triod is good.

Proof. Let T be end straight. We can approximate T by a sequence {Tn} of polyg-
onal triods having the same final segments. By the previous lemma, Tn has an
end-inscribed equilateral triangle Δn. Not all points of Δn can be on the same
final segment of Tn because then Δn would consist of three collinear points. Note
also that Tn → T and T is embedded. Combining these two observations, we see
that there is a uniform positive lower bound to the size of Δn. Hence we can take
a limit and find the end-inscribed equilateral triangle on T . ♠

Lemma 3.4. An arbitrary triod is good.

Proof. Now let T be an arbitrary triod, with ends a, b, c. For any large integer n,
move out along the triple point of T until you reach the first point that is exactly
1/n from a. Call this point a′. Likewise define b′, c′. Let Tn be the triod obtained
by adding the segments aa′, bb′, cc′ and erasing the arcs of T which join a to a′,
etc. If n is large enough, all points of T ′ − (aa′) are further than 1/n from a, etc.

By construction Tn is end straight. Let Δn be an end-inscribed triangle on Tn.
Note that Δn, being equilateral, cannot have a as a vertex, and another vertex
on aa′. So, either Δn is inscribed in T , and we’re done, or else (after relabeling)
Δn has a as a vertex and one point in bb′. Letting n → ∞, we get an inscribed
equilateral triangle with both a and b as vertices. ♠

3.3. Squares inscribed in local graphs. Say that J is a local graph if J has a
finite covering by (open) rectangles R1, . . . , Rn such that for each i the intersection
J ∩ Ri is the graph of a function y = fi(x) after the picture has been rotated so
that Ri has its sides parallel to the coordinate axes. In this section I will show that
any local graph has an inscribed square. First, we can approximate J by polygons
{Jn} which all have the graph property with respect to the same set of rectangles.

If some J has an inscribed square Q, then the vertices of Q inherit two cyclic
orders, one from the inclusion in Q and one from their inclusion in J . We call Q
gracefully inscribed in J if these two orders coincide. Below I will sketch a proof
that every polygon has a gracefully inscribed square.

Let Qn be a square gracefully inscribed in the polygon Jn. After passing to a
subsequence, we reduce to two cases. Either there is a positive lower bound δ to
the diameters of Qn or else there is a single point p ∈ J such that Qn → p. In the
first case we can take a limit on a subsequence and find a square of sidelength at
least δ inscribed in J . Let us rule out the second case.

Rotating and scaling, we can assume that the limit point is the origin and that
J and Jn intersect a rectangle R which contains the origin in its interior in such a
way that Jn ∩R is the graph of a function. See Figure 3. This is meant to hold for
all n. The cyclic order on the vertices of Qn imposed by Jn goes from left to right,
as indicated in Figure 3. However, this order cannot coincide with the cyclic order
on the vertices imposed by Qn. This is a contradiction. So, the second case cannot
occur.
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Figure 3. A contradiction at a small scale

This proof suggests a stronger version of the square peg conjecture that has been
discussed quite often in connection with this problem. Say that a polygon P is wide
if the bounded component of R2 − P contains a disk of radius 1.

Conjecture 3.5 (Big peg conjecture). There is some ε0 > 0 with the following
property. Every wide polygon has an inscribed square of sidelength at least ε0.

The big peg conjecture and polygonal approximation immediately imply the orig-
inal square peg conjecture. The idea is that you first dilate your Jordan curve J
so that it has an approximation by wide polygons {Jn}. Each polygon Jn has
a big inscribed square Qn. The limit {Qn} must converge, on a subsequence, to
some square inscribed in J . The lower bound on the size prevents these squares
from shrinking to points. The big peg conjecture is quite seductive because it only
involves polygons.

3.4. A warmup problem. Before getting to the existence of gracefully inscribed
squares, let’s consider a warmup problem that captures many features of the argu-
ment we give below. The argument we give is one of the steps in the proof of the
polygonal Jordan curve theorem.

Let’s prove that a generic horizontal line intersects a generic polygon X an even
number of times. Here, a generic polygon means one having no pair of vertices on
the same horizontal line. A generic horizontal line (with respect to X) is one which
does not contain a vertex of X. Let L1 be a generic line. Start with a line L0 lying
entirely below X. Let Lt be the family of horizontal lines which sweeps upward.
Call a parameter t critical if Lt contains a vertex of X and otherwise ordinary.

At the ordinary parameters, the intersection points vary continuously and so
their number does not change. There are only finitely many critical parameters,
and at each critical parameter there is only one intersection point that lies at a
vertex. As we wiggle the line up or down near a critical parameter, we see that
near the critical parameter there are only three things that can happen. Figure 4
shows two of them, and the third possibility is like the first one but turned upside
down.

Figure 4. The behavior of intersection points
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In all cases, the parity of the number of intersections does not change. So, L1

intersects X an even number of times. An examination of the argument shows that
all we really needed was that X does not have any horizontal sides. We made X
even more generic just so as to deal with the critical intersections one at a time.

3.5. Existence of gracefully inscribed squares. We show that a generic poly-
gon has an odd number of gracefully inscribed squares. Here generic means that
no two sides of the polygon are parallel, no three sides lie in lines having a triple
intersection, no three vertices lie in a square, and so on. The reasons for using
generic polygons are similar to the reasons in the warmup problem. For instance,
if a polygon has two long parallel sides close together, it will have infinitely many
inscribed squares.

There are a variety of proofs that a generic polygon has an odd number of
inscribed squares; see [Shn], [St], or [P, Theorem 23.11]. These arguments do not
specifically ask for gracefully inscribed squares, but the variational proof—at least
the one I sketch below—works when we restrict our attention to gracefully inscribed
squares.

Suppose P1 is a generic polygon. Start with some easy-to-understand polygon
P0 having the same number of sides as P1 and having an odd number of inscribed
squares. For instance, P0 could be a slight perturbation of a subdivision of an
obtuse triangle. Now consider a continuous family Pt of polygons that interpolates
between between P0 and P1. You cannot necessarily make all the polygons in the
family completely generic. For instance, you may not be able to avoid some edges
becoming parallel along the way. However, if the edges of Pt are very short, then
a square inscribed in Pt can have at most two vertices inscribed in this union of
parallel edges. Also, you can make coincidences like parallel edges happen one at a
time.

Say that a vertex of an inscribed square is critical if it is a vertex of Pt, and
otherwise ordinary. Call the square critical if it has a critical vertex, and call the
parameter t critical if there is an associated critical square. We can make the
family generic enough so that there are only finitely many critical parameters, and
at each critical parameter there is only one critical square, and this critical square
has only one critical vertex. Moreover, we can make all the ordinary vertices vary
continuously with the parameter. The continuity property is a local one: it only
involves a statement about how a polygon interacts with at most four lines, and it
can be settled by a direct algebraic calculation as in [S1] or [S2]. So, the square
count changes only when we pass through a critical parameter.

What happens when we pass through a critical parameter? Notice that the
question is also local: at most five lines are involved. Figure 5 shows a typical
picture. The black edges at the intersection point are edges of the polygon, and the
red and blue segments are meant to depict the lines containing these edges.

We can think of the square in question as two copies of the same square, one red
and one blue. The red (respectively blue) square is inscribed in the union of the
black and red (respectively blue) lines. As the parameter varies, the red square and
the blue square separate from each other in a continuous way. We can translate the
picture so that the red and blue lines always intersect at the origin. If the family is
generic enough, the critical vertices, both from the red square and the blue square,
vary monotonically through the origin.
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Figure 5. The behavior of intersection points

We have illustrated this with the figures at the right. The yellow intersection
points are the locations of the critical vertices just before we reach the critical
parameter, and the green points indicate the positions just after. Figure 5 shows
the four possibilities for the directions that the points can move as a function of
the varying parameter. The directions indicate the motion as a function of the
parameter. The red and blue squares may or may not be inscribed in the polygon;
it depends on whether the critical vertices lie on the segments of the polygon or
on the red or blue segments extending them. In the bottom left case at right in
Figure 5, both squares are inscribed in the polygon before the critical parameter
and neither are inscribed after. In the top left case, one polygon is inscribed in
the polygon before and one is inscribed after. The other two cases have similar
treatments. Thus, the parity of the number of inscribed squares does not change
as we pass through a critical point.

Notice that if the squares are gracefully inscribed before, they are gracefully
inscribed after. So, the parity of the number of graceful squares does not change
either. Finally, the square inscribed in a (subdivided, perturbed) obtuse triangle is
gracefully inscribed. Our initial polygon has an odd number of gracefully inscribed
squares and therefore so does the final one.

3.6. Existence of an inscribed rectangle. In section 4 I will explain Vaughan’s
proof that every Jordan curve has an inscribed rectangle. For the reader who really
wants an elementary explanation, Vaughan’s proof leaves a bit to be desired: It
requires some graduate level algebraic topology. Let me sketch a different proof
based on the material in my papers [S1] and [S2]. This proof is more complicated
but avoids algebraic topology.

It turns out that generically the space of rectangles inscribed in four lines is a
one-dimensional manifold. Rather beautifully, the set of centers of these rectangles
generically forms a hyperbola; see [S1]. This fact, coupled with the kind of analysis
done in section 3.5, shows that the space of rectangles inscribed in a generic polygon
is a one-dimensional manifold. Some of the components are loops and some of the
other components are arcs. The endpoints of the arc components correspond to
rectangles of aspect ratio 0 or ∞. (Working with labeled rectangles, we can tell the
difference.) It turns out that a component of the manifold in question contains an
even number of gracefully inscribed squares unless it has one of two properties:

• It is a loop connecting a gracefuly inscribed square ABCD to the same
inscribed square BCDA with its vertices rotated. Call this a rotator. Every
vertex of the polygon is the vertex of some rectangle in the rotator.
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• It is an arc whose one end corresponds to rectangles of aspect ratio near 0
and whose other end corresponds to rectangles of aspect ratio near ∞. Call
this a sweepout. All but at most four vertices of the polygon are vertices of
a rectangle in a sweepout.

Given that there is an odd number of graceful squares, the generic polygon has an
odd number of rotators and sweepouts combined; hence, at the very least it has
one or the other. The existence of a sweepout would establish that the polygon has
inscribed rectangles of every aspect ratio, but I could not rule out the existence of
rotators. But, in either case, if we have sequence of polygons {Jn} approximating a
Jordan curve, we can extract from either a sweepout or a rotator a uniformly large
rectangle Rn (in the sense of its minimum side length) inscribed in Rn. (I’ll say
more about this below.) The limit limRn will be a nontrivial rectangle inscribed
in J . In [S2] I soup up this argument to show that all but at most four points of J
are vertices of inscribed rectangles.

Now I will say more about finding the big rectangle Rn. Consider a set Sn of
(say) 100 distinct points on Jn. We choose Sn so that {Sn} converges to a set S
of 100 distinct points on J . Each rectangle R inscribed in Jn cuts Jn off into four
arcs, α, β, γ, δ going in order. Let I(R) denote the number of points in α∪ γ minus
the number of points in β ∪ δ. By a rough form of continuity, we can always find
some rectangle Rn, either in a rotator or a sweepout, having |I(Rn)| < 10. Then
some pair of adjacent arcs cut off by Rn, say αn, βn, are such that that Sn∩αn and
Sn ∩ βn each have at least ten points. By construction, no side of Rn can shrink to
a point. I have deliberately used more points than strictly necessary so as to avoid
needing a careful count.

4. Existence of inscribed rectangles

4.1. Vaughan’s theorem. Let me first explain Vaughan’s argument that every
Jordan curve has an inscribed rectangle. This result was the inspiration for the work
of Hugelmeyer and of Greene and Lobb. The argument is not really elementary
because it relies on the fact from algebraic topology that there is no continuous
embedding of the Klein bottle into R3.

First of all, the Klein bottle is the quotient obtained from gluing the sides of
a square together according to the identifications shown on the left hand side of
Figure 6. The right hand side of Figure 6 shows a decomposition of the Klein bottle
into two Moebius bands, joined together along their common boundary.

Figure 6. A Klein bottle in R3 with a seam
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Theorem 4.1. There is no continuous embedding of the Klein bottle into R3.

Sketch of the proof. If there were an embedding of a Klein bottle into R3, there
would also be an embedding into S3, the 3-sphere. Let K ⊂ S3 be the image of
this embedding. It follows from Alexander duality that

Z/2 � H2(K) � H̃0(S
3 −K) � Zr,

for some r. This is a contradiction. Here H̃0 is reduced singular homology with Z
coefficients and H2 is Čech cohomology with Z coefficients. This result is discussed
in Hatcher’s book on algebraic topology [Hat, p. 256]. ♠

Given a Jordan curve J , let S denote the set of unordered and unequal pairs of
points in J . The space S is an open Moebius band. There are various ways to see
this. This topological statement works the same for any Jordan curve, so we might
as well consider the unit circle, and we also might as well consider it as a subset
of the real projective plane. Every unequal unordered pair of points in the circle
determines a unique point in RP 2: Take the two tangent lines to the circle at these
points and intersect them. This map identifies the space S with the complement of
the closed unit disk in the projective plane, and this is an open Moebius band.

Vaughan defines a map φ : S → R3 by the formula

(1) φ(a, b) =

(
a+ b

2
, |a− b|

)
.

Geometrically, φ maps the ordered pair to a point encoding the midpoint of the
segment ab and its length. If φ(a1, b1) = φ(a2, b2), it means that the corresponding
segments have the same length and meet at their midpoint. This gives an inscribed
rectangle. So, we just have to prove that φ is not one-to-one.

We argue by contradiction. Notice that the image φ(S) lies in the upper half-
space, and φ(∂S) lies in the XY -plane. Let ρ denote reflection in the XY -plane.
The union

K = φ(S) ∪ φ(∂S) ∪ ρ ◦ φ(S)
consists of two Moebius bands meeting along their boundary and thus is a Klein
bottle. The three pieces separately are disjoint, and if φ is one-to-one, then K is
embedded. This contradicts the nonexistence of an embedded Klein bottle.

4.2. The Greene–Lobb theorem. Inspired by Hugelmeyer’s papers, [H1] and
[H2], Greene and Lobb use a construction that is similar to the one given in the
proof of Vaughan’s theorem. They also consider the space S of unordered distinct
points on J . They define the map φ : S → C2 using the map

(2) f(a, b) =

(
a+ b

2
,

(a− b)2

2
√
2|a− b|

)
.

One can extract from f(a, b) the location of the center of ab, the length of ab, and
the slope of ab. Notice also that when a and b come together, the formula gives
f(a, b) = f(a, a) = (a, 0). They also introduce the map

(3) Rφ(z, w) = (z, eiφ(w)).

If f(a1, b1) = R2φ ◦ f(a2, b2), it means that the segments a1b1 and a2b2 have
the same midpoint and the same length. Also, one of them is a rotation of the



12 RICHARD EVAN SCHWARTZ

other through an angle of φ. Therefore, an intersection like this corresponds to an
inscribed rectangle whose diagonals make an angle of φ. Let

Mφ = R2φ ◦ f(S).

The set M0 is an embedded Moebius band because one can recover a and b from
f(a, b). The set Mφ is just a rotation of M0. These two Moebius bands limit on a
common boundary, namely f(∂S). The union

Kφ = M0 ∪ f(∂S) ∪Mφ

is a Klein bottle, and it is embedded unless M0 and Mφ intersect away from their
common boundary.

The upshot of the discussion above is that if Kφ is not embedded, then J has an
inscribed rectangle whose diagonals make an angle of φ with each other. To prove
that J has an inscribed rectangle of every aspect ratio, it suffices to prove that Kφ

is never embedded.
It is possible to embed a Klein bottle in R4, but it turns out that after one

performs a certain smoothing operation on Kφ, the result is a Lagrangian Klein
bottle. Such a thing cannot be embedded. In the remainder of this chapter I will
explain what a Lagrangian Klein bottle is and also how the smoothing operation
works.

4.3. Lagrangian surfaces. As a prelude to discussing Lagrangian Klein bottles,
I need to talk about some symplectic geometry. The standard symplectic structure
on R4 can be described entirely in terms of real numbers, but it is nice to describe
it in terms of complex numbers. We can naturally identify R4 with the space C2.
The map is given by

(x1, y1, x2, y2) → (z1, z2), zj = xj + iyj .

On C2 there is a natural operation on pairs of vectors V,W ∈ C2. Writing V =
(V1, V2) and W = (W1,W2), we define

(4) 〈V,W 〉 = V1W 1 + V2W 2.

Here z denotes the complex conjugate of z. This is known as a Hermitian inner
product. It is linear in each argument and also 〈V,W 〉 = 〈W,V 〉.

It is instructive to write this in real coordinates. Let V = (a1 + ia2, a3 + ia4)
and W = (b1 + ib2, b3 + ib4). Then

〈V,W 〉 = (a1b1 + a2b2 + a3b3 + a4b4) + i(a1b2 − a2b1 + a3b4 − a4b3).

The real part of this expression is the dot product, and the imaginary part is (up
to a rotation) the standard symplectic form on R4. We will write the imaginary
part as ω. So,

(5) ω(V,W ) = Im〈V,W 〉.

We distinguish two special kinds of planes in C2.

• A 2-plane Π ⊂ C2 is called Lagrangian if the restriction of Ω to Π is
identically 0. An easy example of a Lagrangian plane is R2. The Hermitian
inner product of any pair of vectors in R2 is real, so the imaginary part
vanishes.
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• A 2-plane Π is called complex if iΠ and Π are parallel. In case Π contains
the origin, Π is complex if iΠ = Π. The plane C1 ⊂ C2 is the prototypical
complex plane.

A smooth embedding is a map f : Σ → R4, where Σ is a surface and f is a
smooth and injective map. This means, in particular, that the differential df maps
each tangent plane of Σ to a plane in R4. The map f is Lagrangian if df maps each
tangent plane to a Lagrangian plane. The construction by Greene and Lobb gives
a Klein bottle which, if embedded, would be Lagrangian.

It is well known that one can embed the Klein bottle as a surface in R4. The
classic approach is to almost embed it in R3 as one of those famous blown-glass
models, and then fix it up. These blown-glass models do not quite work, because
one of the necks of the bottle crashes through the surface and makes a seam. This
is shown in Figure 7.

Figure 7. A Klein bottle in R3 with a seam

To embed this surface in R4, we add a fourth coordinate to separate out the two
parts of the surface which crash into each other. Imagine traveling on the outside
of the bottle, starting at the base and moving around. Make the fourth coordinate
zero near the base and then (initially moving left to right) gradually increase it as
you move around. By the time you wind around to the seam, the neck has a large
positive fourth coordinate and is disjoint from the seam. Now gradually decrease
the fourth coordinate so that the neck can rejoin with the base in R4.

To be more systematic about this, you could first draw a family of parallel loops
on the Klein bottle, as suggested by the several pale blue ones in Figure 7. (More
formally, this would be called a foliation of the Klein bottle by loops.) You could
make the fourth coordinate constant on each of the loops and adjust the value on
each loops, as above. I mention this because this foliation by loops will come up
again below.

Shevchishin’s theorem says, in particular, that some tangent plane along the
resulting surface must fail to be Lagrangian.

Theorem 4.2 (Shevchishin’s theorem). There does not exist a smooth Lagrangian
embedding of a Klein bottle in R4.

Here is a lower-dimensional analogy. LetX be the plane with the origin removed.
Each point p ∈ X has a special tangent line through it, namely the line through
p that is perpendicular to the ray 0p. It is possible to embed the circle in X in
many ways, but it is impossible to do so in such a way that its tangent line is never
special. The tangent line will be special at each point of the embedded circle that
is maximally far from the origin.

There are several proofs of Shevchishin’s result. All the proofs rely on some
symplectic geometry machinery that is beyond the scope of the article. One of the
proofs is in the paper [Ne] by S. Nemirovski.
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I won’t pretend to understand a proof of Shevchishin’s theorem, but let me give
you a sense of the depth of the result. I will repeat, as filtered through my own
understanding, the sketch of a proof that Helmut Hofer mentioned when I asked
him about it after Josh Greene’s talk at the Institute of Advanced Study. Any
errors in this account are due to my misunderstanding. The space K has a smooth
foliation by closed loops, as discussed above. Each of these loops can be filled in by
a pseudo-holomorphic curve. This is harder. The Lagrangian condition forces these
holomorphic curves to be transverse to K, and then certain technical conditions
force them to vary continuously and to be disjoint.

Consider the union of these disks. If we remove one of them, then topologically
we have the product of a disk and a segment. When we put in the missing one, we
are gluing the ends of this solid tube together. There are essentially two choices for
the gluing: orientation preserving and orientation reversing. Now for the punchline:
A pseudo-holomorphic curve has a canonical orientation coming from the (almost)
complex structure involved in its definition. So the gluing must be orientation
preserving and therefore the union must be a solid torus rather than a twisted disk
bundle. But then the boundary of a solid torus cannot be a Klein bottle, and this
is a contradiction.

I got the impression that the details of this approach have not been worked out.
Nemirovski’s proof goes through something called Luttinger surgery and a result of
Gromov and McDuff on the classification of open symplectic manifolds which are
standard (i.e., look like symplectic R4) at infinity. The Gromov–McDuff result, in
turn, involves the kind of pseudo-holomorphic disks mentioned above.

4.4. Lagrangian smoothing. The classic bump function is a smooth function f
such that f(x) = 0 for |x| ≥ 2 and f(x) = 1 for |x| ≤ 1. This function is used all
over the place in the theory of smooth manifolds. It is also used in the construction
below, which is called Lagrangian smoothing.

Let’s consider a very simple situation first. In C2 we consider two totally real
planes which intersect along a line. The first plane is Π1 = R2. The second plane
also goes through the origin and is spanned by (1, 0) and (0, i). Both planes contain
the vector (1, 0) and so intersect along a line. Let

Y = Π1 ∪ Π2.

Note that Y is the union of two totally real planes. Put another way, Y is the union
of two Lagrangian surfaces which meet transversely along a curve which happens
to be a line.

Now consider a family of planes Xt that is perpendicular to Π1 and Π2. The
plane Xt contains the point (t, 0) and is spanned by the vectors (0, 1) and (0, i).
These planes are all complex planes, parellel to the second copy of C, namely
{0}×C. Each plane Xt intersects Y in the union Yt of two perpendicular lines, as
shown at left in Figure 8. We can produce a surface by replacing each Yt by a union
Zt of two smooth curves, as shown at right in Figure 8. We can make Yt and Zt

agree outside, say, the unit disk. This construction makes use of a bump function.
The union Z =

⋃
Zt is a Lagrangian surface which agrees with Y outside a small

neighborhood of the line. The reason why Z is Lagrangian is that the tangent
planes at each point are spanned by vectors of the form (0, u) and (1, 0) for some
unit complex u. As we have already mentioned, such planes are totally real.
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Figure 8. A local model for Lagrangian smoothing

This operation is a local model for Lagrangian smoothing. Suppose we have
two Lagrangian embedded surfaces which meet along a closed curve. Using a suit-
able change of coordinates, which comes from a variant of the so-called Darboux
theorem, one can arrange that the local picture is just like in the simple model
above. One then performs the local surgery described above and produces a union
of two disjoint Lagrangian surfaces which agrees with the original union outside a
small-as-you-like neighborhood of the original curve of intersection. The details of
this coordinate change are worked out in [GL].

4.5. The construction revisited. Now let us go back to the main construction.
Greene and Lobb have cooked up their map so that M0 is Lagrangian. There are
two main points to the proof. First, f extends to a map from C2 to C2 which
preserves the symplectic form ω. So, f maps Lagrangian surfaces to Lagrangian
curves. Second, the set of ordered distinct pairs of points in J is a Lagrangian
surface inside C2. Indeed, the tangent plane at each point of J is spanned by
vectors of the form (z, 0) and (0, z).

The union Kφ has a seam along f(∂S) that looks locally like one quarter of the
left side of Figure 8, except that the angle between the two surfaces is 2φ rather
than π/2. The left side of Figure 9 shows what we mean.

Simplifying things a bit, what Greene and Lobb do is smooth out the seam by
doing half of the Lagrangian smoothing discussed above. The result would be a
smooth embedded Lagrangian Klein bottle, which is a contradiction. This proves
that M0 and Mφ indeed intersect away from their common boundary.

Let me say a few more words about what it means to do half the Lagrangian
smoothing. What they do is pass to a double cover, writing f as a composition

f = σ ◦ f̂ , where f̂ is a map defined in a way very similar to f and σ is a 2-fold

branched covering map from K̂φ to Kφ. Here K̂φ is the object like Kφ that is

constructed using f̂ in place of f . They perform the smoothing of K̂φ in a way
that is equivariant with respect to σ, and then they push down the image via σ.
Effectively, this does the smoothing as indicated in Figure 9.

Figure 9. Another Lagrangian smoothing construction
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4.6. A further development. In [GL2] Greene and Lobb prove an even stronger
result by similar methods. A cyclic quadrilateral is one which can be inscribed in a
round circle. They prove that any cyclic quadrilateral (up to rotation and scaling)
can be inscribed in any smooth Jordan curve. This result immediately implies the
rectangle theorem, because a rectangle of any aspect ratio is a cyclic quadrilateral.

The proof of this stronger result proceeds along similar lines. They proceed by
contradiction and reduce the problem to a statement that there exists a Lagrangian
embedding of a torus with some additional topological constraints—a minimum
Maslov number of 4. Once again, this time by a theorem of Polterovich and Viterbo,
there is no such Lagrangian embedding with this property. This contradiction
proves the theorem.
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