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SELECTED MATHEMATICAL REVIEWS

related to the paper in the previous section by

RICHARD SCHWARTZ

MR0809718 (87j:53053) 53C15; 32F25, 53C57, 57R15

Gromov, M.

Pseudo holomorphic curves in symplectic manifolds.

Inventiones Mathematicae 82 (1985), no. 2, 307–347.

The paper under review opens a new effective approach to fundamental prob-
lems of symplectic topology. Let (M,ω) be a symplectic manifold. An almost
complex structure J on M is said by the author to be tamed by ω if ω(x, Jx) > 0
for all nonzero tangent vectors. Almost complex structures tamed by the given
symplectic form are sections of a fiber bundle with a contractible fiber. In partic-
ular they will always exist. The author’s theory shows that manifolds with such
structures have (like Kähler complex analytic manifolds) many globally defined
(pseudo)holomorphic curves (or J-curves), which leads to many deep results in the
geometry and the topology of contact and symplectic manifolds. The following
theorems illustrate the character of numerous results of the paper. Let S2 be the
2-sphere with the area form ω1 with

∫
S2 ω1 = A1 and let V2 be a closed manifold

of dimension 2(n − 1) with a symplectic form ω such that
∫
S2 ω2 = kA1 for ev-

ery smoothly mapped sphere S2 → V for some integer k = k(S2 → V ). Theorem
(2.3.C): Let J be a C∞-smooth almost complex structure on V = S2×V2 tamed by
the symplectic form ω1⊕ω2. Then there exists a (possibly singular and nonunique)
rational (i.e., diffeomorphic to S2) J-curve C = Cv ⊂ V which contains a given
point v ∈ V and which is homologous to the sphere S2 × v2 ⊂ V , v2 ∈ V2. If n = 2
and V2 is not diffeomorphic to S2, or k > 1, then C is regular and unique. If V2

is diffeomorphic to S2 and k = 1 then there exists a connected regular J-curve C
in V which represents the homology class p[S2] + q[V2] ∈ H2(V ;Z) for arbitrary
nonnegative integers p and q and which has genus(C) = pq−p−q+2. In fact, these
curves C form a smooth manifold M = Mpq(J) of dimension 2(pq+p+q). Corollary
(0.3.A): Consider a symplectic diffeomorphism of the open round ball B(R) ⊂ R2n

onto an open subset V ′ ⊂ R2n which is contained in the ε-neighborhood of the
symplectic subspace R2n−2 ⊂ R2n. Then R satisfies the inequality R ≤ ε.

The next result shows the uniqueness of symplectic structure on R4. Theorem
(0.3.C): Let an open manifold (V, ω) be symplectically diffeomorphic to (R4, ω0 =
dx1∧dy1+dx2∧dy2) at infinity. If the Hurewicz homomorphism π2(V ) → H2(V ;R)
vanishes, then (V, ω) is symplectically diffeomorphic to (R4, ω0). Now consider
Cn with standard complex and symplectic structures. Theorem (0.4.A2): For an
arbitrary closed C∞ smooth Lagrange submanifold W ⊂ Cn there exists a non-
constant holomorphic map f (D2, ∂D2) → (Cn,W ). It follows that the relative
class [ω0] ∈ H2(Cn,W ;R) is nonzero. Corollary (0.4.A′

2): There exists a symplec-
tic structure ω on R2n for all n ≥ 2 which admits no symplectic embedding into
(R2n = Cn, ω0).

The author successfully applies his theory to prove new fixed point theorems for
exact symplectic diffeomorphisms and to get many deep results in contact topology
and between them, e.g., D. Bennequin’s theorem [Troisième rencontre de géométrie
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du Schnepfenried, Vol. 1 (Schnepfenried, 1982), 87–161, Astérisque, 107-108, Soc.
Math. France, 1983; MR0753131] and some of its higher-dimensional analogues.
One of the main tools of the theory is the compactness theorem for the space of
pseudoholomorphic curves. The author introduces the notion of weak convergence
of pseudoholomorphic curves to a “cusp-curve” and proves the following theorem
(1.5.B): Let V be a compact manifold with almost complex structure J and Rie-
mannian metric μ. Let Cj be a sequence of closed J-curves of fixed genus in (V, J, μ).
If the areas AreaμCj are uniformly bounded then some subsequence weakly con-

verges to a cusp-curve C in V .
Compare 1.5.B with Bishop’s compactness theorem for analytic sets [see E.

Bishop, Michigan Math. J. 11 (1964), 289–304; MR0168801].
Yakov Eliashberg

From MathSciNet, October 2021

MR0840401 (87m:53003) 53A04; 35K05, 52A40, 58E99, 58G11

Gage, M.; Hamilton, R. S.

The heat equation shrinking convex plane curves.

Journal of Differential Geometry 23 (1986), no. 1, 69–96.

The authors give a complete proof of the “shrinking conjecture” for convex plane
curves. The “shrinking process” refers to the generation of a family of smooth closed
curves by flowing at each point in the direction of the curvature vector k, and at a
rate equal to the magnitude of k. This process may be represented by the parabolic
differential equation ∂X/∂t = ∂2X/∂s2 for the position vector X(s, t), where for
each fixed t, the parameter s represents arc length along the corresponding curve, so
that ∂2X/∂s2 is the curvature vector. The conjecture is that starting with a smooth
Jordan curve, this process defines a one-parameter family of smooth Jordan curves
Ct and that the curves Ct tend to a circle. Here it is proved that if the initial curve
is convex then the curves Ct are all smooth convex curves which converge to a point
and become circular in the sense that (a) the ratio of the inscribed radius to the
circumscribed radius approaches 1, (b) the ratio of the maximum to the minimum
curvature tends to 1, and (c) all derivatives of the curvature tend uniformly to zero.

The latter part of the theorem (the evolving circularity of the curves Ct) depends
crucially on two earlier papers of Gage [Duke Math. J. 50 (1983), no. 4, 1225–1229;
MR0726325; Invent. Math. 76 (1984), no. 2, 357–364; MR0742856], while the former
part—the fact that the process may be continued without developing singularities—
uses earlier methods and results of Hamilton [J. Differential Geom. 17 (1982), no.
2, 255–306; MR0664497]. Many of the results in the paper are proved in a more
general setting, such as the local existence theorem for solutions, and the fact that
if the curvature remains bounded, then all the curves evolving out of a Jordan curve
will remain Jordan curves.

Reviewer’s remark: Matthew Grayson, in a preprint, has given an argument to
show that an initially Jordan curve must evolve into a convex curve and hence
eventually tend to a circle. Thus the general conjecture is settled by reducing it to
the case studied here.

R. Osserman

From MathSciNet, October 2021
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MR1049697 (91k:58042) 58F05; 53C15, 57R50, 58C10

McDuff, Dusa

The structure of rational and ruled symplectic 4-manifolds.

Journal of the American Mathematical Society 3 (1990), no. 3, 679–712.

In this important paper the following classification result is proved. Let (V, ω) be
a compact symplectic 4-manifold which contains a symplectically embedded copy
C of S2 with nonnegative self-intersection number. Then: (i) By blowing down a
finite number of disjoint exceptional curves (symplectically embedded spheres with
self-intersection number −1) in V −C, one can obtain a pair (V,C) for which V −C
contains no exceptional curves (minimal pair). (ii) A minimal pair is symplectomor-
phic either to (CP2, line or quadric), ω being the standard form, or to (S2-bundle
over a surface, fiber or section), ω being determined by its cohomology class.

This is a very powerful generalization of a result by M. L. Gromov [Invent. Math.
82 (1985), no. 2, 307–347; MR0809718] characterizing the standard CP2. The proof
uses Gromov’s holomorphic curves theory [op. cit.], a crucial point being that in
dimension 4 these curves can be shown to be embedded for homological reasons
(this is proved in another paper of the author [“The local behaviour of holomorphic
curves”, J. Differential Geom., to appear]).

The notion of symplectic blow up (and down) was defined previously by the
author [ibid. 20 (1984), no. 1, 267–277; MR0772133]. The question of unique-
ness of these operations is a subtle point related to the unsolved problem of the
connectedness of the space of symplectic embeddings of a disjoint union of balls.
Nevertheless, the author is able to show that the category of these symplectic man-
ifolds is closed under these operations as well as under perturbations of ω through
noncohomologous symplectic forms.

Jean-Claude Sikorav

From MathSciNet, October 2021

MR1095236 55M20; 52A37

Griffiths, H. B.

The topology of square pegs in round holes.

Proceedings of the London Mathematical Society. Third Series 62 (1991), no. 3,
647–672.

In this long and interesting paper the author proves several results about which
geometric configurations can be inscribed in other geometric objects. For example,
in 1929 Shnirel′man proved that a suitably smooth Jordan curve in R2 has an in-
scribed square. Here the author generalises this to Jordan curves which are injective
immersions of S1 in Rn of class C1 such that if n = 2 then there is an inscribed rec-
tangle whose ratio of sides is any given positive real number. Shnirel′man’s result
is further generalised to show that a skew “box” (but possibly not a cube) can be
inscribed in an injective immersion of S2 of class C1 in R3. The final major result
in the paper generalises a result of the reviewer which itself generalises a result of
Dyson. Namely: Suppose h : S2 → R is continuous and 0 ≤ λ ≤ μ ≤ 2. Then S2

contains a rectangle of side lengths λ and μ such that h is constant on the vertices
of the rectangle.

Roger Fenn

From MathSciNet, October 2021
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MR3303043 51M25l; 51M16

Schwartz, Richard Evan

Lengthening a tetrahedron.

Geometriae Dedicata 174 (2015), 121–144.

The motivation for this work was a question posed to the author by Daryl
Cooper: Suppose that you lengthen all the sides of a tetrahedron by one unit.
Is the result still a tetrahedron, and (if so) does the volume increase? The author
formulates the problem as follows: Let {dij | i 	= j ∈ 1, 2, 3, 4} be a list of real num-
bers. This list is tetrahedral if there are four distinct points V1, V2, V3, V4 in R

3

such that dij = ‖Vi −Vj‖ for all i, j. The list {dij +1} will be the unit lengthening
of {dij}.

In fact (Theorem 1.1), the unit lengthening of a tetrahedral list is also a tetra-
hedral list. If Δ0 is the original tetrahedron and Δ1 is the new tetrahedron then
one gets the following inequality for the volumes:

vol(Δ1)

vol(Δ0)
≥

(
1 +

6∑
i<j dij

)3

.

This inequality is sharp, with equality for regular tetrahedra.
In order to prove Theorem 1.1 the author uses the Cayley-Menger determinant

and considers pseudo-tetrahedra. Let K4 be a complete graph on four vertices. A
pseudo-tetrahedron is a non-negative labelling of the edges of K4 so that, going
around any 3-cycle of K4, the edges satisfy the triangle inequality. Let D = {dij}
be a pseudo-tetrahedron; the Cayley-Menger determinant is

f(D) =

∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 d212 d213 d214
1 d221 0 d223 d224
1 d231 d232 0 d234
1 d241 d242 d243 0

∣∣∣∣∣∣∣∣∣∣
.

If D represents a tetrahedron TD, then one obtains f(D) = 288V 2, where V =
vol(TD).

Denote by X the space of pseudo-tetrahedra, which is a polyhedral cone in R
6

with coordinates dij . This cone is partitioned into 48 cones XD (the “chambers”)
labelled by certain decorations of K4, with each XD linearly isomorphic to the pos-
itive orthant. Let g = D(1,1,1,1,1,1)f be the directional derivative. Theorem 1.1 is a
consequence of Theorem 1.3 that states the following: Let C be a constant; then the
function g

∑
i<j dij−Cf is non-negative on X if and only if C ∈ [16, 36]. In order to

prove these two theorems, the author considers a special type of pseudo-tetrahedra
(section 2) and uses a computational method which he names the Method of Pos-
itive Dominance. This method is explained in section 3 and the details on how to
implement it in Java are given in section 4. According to the author, this paper
has, in fact, a companion computer program that can be downloaded from www.

math.brown.edu/~res/Java/CM2.tar.
What about selectively lengthening some subset of the edges of the tetrahedron?

The author deals with this problem in section 5 and proves the following result:
Theorem 1.4. Let β ⊂ K4 be a friendly subset (i.e. K4\β is not a union of edges all
incident to the same vertex). Let g = Dβf denote the directional derivative of f
along β. There is a nonempty union Xβ of chambers of X and constants Aα < Bβ,
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with Bβ > 0, such that the function g
∑

i<j dij − Cf is non-negative on Xβ if and

only if C ∈ [Aα, Bβ]. Moreover, every chamber of X\Xβ contains a point where
f > 0 and g < 0.

The author also considers the case when β is a 3-cycle in K4. This subset is not
friendly, hence Theorem 1.4 does not apply, but it is still possible to obtain the
following result: Theorem 1.5. Let g = Dβf denote the directional derivative of
f along β; then the function g

∑
i<j dij − Cf is non-negative on Xβ if and only if

C = 8. Moreover, every chamber of X\Xβ contains a point where f > 0 and g < 0.
Combining Theorems 1.4 and 1.5, one obtains: Corollary 1.6. Suppose that

β is either a 3-cycle or a friendly subset of K4. For every tetrahedron Xβ, the
lengthening along β locally increases the volume. Moreover, every chamber of
X\Xβ contains a tetrahedron such that the lengthening along β decreases the
volume.

This article ends with an appendix containing the proof of the following result:
Theorem 1.2. In every dimension the unit lengthening of a simplicial list is again a
simplicial list and the new simplex has volume larger than the original. (The notion
of simplicial list is the natural extension of the notion of tetrahedral list to simplices
of other dimensions.) The argument given for this result is independent from the
rest of the paper. The author states that this result also follows from a theorem
attributed to von Neumann, and for further details refers to Corollary 4.8 in [J. H.
Wells and L. R. Williams, Embeddings and extensions in analysis, Springer, New
York, 1975; MR0461107].

Ana Pereira do Vale

From MathSciNet, October 2021

MR3887658 37D50; 52C23

Schwartz, Richard Evan

The plaid model. (English)

Annals of Mathematics Studies, 198.
Princeton University Press , Princeton, NJ , 2019, xii+268 pp.,
ISBN 978-0-691-18138-7; 978-0-691-181370

The book under review establishes the basic properties of the plaid model.
“The purpose of this monograph is to study a construction, based on elementary

geometry and number theory, which produces for each rational parameter (satis-
fying some parity conditions) a cube filled with polyhedral surfaces. When the
surfaces are sliced in one direction, the resulting curves encode all the essential
information about the so-called special outer billiards orbits with respect to kites.
When the surfaces are sliced in two other directions, they encode all the essential
information in a 1-parameter family of Truchet tile systems.”

W. P. Hooper developed the Truchet systems in [Invent. Math. 191 (2013), no. 2,
255–320; MR3010377] in connection with polygon exchange transformations and
renormalization. See [J. André, “Les planches de pavages de Truchet”, to appear]
for a sample of Truchet tile systems in the plane. See also the book of the author
[The octogonal PETs, Math. Surveys Monogr., 197, Amer. Math. Soc., Providence,
RI, 2014; MR3186232].

“The monograph establishes some of the basic properties of the plaid model:
the connection to outer billiards and to Truchet tilings, the connection to polytope

https://www.ams.org/mathscinet-getitem?mr=3887658
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exchange transformations (PETs), and some results about the size and distribution
of the polygons in the slices of the model.”

The plaid model was conceived when the author studied the outer billiard on
kites. For the kite KA with vertices (−1, 0), (0, 1), (0,−1) and (A, 0) the author
in [J. Mod. Dyn. 1 (2007), no. 3, 371–424; MR2318496; Outer billiards on kites,
Ann. of Math. Stud., 171, Princeton Univ. Press, Princeton, NJ, 2009; MR2562898]
proved the following result.

Theorem. When A is irrational, the outer billiards on KA has an unbounded
special orbit.

This special orbit is unbounded, both forward and backward, but returns in a
neighborhood of every vertex of the kite infinitely many times. The outer billiards
has a unidimensional invariant set formed by horizontal lines (x, 2n + 1), n ∈ Z,
and every outer billiard orbit in the invariant set is either periodic or special, and
the set of periodic orbits is open and dense in the invariant set.

“The key step in understanding the special orbits on KA is to associate an
embedded lattice polygonal path to each special orbit. This path encodes the
symbolic dynamics associated to the second return map to the union R × {−1, 1}
of lines. When A = p/q is rational, it is possible to consider the union of all these
lattice paths at once. I call this union the arithmetic graph and denote it by ΓA.
When pq is even, every component of ΓA is an embedded lattice polygon.”

The book is organized in five parts: the plaid model and its properties in Chap-
ters 1 to 7, the plaid PET in Chapters 8 to 12, the graph PET in Chapters 13 to
16, the plaid-graph correspondence in Chapters 17 to 20 and the distribution of the
orbits in Chapters 21 to 26.

Roughly speaking, to define the plaid model one considers six families of lines
in the plane, horizontal and vertical with integer coordinates, four families of slant
lines with inclinations P = ±2p/(p+q) and Q = ±2q/(p+q), and intersection with
the vertical axis Y at integer coordinates. The intersections of the slant lines with
the horizontal and vertical lines (grid) are called light points. The oriented plaid
model takes as input the even rational parameter p/q and assigns either the empty
set or a direct edge eR to each unit integer square R = [m,m + 1] × [n, n + 1].
“The empty set is assigned when there are 0 relevant light points in the boundary
of R. Otherwise, the directed edge eR connects the center of the sides of R which
contain the relevant light points and crosses these sides in the same direction as the
transverse directions.” The plaid polygon is a connected component of the union of
edges of the plaid model.

The book contains eight fundamental theorems. See the Introduction for an
overview of the main results.

The several computer programs which illustrate most of the results of this book
are available from the web site of the author. An important commentary of the
author about his experimental research is the following. “I discovered all the results
in this monograph using the program, and I have extensively checked my proofs
against the output of the program. While this monograph mostly stands on its
own, the reader will get much more out of it by using the program while reading.
I would say that the program relates to the material here the way a cooked meal
relates to a recipe. Throughout the text, I have indicated computer tie-ins which
give instructions for operating the computer program so that it illustrates the rele-
vant phenomena. I consider these computer tie-ins to be a vital component of the
monograph.”
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This book will be very useful for those interested in experimental mathematics
using computer programs, global aspects of dynamical systems, outer billiards,
renormalization of PETs and combinatorial aspects of periodic and special orbits
of outer billiards, such as orbits of a kite. I consider this to be a masterpiece of
mathematics.

Ronaldo Alves Garcia

From MathSciNet, October 2021

MR3995015 53D12; 57N35, 57R17

Yoshiyasu, Toru

On Lagrangian embeddings of closed nonorientable 3-manifolds.

Algebraic & Geometric Topology 19 (2019), no. 4, 1619–1630.

K. Fukaya [in Morse theoretic methods in nonlinear analysis and in symplectic
topology, 231–276, NATO Sci. Ser. II Math. Phys. Chem., 217, Springer, Dordrecht,
2006; MR2276953] classified the diffeomorphism type of Lagrangian embeddings of
closed orientable connected prime 3-manifolds L into R

6 (here always thought of
as endowed with the standard symplectic form)—precisely,

L Lag→ ↪→R
6 ⇐⇒ L ∼= S1 × Σg,

where Σg is a genus g surface. Removing the prime condition, the embedding
problem becomes much more flexible. Based on the works [E. Murphy,
“Loose Legendrian embeddings in high dimensional contact manifolds”, preprint,
arXiv:1201.2245; Y. M. Eliashberg and E. Murphy, Geom. Funct. Anal. 23 (2013),
no. 5, 1483–1514; MR3102911], T. Ekholm et al. showed in [Geom. Funct. Anal. 23
(2013), no. 6, 1772–1803; MR3132903] that, after connect summing with S1 × S2,
we can embed any closed orientable 3-manifold L as a Lagrangian in R

6, i.e.,

L#S1 × S2 Lag→ ↪→R
6. One can reinterpret this result as saying that any compact

orientable 3-manifold M with boundary diffeomorphic to S2 can be concatenated

with K = S1 × S2 \B, so that M ∪∂M∼∂K K
Lag→ ↪→R

6, where B is an open ball.
In this paper, the author proves an analogous result for any compact orientable

3-manifold M with ∂M diffeomorphic to the two torus T 2, where the ‘stabilising
manifold’ is K = S1 × (N0 \ D) given by the product of the circle S1 with the

complement of a disk D in the Klein bottle N0, i.e., L := M ∪∂M∼∂K K
Lag→ ↪→R

6

as a Lagrangian. Moreover, L can be taken to have minimal Maslov number 1.
The proof idea is similar to the one in [T. Ekholm et al., op. cit.], where the

construction is given by concatenating a Lagrangian filling with a Lagrangian cap.
The existence of the latter is a consequence of [Y. M. Eliashberg and E. Murphy,
op. cit.]. The author constructs a filling K = S1 × (N0 \D) of a loose Legendrian
T 2.

It is implied from the main result that any 3-manifold L, containing K = S1 ×
(N0 \ D) as the submanifold, embeds into R

6 as a Lagrangian. In particular, for
any closed orientable 3-manifold L, the connected sum L = L#S1 ×Ng embeds as
a Lagrangian in R

6, where Ng is the non-orientable surface of Euler characteristic
g ≥ 0. In fact, the author focusses the proof on the particular case L = L#S1×N2g,
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as a consequence of his Lemma 2.5, and points out that the general case follows an
analogous argument.

Renato Vianna

From MathSciNet, October 2021


