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PROBABILISTIC VIEW

OF VOTING, PARADOXES, AND MANIPULATION

ELCHANAN MOSSEL

Abstract. The Marquis de Condorcet, a French philosopher, mathematician,
and political scientist, studied mathematical aspects of voting in the eighteenth
century. Condorcet was interested in studying voting rules as procedures for
aggregating noisy signals and in the paradoxical nature of ranking three or
more alternatives. We survey some of the main mathematical models, tools,
and results in a theory that studies probabilistic aspects of social choice. Our
journey will take us through major results in mathematical economics from
the second half of the twentieth century, through the theory of Boolean func-

tions and their influences and through recent results in Gaussian geometry and
functional inequalities.

1. Introduction

The Marquis de Condorcet, a French philosopher, mathematician, and political
scientist, studied mathematical aspects of voting in the eighteenth century. It
is remarkable that already in the eighteenth century Condorcet was an advocate
of equal rights for women and people of all races and of free and equal public
education [73]. His applied interest in democratic processes led him to write an
influential paper in 1785 [16], where in particular he was interested in voting as an
aggregation procedure and where he pointed out the paradoxical nature of voting
in the presence of three or more alternatives.

1.1. The law of large numbers and Condorcet’s jury theorem. In what
is known as Condorcet’s jury theorem, Condorcet considered the following setup.
There are n voters and two alternatives denoted + (which stands for +1) and
− (which stands for −1). Each voter obtains a signal which indicates which of
the alternatives is preferable. The assumption is that there is an a priori better
alternative and that each voter independently obtains the correct information with
probability p > 1/2 and incorrect information with probability 1− p. The n voters
then take a majority vote to decide the winner. Without loss of generality, we may
assume that the correct alternative is + and therefore the individual signals are i.i.d.
(independent and identically distributed) random variables xi where P[xi = +] = p
and P[xi = −] = 1− p. Let m denote the Majority function, i.e., the function that
returns the most popular values among its inputs. Condorcet’s jury theorem is the
following.
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Theorem 1.1. For every 1 > p > 1/2:

• limn odd→∞ P[m(x1, . . . , xn) = +] = 1.
• If n1 < n2 are odd, then P[m(x1, . . . , xn1

) = +] < P[m(x1, . . . , xn2
) = +].

The first part of the theorem is immediate from the law of large numbers (which
was known at the time), so the novel contribution was the second part. In the
early days of modern democracy, Condorcet used his model to argue that the more
people participating in decision making, the more likely that the correct decision is
arrived at. We leave the proof of the second part of the theorem as an exercise.

1.2. Condorcet’s paradox and Arrow’s theorem. As hinted earlier, things
are more interesting when there are three or more alternatives. In the same 1785
paper, Condorcet proposed the following paradox. Consider three voters named
1, 2, and 3, and three alternatives named a, b, and c. Each voter ranks the three
alternatives in one of six linear orders. While it is tempting to represent the orders
as elements of the permutation group S3, it will be more useful for us to use the
following representation. Voter i preference is given by (xi, yi, zi), where xi = + if
she prefers a to b, and − otherwise; yi = + if she prefers b to c, and − otherwise; and
zi = + if she prefers c to a, and − otherwise. Each of the six rankings corresponds
to one of the vectors in {−1, 1}3 \ {±(1, 1, 1)}.

Condorcet considered three voters, with rankings given by a > b > c, c > a > b,
b > c > a, or in our notation by the rows of the following matrix:⎛⎝x1 y1 z1

x2 y2 z2
x3 y3 z3

⎞⎠ =

⎛⎝+ + −
+ − +
− + +

⎞⎠ .

How should we decide how to aggregate the individual rankings? If we use the
majority rule to decide between each pair of preferences, then we apply the majority
rule on each of the columns of the matrix and conclude that overall preference is
(+,+,+). In other words, the overall preference is that a > b, the overall preference
is that b > c, and the overall preference is that c > a. This does not correspond to
an order! This is what is known as Condorcet’s paradox.

Almost two hundred years later, Ken Arrow asked if perhaps the paradox is
the result of using the majority function to decide between every pair of alterna-
tives? Can we avoid paradoxes if we aggregate pairwise preferences using a different
function?

One function that never results in paradoxes is the dictator function f(x) = x1

as the aggregate ranking is (x1, y1, z1) �= ±(1, 1, 1).
Arrow in his famous theorem [1, 2] proved the following.

Theorem 1.2. Let f : {−1, 1}n → {−1, 1} and suppose that f never results in a
paradox, so for all (xi, yi, zi) �= ±(1, 1, 1) it holds that (f(x), f(y), f(z)) �= ±(1, 1, 1).
Then f is a dictator: there exists an i such that f(x) = xi for all x, or there exists
an i such that f(x) = −xi for all x.

With the right notation and formulation, the proof of Arrow’s theorem is very
short (see [3, 50]).

Proof. First note that if f is a constant function, then the outcome is always
±(1, 1, 1). Suppose that f is not a dictator and not a constant, then f depends on
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at least two coordinates. Without loss of generality, let these coordinates be 1 and
2. Therefore,

∃x2, x3, . . . , xn : f(+, x2, x3, . . . , xn) �= f(−, x2, x3, . . . , xn),

∃y1, y3, . . . , yn : f(y1,+, y3, . . . , yn) �= f(y1,−, y3, . . . , yn).

We now choose z1 = −y1 and zi = −xi for i ≥ 2. This guarantees that (xi, yi, zi) �=
±(1, 1, 1) for all i no matter what the values of x1 and y2 are. This can be also
verified from the matrix in (1). Now choose x1 and y2 so that f(x) = f(y) = f(z)
results in a paradox:

�(1)

⎛⎜⎜⎜⎝
x1 y1 −y1
x2 y2 −x2

...
...

...
xn yn −xn

⎞⎟⎟⎟⎠ .

Arrow also considered a more general setting where f, g, and h are allowed to
be different functions. In this case, there are other functions that never result in a
paradox. For example if f = 1 and g = −1 for all inputs, then h can be arbitrary.
This corresponds to the case where the second alternative b is ignored (always
ranked last) and the choice between a and c is determined by h. Arrow’s theorem
in this setting can be stated as follows:

Theorem 1.3. Let f, g, h : {−1, 1}n → {−1, 1} and suppose that (f, g, h) never re-
sults in a paradox. So for all (xi, yi, zi) �= ±(1, 1, 1) it holds that (f(x), g(y), h(z)) �=
±(1, 1, 1). Then either two of the functions are constants of opposite signs or there
exists an i such that f, g, and h are dictators on voter i, so f = g = h = xi or
f = g = h = −xi.

Proof. If two of the functions, say f and g, take the same constant value and
the third function h is not constant, then clearly one can find x, y, z such that
f(x) = g(y) = h(z) and (x, y, z) �= ±(1, 1, 1). So without loss of generality we may
assume at least two of the functions, say f and g are not constant. Let A(f) denote
the set of variables that may change the value of f and similarly A(g) and A(h).
Since f and g are not constant, it follows that A(f) and A(g) are not empty. If
there exists a variable i ∈ A(f) and a variable i �= j ∈ A(g), then by the same
argument as in Theorem 1.2, there exist (x, y, z) resulting in a paradox. Thus, the
only case remaining is where A(f) = A(g) = i and A(h) = i or A(h) = ∅. In either
case, the functions f, g and h are all functions of variable i only. It is now easy to
verify that it must be the case that f = g = h is a dictator on voter i. �
1.3. Manipulation and the Gibbard–Satterthwaite theorem. A naturally
desirable property of a voting system is strategy-proofness (a.k.a. nonmanipulabil-
ity): no voter should benefit from voting strategically, i.e., voting not according to
her true preferences. However, Gibbard [28] and Satterthwaite [71] showed that no
reasonable voting system can be strategy proof. Before stating the result, let us
specify the model more formally.

The setting here is different than the setup of Arrow’s theorem: We consider n
voters electing a winner among k alternatives. The voters specify their opinion by
ranking the alternatives, and the winner is determined according to some predefined
social choice function (SCF) f : Sn

k → [k] of all the voters’ rankings, where Sk

denotes the set of all possible total orderings of the k alternatives. We call a
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collection of rankings by the voters a ranking profile. We say that an SCF is
manipulable if there exists a ranking profile where a voter who knows how all other
voters vote, can achieve a more desirable outcome of the election according to her
true preferences by voting in a way that does not reflect her true preferences.

For example, consider Borda voting, where each candidate receives a score which
is the sum of its ranks, and the candidate with the lowest score wins. If the
individual rankings are (abcd), (cadb), then a is the winner, but if the second voter
were to vote (cdba) instead, then c will become the winner, so the second voter is
incentivized to cast a vote that is different from her true ranking.

Theorem 1.4 (Gibbard and Satterthwaite). Any SCF which is not a dictatorship
(i.e., not a function of a single voter) and which allows at least three alternatives
to be elected is manipulable.

This theorem has contributed to the realization that it is unlikely to expect
truthfulness in voting. There are many proofs of the Gibbard–Satterthwaite theo-
rem, but all are more complex than the proof of Arrow’s theorem given above. We
will not provide proof of the theorem here.

1.4. Judgment aggregation. A recent line of work is devoted to the problem of
judgment aggregation. In the legal literature, Kornhauser and Sager [43] discuss
a situation where three cases A,B,C are considered in court, and by law, one
should rule against C if and only if there is a ruling against both A and B. When
several judges are involved, their opinions should be aggregated using a function
f : {0, 1}n → {0, 1} that preserves this law, that is, satisfies

(2) f(x ∧ y) = f(x) ∧ f(y),

where (x1, . . . , xn) ∧ (y1, . . . , yn) = (x1 ∧ y1, . . . , xn ∧ yn). List and Pettit [45, 46]
showed that the only nonconstant aggregation functions that satisfy (2) are the
AND functions, known in the social choice literature as oligarchies, i.e., functions
of the form f(x1, . . . , xn) = xi1 ∧ · · · ∧ xir for some 1 = i1 < · · · < ir ≤ n.

1.5. Modern perspectives. Work since the 1980s addressed novel aspects of ag-
gregation of votes. Condorcet’s jury theorem assumes a probability distribution
over the voters but is restricted to a specific aggregation function (majority) while
Arrow’s theorem considers general aggregation functions but involves no probabil-
ity model. There are many interesting questions that can be asked by combining
the two perspectives. First, it is natural to ask about the aggregation properties of
Boolean functions. The study of aggregation properties of Boolean functions was
fundamental to the development of the area of analysis of Boolean functions since
the 1980s, starting with the work of Ben-Or and Linial [6] and of Kahn, Kalai, and
Linial [36]. Second, we can ask questions regarding the probability of manipulation
and paradoxes, questions that were analyzed since the early 2000s, starting with
the works by Kalai, Nisan, Friedgut, and collaborators [26, 37, 38].

The theory that was developed is intimately connected to the area of property
testing in theoretical computer science and to additive combinatorics. Moreover, we
will see that some of the main results and techniques have a discrete isoperimetric
flavor. We discuss some of these topics and their connections as follows.

In Section 2, we will start by studying the question of noise stability of Boolean
functions that were originally studied by Benjamini, Kalai, and Schramm in the
context of percolation [7] and which later played an important role in analyzing the
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probability of paradoxes, starting with the work of Kalai [37]. This work as well as
motivation from theoretical computer science [41], led to the proof of the Majority
Is Stablest theorem by Mossel, O’Donnell, and Oleszkiewicz [57, 58]. The proof of
these results will require some of the main analytical tools in the area, including,
notably, hypercontraction [4, 10, 29, 66], the invariance principle [58], and Borell’s
Gaussian noise-stability result [12].

In Section 3, we sketch proofs of quantitative versions of Arrow’s theorem. We
will follow [52] by first proving a Gaussian version of Arrow’s theorem, as well as
a quantitive version using reverse hypercontraction [11]. Combining the two, we
will prove a general quantitive Arrow’s theorem [52]. We will also present Kalai’s
original proof of a quantitative Arrow’s theorem [37], which is less general but uses
only hypercontraction via [25].

Different tools were used in proving different quantitive versions of the manip-
ulation theorem. The first proof, which applies only to three alternatives, uses a
reduction to a quantitive Arrow’s theorem [24, 26]. In Section 4 we discuss later
approaches that apply for any number of candidates and use reverse hypercontrac-
tion as a major tool [32, 62]. The classical proofs of manipulation theorems often
use long paths of voting profiles. The most general proof in [62] will quantify such
arguments using geometric tools from the theory of Markov chains.

Recent work [23] established quantitative versions of the result by List and Pettit
by showing that if f is ε-close to satisfying judgment aggregation, then it is δ(ε)-
close to an oligarchy; this improved upon prior work by Nehama [64] in which δ
decays polynomially with n. These results are based on the analysis of a variant of
the noise operator, named the one-sided noise operator.

1.6. Probability of paradox for the majority. As a preview of what’s to come,
we will compute the asymptotic probability of a nontransitive outcome in the Con-
dorcet setup with three alternatives and where voters vote uniformly at random.
The first reference to this computation is by Guilbaud (1952); see [14] and [5, 27].

Let us denote the Majority function by m : {−1, 1}n → {−1, 1} and assume that
the number of voters n is odd. Paradoxes seem more likely when there is no bias to-
wards a particular candidate, so we will consider voters who vote independently and
where voter i votes uniformly at random from the six possible rankings. Recall that
we encode the six possible rankings by vectors (x, y, z) ∈ {−1,+1}3 \ {±(1, 1, 1)}.
Here x is +1/− 1 if a voter ranks a above/below b, y is +1/− 1 if a voter ranks b
above/below c, z is +1/− 1 if a voter ranks c above/below a.

How do we analyze the probability of a paradox? The following simple fact
was used in [37]: Since the binary predicate ψ : {−1, 1}3 → {0, 1}, ψ(a, b, c) =
1(a = b = c) can be expressed as

ψ(a, b, c) =
1

4
(1 + ab+ ac+ bc),

we can write

P[m(x) = m(y) = m(z)] =
1

4
(1 + E[m(x)m(y)] + E[m(x)m(z)] + E[m(y)m(z)]),

which due to symmetry can be written as

P[m(x) = m(y) = m(z)] =
1

4
(1 + 3E[m(x)m(y)]).
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Moreover, the uniform distribution over {±1}3 \ {±(1, 1, 1)} satisfies E[xiyi] =
E[yizi] = E[zixi] = −1/3 and the n coordinates are independent. As we will
see shortly, the quantity E[m(x)m(y)] is called the noise stability of m with noise
parameter −1/3. Its asymptotic value as n → ∞ is easy to compute using a two-
dimensional central limit theorem (CLT) to obtain

lim
n→∞

E[m(x)m(y)] = E[sgn(X) sgn(Y )],

where X,Y ∼ N(0,

(
1 − 1

3
− 1

3 1

)
) and we can see that

E[sgn(X) sgn(Y )] = 2P[sgn(X) = sgn(Y )]− 1 = 1− 2 arccos(−1/3)

π

and

lim
n→∞

P[m(x) = m(y) = m(z)] = 1− 3 arccos(−1/3)

2π
≈ 0.088.

In particular, the probability of paradox does not vanish as n → ∞.

2. Noise stability

2.1. Boolean noise stability. Consider the following thought experiment. Sup-
pose the voters in binary voting obtain independent uniform signals: xi = + or
xi = − with probability 1/2. This is the same setting as in Condorcet’s jury
theorem except the voters are completely uninformed.

Now consider the following process that produces a vector y as a noisy version of
x. For each i independently, let yi = xi with probability (1+θ)/2, and let yi = −xi

with probability (1−θ)/2, where θ ∈ [−1, 1]. We chose the parametrization so that
E[xiyi] = θ.

How should we interpret y? A simple interpretation is as a noise process of
voting machines. Suppose that when each voter votes, there is a small probability,
say 0.01, that the voting machine records the opposite vote (independently for all
voters and independently of the intended vote). In this case θ = 0.98. Given
a voting aggregation function f : {−1, 1}n → {−1, 1}, ideally we would like the
quantity

P[f(x) = f(y)] =
1

2
(1 + E[f(x)f(y)])

to be as large as possible if θ > 0 and as small as possible if θ < 0. The quantity
E[f(x)f(y)] is called the noise stability of f . More generally, following [7] we define
the following.

Definition 2.1. For two functions f, g : {−1, 1}n → R the (ρ-)noisy inner product
of f and g denoted by 〈f, g〉ρ is defined by E[f(x)g(y)], where ((xi, yi) : 1 ≤ i ≤ n)
are i.i.d. mean 0 (E[xi] = E[yi] = 0) and ρ-correlated (E[xiyi] = ρ). The noise
stability of f is its noisy inner product with itself: 〈f, f〉ρ.

We can also write the noisy inner product in terms of the noise operator Tρ:

Definition 2.2. The Markov operator Tρ maps functions f : {−1, 1}n → R to
functions Tρf : {−1, 1}n → R. It is defined by

(Tρf)(x) = E[f(y)|x].
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This section discusses noise stability of various families of functions and analy-
tical properties of the operator Tρ, which will be used later.

The noise operator plays a key role in the theory of hypercontraction [10]. Note
that

〈f, g〉ρ = E[f(x)g(y)] = E[fTρg] = E[gTρf ] = 〈Tρf, g〉 = 〈f, Tρg〉
and that

〈f, g〉 := E[f(x)g(x)] = 〈f, g〉1.
Basic properties of this operator can be revealed using its eigenfunctions, i.e., the
Fourier basis. The following proposition is straightforward to prove.

Proposition 2.3. For S ⊂ [n], write xS =
∏

i∈S xi, so x∅ ≡ 1. Then:

• (xS : S ⊂ [n]) is an orthonormal basis for the space of all functions
f : {−1, 1}n → R.

• xS is an eigenfunction of Tρ which corresponds to the eigenvalue

ρ|S|: TρxS = ρ|S|xS.

The following folklore result is easily derived by explicitly writing the Fourier
expression of f in terms of the basis (xS : S ⊂ [n]).

Theorem 2.4. For every ρ > 0, for every n, and for every f, g : {−1, 1}n →
{−1, 1} with E[f ] = E[g] = 0, it holds that

〈f, g〉ρ ≤ 〈x1, x1〉ρ = ρ,

〈f, g〉−ρ ≥ 〈x1, x1〉−ρ = −ρ.

Moreover, the only optimizers are dictator functions, i.e., functions of the form
f(x) = g(x) = xi or f(x) = g(x) = −xi.

Theorem 2.4 allows a quick proof of a version of Arrow’s theorem by Kalai [37]:

Corollary 2.5. In the context of Arrow’s theorem if E[f ] = E[g] = E[h] = 0 and
P[f(x) = g(y) = h(z)] = 0, then f, g, and h are all the same dictator.

Proof. Use the previous theorem and

P[f(x) = g(y) = h(z)] =
1

4

(
1 + 〈f, g〉−1/3 + 〈g, h〉−1/3 + 〈h, f〉−1/3

)
. �

From the voting perspective, there is something a little disappointing about
Theorem 2.4. It says that if we want to maximize robustness, then among all
balanced functions dictator is optimal. However, in the theory of voting dictators
are usually not considered good voting schemes. From a mathematical perspective,
it is disappointing that there is something special about E[f ] = 0. In particular the
following problem is open.

Problem 2.6. For a generic ρ > 0, 0 < μ < 1, what is the value of

lim
n→∞

max
(
〈f, f〉ρ : f : {−1, 1}n → {−1, 1},E[f ] = μ

)
?

To the best of our knowledge, the value is not known for all μ �= {−±1,±0.5, 0};
see [75].
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Here are some additional examples,

• A similar argument to the theorem shows that if ρ > 0, then 〈f, f〉ρ ≥ ρn

for f : {−1, 1}n → {−1, 1}. The parity function x[n] achieves equality.
• The asymptotic noise stability of Majority is given by the Sheppard formula
(see [72]), i.e., E[sgn(N) sgn(M)], where (N,M) are ρ-correlated Gaussian
random variables,

E[sgn(M) sgn(N)] = 2P[sgn(M) = sgn(N)]− 1 = 1− 2 arccos(ρ)

π
:= κ(ρ).

In particular if ρ = 1− ε, then P[f(x) �= f(y)] is of order
√
ε. Compare this

to a dictator where it is of order ε.
• If we consider n = r2 where r is odd and the function f implements electoral
college, i.e.,

f(x1, . . . , xn) = m
(
m(x1, . . . , xr), . . . ,m(xn−r+1, xn)

)
,

then it is easy to see that asymptotically the noise stability is given by
κ(κ(ρ)). In particular if ρ = 1 − ε for small ε, then P[f(x) �= f(y)] is of
order ε1/4.

• Let mr be the Majority function on r voters, define m
(1)
r = mr, and by

induction,

m(h)
r (x1, . . . , xrh) = m(h−1)

r (mr(x1, . . . , xr), . . . ,mr(xrh−r+1, . . . , xrh)) .

This function is called the recursive majority function. The paper [56] shows
that for every ε < 0.5, if r is large enough and nh = rh and if ρ = 1− n−ε

h ,
then

lim
h→∞

E[m(h)
r (x)m(h)

r (y)] = 0,

where (x, y) are ρ-correlated. In other words, this function is very far from
being noise stable.

2.2. Gaussian noise stability. We will now take a detour and consider analogous
quantities defined in Gaussian space. We will later see that this is quite useful in
the Boolean setting.

Definition 2.7. In Gaussian space, the (ρ-)noisy inner product of φ : Rn → R and
ψ : Rn → R denoted by 〈φ, ψ〉ρ is defined as

E[φ(M)ψ(N)],

where ((Mi, Ni))
n
i=1 are i.i.d. two-dimensional Gaussian vectors, such that Ni,Mi

are standard (mean 0, variance 1) Gaussian random variables and E[NiMi] = ρ.
The noise stability of φ is its noisy inner product with itself: 〈φ, φ〉ρ.

We will generally use f, g, etc., to denote functions over the Boolean cube and
φ, ψ, etc., for functions in L2(R

n, γ). In particular, for μ ∈ [0, 1] we write χμ for
the indicator of the interval (−∞,Φ−1(μ)) whose Gaussian measure is μ.

We can now state Borell’s [12] noise stability result.

Theorem 2.8. For all n ≥ 1, ρ > 0, and φ, ψ : Rn → [0, 1], it holds that

〈1− χ1−Eφ, χEψ〉ρ ≤ 〈φ, ψ〉ρ ≤ 〈χEφ, χEψ〉ρ,
〈1− χ1−Eφ, χEψ〉−ρ ≥ 〈φ, ψ〉−ρ ≥ 〈χEφ, χEψ〉−ρ.



PROBABILISTIC VIEW OF VOTING, PARADOXES, AND MANIPULATION 305

Borell [12] was interested in more general functionals of the heat equations, and
he showed that these functionals increase with respect to nonincreasing spherical
rearrangement. The fact that half-spaces are the unique optimizers of ρ-noisy inner
products was proven in [55], where a robust version of the theorem is also proven.
Tighter robust versions were later proven by Eldan [21]. Other alternative proofs
and generalizations of Borell’s result include [33, 42].

2.3. Gaussian and Boolean noise stability. By applying the CLT, it is easy to
check that Gaussian noise stability provides bounds on Boolean noise stability.

Proposition 2.9. For every ρ ∈ [−1, 1], μ, ν ∈ [0, 1], and for every

s ∈
[
〈1− χ1−μ, χν〉ρ, 〈χμ, χν〉ρ

]
,

there exists sequence of Boolean functions fn, gn : {−1, 1}n → {0, 1} such that
E[fn] → μ,E[gn] → ν and

〈fn, gn〉ρ → s.

Moreover, by Theorem 2.8 and Theorem 2.4 it follows that the extreme Gaussian
noise stability is bounded away from the extreme Boolean noise stability at μ = 1/2
and 0 < |ρ| < 1; see Figure 1.

The proof of the proposition is standard using approximation of Gaussian ran-
dom variables in terms of sums of independent Bernoullis:

−1 −0.5 0.5 1

−1

−0.5

0.5

1

ρ

Stability

Figure 1. The noise stability of dictator and Gaussian half-space
of measure 0.5, i.e., functions ρ and 1− arccos ρ/2π. Note that for
every 0 < ρ < 1, the dictator is more stable than the corresponding
half-spaces, and for every −1 < ρ < 0 it is less stable than the
corresponding half-space.
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Proof. To show that we can obtain the right endpoint of the interval, let

fn = χμ(
1√
n

n∑
i=1

xi) = 1(
1√
n

n∑
i=1

xi ≤ Φ−1(μ)),

gn = χν(
1√
n

n∑
i=1

xi) = 1(
1√
n

n∑
i=1

xi ≤ Φ−1(ν)),

denote the indicator that the normalized sums of the xi lie in the intervals χμ and
χν , and apply the CLT. The proof of achievability of the left endpoint is similar
where now we take the intervals χν and 1− χ1−μ.

To obtain an intermediate point s, take the inputs of fn and gn to be defined on
overlapping blocks of bits, e.g, by varying α from 1 to 0 in

fn = χμ(
1√
n

(1+α)n∑
i=αn

xi), gn = χν(
1√
n

n∑
i=1

xi),

we get all values in [μν, 〈χμ, χν〉ρ]. Taking overlapping intervals for χν and 1−χ1−μ

gives all the values in [μν, 〈1− χ1−μ, χν〉ρ]. �

2.4. Smooth Boolean functions. To better understand the connection between
Boolean and Gaussian stability, we define two notions of smoothness, termed low
influences and resilience for Boolean functions. We begin with the notion of influ-
ence. This notion measures the power of a voter [20]. It plays a crucial role in the
analysis of Boolean functions [6] and [36]. When it comes to general probability
spaces, there are several possible definitions; see, e.g., [13, 40]. We choose the L2

definition, which is closely related to the notion of local variance in statistics. To
simplify notation, we will often omit the sigma algebra and probability measure
defined over a probability space Ω.

Definition 2.10. Consider a probability space Ω. For a function f : Ωn → R, we
define the ith influence of f as

Ii(f) = E
[
Var[f |x1, . . . , xi−1, xi+1, . . . , xn]

]
,

where the expected value is with respect to the product measure on Ωn. In the
Boolean case with the uniform measure f : {−1, 1}n → R, the influence is equiva-
lently defined as

Ii(f) = E
[
Var[f |x1, . . . , xi−1, xi+1, . . . , xn]

]
=

∑
S:i∈S

f̂2(S),

or as

Ii(f) = E[|∂if |2],
where

(∂if)(x1, . . . , xn)

= 0.5(f(x1, . . . , xi−1,+, xi+1, . . . , xn)− f(x1, . . . , xi−1,−, xi+1, . . . , xn))

is the discrete ith directional derivative.

An easy corollary of the definition is that for |ρ| < 1, it holds that Tρf is small
in the sense that the sum of its influences is bounded as a function of ρ only.
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Lemma 2.11. Let f : {−1, 1}n → [−1, 1] and |ρ| < 1. Then
n∑

i=1

Ii(Tρf) ≤
1

1− |ρ| .

Proof.
n∑

i=1

Ii(Tρf) =
n∑

i=1

∑
S:i∈S

T̂ρf
2
(S)

=
∑
S

|S|T̂ρf
2
(S) =

∑
S

|S|ρ2|S|f̂2(S)

≤ max
k

|ρ|2kk
∑
S

f̂2(S) ≤ max
k

|ρ|2kk ≤ 1/(1− |ρ|).

The proof follows. �

Hypercontractivity is a key feature of many of the proofs in the analysis of
Boolean functions starting with the Kahn–Kalai–Linial paper [36]. Many of the
results in analysis of Boolean functions in general and in the study of quantitative
social choice in particular, use the famous hypercontractive theorem:

Theorem 2.12 ([10]). Let f : {−1, 1}n → R and 1 ≤ q ≤ p. Then if ρ2 ≤ q−1
p−1 ,

then

‖Tρf‖p ≤ ‖f‖q.

Theorem 2.12 has a long history. First, Gaussian versions of it were proven by
Nelson [65,66] and in the Boolean setting by Bonami [9,10] and by Gross [29]; see,
e.g., [69] for more detailed discussion.

The easy Lemma 2.11 states that Tρf is smooth in a local sense—as on average, it
bounds the sum of its discrete derivatives. Theorem 2.12 proves global smoothness,
as it shows that higher norms of Tρf are bounded by lower norms of f .

Interestingly, in quantitative social choice, a reverse inequality proved by Borell
[11] also plays an important role.

Theorem 2.13 ([11]). Let f, g : {−1, 1}n → R+ and 1 > p > q. Then, for any
0 ≤ ρ2 ≤ 1−p

1−q ,

‖Tρf‖q ≥ ‖f‖p,
and for any 0 ≤ ρ2 ≤ (1− p)(1− q),

〈f, g〉ρ ≥ ‖f‖p‖‖g‖q.

Recall that for f : {−1, 1}n → R+, and we write

‖f‖p = E[fp]1/p, p �= 0, ‖f‖0 = exp(E[ln f ]).

While the inequalities may seem like a curiosity, as p and q “norms” for p, q < 1
are rarely used in analysis (nor are they norms), the second inequality is quite
helpful in some social choice proofs. In more general settings, reverse hypercon-
traction is implied by standard hypercontraction and in fact by a weaker inequality,
called the modified log-Sobolev inequality. For a more general discussion of reverse
hypercontraction and its applications, see [59, 60].

For a voting function f : {−1, 1}n → {−1, 1}, Ii(f) is the probability that voter
i is the deciding voter, given all other votes. A stronger notion of the power of
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a voter or a small set of voters is that their vote affects the expected outcome on
average. A function whose expectation is not affected by any small set of voters is
called resilient. More formally,

Definition 2.14. We say that a function f : Ωn → R is (r, α)-resilient if∣∣∣E [f |XS = z]− E[f ]
∣∣∣ ≤ α,(3)

for all sets S with |S| ≤ r and all z ∈ ΩS .

Proposition 2.15. If f : {−1, 1}n → R satisfies

(4) max(|f̂(S)| : 0 < |S| ≤ r) ≤ 2−rα,

then f is (r, α)-resilient. In particular if f has all influences bounded by 4−rα2,
then f is (r, α)-resilient.

Proof. The second statement follows from the first one immediately as for every
nonempty S, we may choose i ∈ S, and then

f̂2(S) ≤ Ii(f) ≤ 4−rα2,

as needed. For the first statement, assume (4). Then∣∣∣E [f |XS = z]− E[f ]
∣∣∣

=
∣∣∣E[∑

T �=∅
f̂(T )zS∩TxT\S ]

∣∣∣ = ∣∣∣ ∑
∅�=T⊂S

f̂(T )zT

∣∣∣ ≤ 2|S|2−rα ≤ α. �

Resilient functions have long been studied in the context of pseudo-randomness;
see, e.g., [15].

Thus, the statement that a function has a high-influence variable means that
there exists a voter i that can have a noticeable effect on the outcome if voter i has
access to all other votes cast. The statement that a function is not resilient implies
that there is a bounded set of voters who have noticeable effect on the outcome on
average, i.e., with no access to other votes cast. Consider the following examples:

• Dictator has maximal influence of 1 (and all other 0). It is also not resilient
for r ≥ 1, α < 1.

• Majority has all influences of order n−1/2 and is also (r,O(r/
√
n))-resilient.

• An example of a resilient function with a high-influence variable is the
function

f(x) = x1 sgn(
n∑

i=2

xi).

Here coordinate 1 has influence 1 but the function is resilient. In terms of
voting, voter 1 has a lot of power if she has access to all other votes cast
(or the majority of the votes), but without access to this information, she
is powerless. Moreover, every small set of k voters can change the expected
value of f (by conditioning on their vote) by O(kn−1/2). Another simple
example is the parity function

∏n
i=1 xi, which is (r, 0)-resilient for every

r < n, but where all influences are 1.

The Majority Is Stablest theorem states that the extremal noise stability of
low-influence/resilient functions on the discrete cube is captured by Gaussian noise
stability. Here are three increasingly stronger statements along this line.
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Theorem 2.16 ([57, 58]). For every ε > 0, 0 ≤ ρ < 1, there exists a τ > 0 for
which the following holds. Let f, g : {−1, 1}n → [0, 1] satisfy max(Ii(f), Ii(g)) < τ
for all i. Then

〈f, g〉ρ ≤ 〈χEf , χEg〉ρ + ε.

This theorem is called “Majority Is Stablest” since 〈χEf , χEg〉ρ=limn→∞〈fn, gn〉ρ,
where fn(x) = χEf (n

−1/2
∑n

i=1 xi) and gn(x) = χEg(n
−1/2

∑n
i=1 xi).

It turns out that for two functions, it is in fact enough that one of them is low
influence to obtain the same results, i.e.:

Theorem 2.17 ([51], Prop. 1.15). For every ε > 0 and 0 ≤ ρ < 1, there exists a
τ (ρ, ε) > 0 for which the following holds. Let f, g : {−1, 1}n → [0, 1] be such that
min(Ii(f), Ii(g)) < τ for all i. Then

(5) 〈f, g〉ρ ≤ 〈χEf , χEg〉ρ + ε,

where one can take

(6) τ = εO(
log(1/ε) log(1/(1−ρ))

(1−ρ)ε ).

In particular the statement above holds when maxi Ii(f) < τ and g is any Boolean
function bounded between 0 and 1.

Moreover, one can replace the low-influence condition by the condition that the
function is resilient:

Theorem 2.18 ([53]). For every ε > 0, 0 ≤ ρ < 1, there exist r, α > 0 for
which the following holds. Let f : {−1, 1}n → [0, 1] be (r, α)-resilient, and let
g : {−1, 1}n → [0, 1] be an arbitrary function. Then

〈f, g〉ρ ≤ 〈χEf , χEg〉ρ + ε.

One can take

(7) r = O

(
1

ε2(1− ρ)τ

)
, α = O

(
ε2−r

)
,

where τ is given by (6).

Note in particular that for our current bounds for τ and for fixed ρ, r is expo-
nential in a polynomial in 1/ε and α is doubly exponential in a polynomial in 1/ε.
Similar statements for one function were proven before by [70] and appeared in [35].

There are two known proof strategies for Theorem 2.16. In [57, 58], the au-
thors applied a nonlinear invariance principle, which states that the distribution of
low-degree polynomials with low influences is nearly identical when the variables
are independent Bernoulli and when they are independent Gaussians. Thus, it is
possible to apply Theorem 2.8 ([12]) with error that diminishes with the influences.

A second approach [18,19] does not use Borell’s result and is based on induction
on dimension in the discrete cube. It is inspired by Bobkov’s inductive proof of the
Gaussian isoperimetric inequality [8].

Obtaining the stronger Theorems 2.17 and 2.18 from the weaker statements is
more straightforward using simple averaging arguments [51] and applying Boolean
regularity lemmas [35, 53, 70].



310 ELCHANAN MOSSEL

2.5. Are pluralities stablest? Given the asymptotic optimality of the stability
of Majority, it is natural to ask if a similar statement holds for low-influence or
resilient functions f : [q]n → [q] for q ≥ 3, where the conjectured most-stable
functions are now plurality functions. This was first asked in [41]. Similar to the
case of q = 2, there is an equivalent Gaussian question [33], which was conjectured
to be true in [33]. The shape of the conjectured optimal partition of Rn to q pasts
has a number of names, including the “Gaussian double-bubble”, the “standard
Y ”, and the “peace-sign”.

For the isoperimetric problem, corresponding to ρ → 1, the optimality of such a
partition for q = 3 was obtained in [17], under mild conditions and for all q and no
additional conditions, in recent work [47, 48].

The case of noise stability (i.e., constant ρ) turned out to be much more subtle.
Recall that in the binary case, low-influence functions f : {0, 1}n → {0, 1} cannot be
asymptotically more stable than majorities with the same expectation. In [30] the
authors showed that for any probability measure μ = (μ1, . . . , μq) �= (1/q, . . . , 1/q)
that has full support there exists low-influence functions that are more stable than
all plurality functions with the same expected values. Thus low influence functions
f : [q]n → [q] that are not balanced can be asymptotically more stable in all
pluralities with the same expectation. On the other hand, in the balanced case, for
q = 3, and for small positive values of ρ, the conjectured Gaussian double-bubble
was very recently shown to be optimal [31].

3. Paradoxes, noise stability, and reverse hypercontraction

3.1. Probability of paradox. Our next goal is to prove a quantitative version of
Arrow’s theorem following [52]. We will only discuss the case of three alternatives
but will allow different functions to determine different pairwise selections. Recall
that we consider voters who vote independently and where voter i votes uniformly
at random from the six possible rankings. Recall that we encode the six possible
rankings by vectors (x, y, z) ∈ {−1,+1}3 \ {±(1, 1, 1)}. Here x is +1/− 1 if a voter
ranks a above/below b, y is +1/ − 1 if voter ranks b above/below c, z is +1/ − 1
if voter ranks c above/below a. We will assume further that f, g, h : {−1, 1}n →
{−1, 1} are the aggregation functions for the a vs. b, b vs. c, and c vs. a preferences.
We will again use the following observation used in [37]: Since the binary predicate
ψ(a, b, c) = 1(a = b = c) for a, b, c ∈ {−1, 1} can be expressed as

ψ(a, b, c) =
1

4
(1 + ab+ ac+ bc),

we can write

P[f(x) = g(y) = h(z)] =
1

4

(
1 + E[f(x)g(y)] + E[g(y)h(z)] + E[h(z)f(x)]

)
=

1

4

(
1 + 〈f, g〉−1/3 + 〈g, h〉−1/3 + 〈h, f〉−1/3

)
,

where the last equality follows from the fact that the uniform distribution over
{±1}3 \ {±(1, 1, 1)} satisfies E[xiyi] = −1/3 and similarly for other pairs of coor-
dinates.

To state a quantitive version, we will say that a function f is ε-close to a function
g if P[f �= g] ≤ ε. The quantitative version we we wish to prove is the following.
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Theorem 3.1. For every ε > 0, there exists δ(ε) > 0 such that the following holds
for every n. If

P[f(x) = g(y) = h(z)] < δ,

then either two of the functions f, g, h are ε-close to constant functions of the op-
posite sign, or there exists a variable i such that f, g, and h are all ε-close to the
same dictator on voter i.

The main significance of Theorem 3.1 is that it is dimension independent. We get
the same bound no matter what the dimension = number of voters n is. This shows
that one cannot avoid the curse of paradoxes in voting by assuming the probability
of a paradox vanishes as the number of voters grows. The dependence of δ(ε) on ε
proven in [52] is worse than exponential, i.e., δ(ε) = exp(−C/ε21). Using the results
of [52], hypercontractivity and reverse-hypercontractivity, Keller [39] obtained the
optimal dependency, δ(ε) = Cε3.

Before discussing how to prove Theorem 3.1, we give a direct implication of the
Majority Is Stablest theorem in the case where the functions f = g = h are all
balanced so E[f ] = E[g] = E[h] = 0. Using the Majority Is Stablest theorem, we
obtain the following.

Theorem 3.2 ([37, 58]). For every ε > 0, there exists a τ > 0 such that if f, g, h :
{−1, 1}n → {−1, 1} satisfy E[f ] = E[g] = E[h] = 0 and have all influences bounded
above by τ , then

(8) P[f(x) = g(y) = h(z)] ≥ 1

4
+

3

4
〈2χ 1

2
− 1, 2χ 1

2
− 1〉− 1

3
− ε.

Again, the right hand side of equation (8) is the asymptotic probability that

P[f(x) = g(y) = h(z)] when f = g = h = 2χ 1
2
(n− 1

2

∑n
i=1 xi) − 1 are all given by

the same Majority function. Theorem 3.2 provides a surprising counter argument
to Condorcet’s arguments. Condorcet argued that pairwise ranking by Majority
is problematic as it results in a paradox and Theorem 3.2 shows that in fact Ma-
jority asymptotically minimizes the probability of a paradox among low-influence
functions.

We also have the following strengthening of Theorem 3.2.

Theorem 3.3. For every ε>0, there exist m,β>0 such that if f, g, h : {−1, 1}n→
{−1, 1} satisfy E[f ] = E[g] = E[h] = 1/2 and f , g, and h are all (m,β)-resilient,
then

P[f(x) = g(y) = h(z)] ≥ 1

4
+

3

4
〈2χ 1

2
− 1, 2χ 1

2
− 1〉− 1

3
− ε.

3.2. Kalai’s proof for the balanced case. The special case of Arrow’s theorem,
where all the functions are balanced, was the first where a quantitative Arrow’s
theorem was proved by Kalai [37]. The function f : {−1, 1}n → {−1, 1} is balanced
if P[f = 1] = P[f = −1] = 1/2 which is equivalent to E[f ] = 0. In terms of voting
this means that a priori both outcomes of f are equally likely.

In this short section we provide the statement and the proof of this special case.

Theorem 3.4 ([37]). There exists a constant C such that if f, g, h : {−1, 1}n →
{−1, 1} satisfy E[f ] = E[g] = E[h] = 0 and

P[f(x) = g(y) = h(z)] ≤ ε,

then there exists a dictator function d, such that

P[f(x) �= d(x)] ≤ Cε, P[g(y) �= d(y)] ≤ Cε, P[h(z) �= d(z)] ≤ Cε.
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The proof of the theorem will use the Friedgut–Kalai–Naor theorem [25], which
will be proved at the end of the section.

Theorem 3.5 ([25]). There exists a constant C such that if f : {−1, 1}n → {−1, 1}
satisfies E[f ] = 0 and

(9)
∑

S:|S|=1

f̂2(S) = 1− ε,

Then there exists a dictator d such that P[f(x) �= d(x)] ≤ Cε.

We now prove Theorem 3.4.

Proof. Recalling

P[f(x) = g(y) = h(z)] =
1

4

(
1 + 〈f, g〉−1/3 + 〈g, h〉−1/3 + 〈h, f〉−1/3

)
and Theorem 2.4, it is clear that to prove Theorem 3.4 it suffices to prove the
following. There exists a constant C such that if f, g : {−1, 1}n → {−1, 1} satisfy
E[f ] = E[g] = 0 and

(10) 〈f, g〉−1/3 ≤ −1

3
+ ε,

then there exists a dictator d, such that

(11) P[f(x) �= d(x)] ≤ Cε, P[g(y) �= d(y)] ≤ Cε.

Note that

〈f, g〉−1/3 ≥ (−1/3)
∑

S:|S|=1

f̂(S)ĝ(S)+ (−1/9)
∑

S:|S|>1

|f̂(S)ĝ(S)| ≥ −1

3
γ− 1

9
(1− γ),

where γ =
∑

S:|S|=1 |f̂(S)ĝ(S)|. Thus if (10) holds, then

(12)
∑

S:|S|=1

|f̂(S)ĝ(S)| ≥ 1− ε.

It therefore suffices to show that if (12) holds, then (11) holds. By the Cauchy–
Schwarz inequality, ∑

S:|S|=1

f̂2(S) ≥ (1− ε)2 ≥ 1− 2ε.

Therefore, by the Friedgut–Kalai–Naor theorem, Theorem 3.5, f is CFKNε-close to
a dictator d1. Similarly, g is CFKNε-close to a dictator d2. Note that the statement
of the theorem is trivial if C ≥ 8 and ε ≤ 1/8, so assume ε ≤ 1/8. It remains to
show that d1 = d2. Note that if d1 �= d2, then

P[f(x) �= g(x)]

≥ P[d1(x) �= d2(x)]− P[d1(x) �= f(x)]− P[d2(x) �= g(x)] ≥ 1

2
− 2

1

8
= 1/4.

However, by (12) and using the fact that
∑

S |f̂(S)ĝ(S)| ≤ 1,

E[f(x)g(x)] =
∑
S

f̂(S)ĝ(S) ≥ 1− 2ε,

and therefore P[f(x) �= g(x)] ≤ ε. The assertion follows. �
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We will now prove the Friedgut–Kalai–Naor theorem, Theorem 3.5, so that the
results of this section are self-contained. The proof gives a flavor of some of the
reasoning applied in analysis of Boolean function but is not needed for any of the
material in the following sections. The proof is similar to the proof in [69]. For an
alternative proof see [34]. We will use the following corollary of hypercontraction.

Lemma 3.6. Let q(x) =
∑

i<j qi,jxixj. Then

E[q4] ≤ 81E[q2]2.

Proof. By hypercontraction if η2 ≤ 1/3, then

‖Tηq‖4 ≤ ‖q‖2 =⇒ E[(Tηq)
4] ≤ E[q2]2.

On the other hand,

E[(Tηq)
4] = E[(

∑
i<j

η2qi,jxixj)
4] = η8E[q4],

so by choosing η = 1/
√
3, we get

E[q4] ≤ η−8
E[q2]2. �

The proof will also use the Paley–Zygmund inequality stating that for a positive
random variable Z and for 0 ≤ θ ≤ 1 it holds that

P[Z ≥ θE[Z]] ≥ (1− θ)2
E[Z]2

E[Z2]
.

Applying this inequality for Z = q2 and using Lemma 3.6 implies the following.

Corollary 3.7. For 0 ≤ θ ≤ 1,

(13) P[q2 ≥ θE[q2]] ≥ (1− θ)2

81
.

We now prove Theorem 3.5.

Proof. Let

�(x) =
∑
|S|≤1

f̂(S)xS, h(x) =
∑
|S|>1

f̂(S)xS, q(x) = 2
∑
i<j

f̂({i})f̂({j})xixj .

Note that f = �+ h and that

�2(x) =
∑
i

f̂2(i) + q(x) = 1− ε+ q(x).

Note that f2 = 1 implies that �2 + h(2f − h) = 1. Moreover using the fact that
|f | = 1, for all c ≥ 1 and sufficiently small ε,

P[h(2f − h) ≥ 3c
√
ε] ≤ P[|h|(|h|+ 2) ≥ 3c

√
ε] ≤ P[|h(x)| ≥ c

√
ε] ≤ E[h2]

c2ε
≤ 1

c2
.

Therefore,

P[|q(x)| ≥ (3c+ 1)
√
ε]

= P[|�2 − 1 + ε| ≥ (3c+ 1)
√
ε] ≤ P[|h(2f − h)|+ ε ≥ (3c+ 1)

√
ε] ≤ 1

c2
.

In particular for c = 10, we obtain

P[q2(x) ≥ 1000ε] ≤ 1

100
.
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On the other hand, applying (13) with θ = 1/20, implies that

P[q2 ≥ E[q2]/20] >
1

100
,

and therefore E[q2] ≤ Cε, with C = 20000. Now

Cε≥E[q2] = 4
∑
i<j

f̂2(i)f̂2(j)=2

(∑
i

f̂2(i)

)2

−2
∑
i

f̂4(i)=2(1−ε)2−2
∑
i

f̂4(i),

so we obtain that

max
i

f̂2(i) ≥
∑
i

f̂4(i) ≥ (1− ε)2 − Cε = 1− O(ε),

as needed. �

3.3. Sketch of proof of the general case. The case where the functions are not
balanced goes through a longer route [52]. We will sketch the proof of Theorem 3.1,
which we restate here.

Theorem 3.8. For every ε > 0, there exists δ(ε) > 0 such that the following holds
for every n. If

P[f(x) = g(y) = h(z)] < δ,

then either two of the functions f, g, h are ε-close to constant functions of the op-
posite sign, or there exists a variable i such that f, g, and h are all ε-close to the
same dictator on voter i.

The main steps of the proof are the following.

I. First a Gaussian version of the theorem is formulated and proved. One
advantage of Gaussian space is that it has no dictators, and therefore, the
statement is simpler: that unless some choices are almost fixed, there is a
good probability of paradox.

II. Once a Gaussian version is proven and using the Majority Is Stablest the-
orem, one can deduce the same statement as long as all of the influences
are small. In fact, due to Theorem 2.17, it is sufficient that each variable
is influential for at most one of the functions f, g, h.

III. Using the reverse hypercontractivity inequality by Borell [11], Theorem
2.13, it is easy to show that if two voters i, j have high influence for two
different functions f, g, then the probability of paradox is high.

IV. The remaining case is where there is only one voter who is influential. In
this case, by conditioning on the vote of this voter and applying the low-
influence result in II, it is possible to conclude that the function is either
close to a dictator or has a high probability of paradox.

To provide more of a taste of the proof, we state the Gaussian version of Arrow’s
theorem in I and give more details on the application of the reverse hypercontrac-
tivity inequality in III.

The Gaussian version corresponds to a situation where the functions f, g, h
can only “see” averages of large subsets of the voters. We thus define a three-
dimensional normal vector N . The first coordinate of N is supposed to represent
the deviation of the number of voters where a ranks above b from the mean. The
second coordinate is for b ranking above c, and the last coordinate for c ranking
above a.
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Since averaging maintains the expected value and covariances, we define

E[N2
1 ] = E[N2

2 ] = E[N2
3 ] = 1, E[N1N2] = E[N2N3] = E[N3N1] = −1/3.

We let N(1), . . . , N(n) be independent copies of N .We write N =(N(1), . . . , N(n)),
and for 1 ≤ i ≤ 3 we write Ni = (N(1)i, . . . , N(n)i). The Gaussian version of
Arrow’s theorem states the following.

Theorem 3.9. For every ε > 0 there exists a δ = δ(ε) > 0 such that the following
hold. Let φ1, φ2, φ3 : Rn → {−1, 1}. Assume that for all 1 ≤ i �= j ≤ 3 and all
u ∈ {−1, 1} it holds that

(14) P[φi(Ni) = u] + P[φj(Nj) = −u] ≥ 2ε.

Then

P[φ1(N1) = φ2(N2) = φ3(N3)] ≥ δ.

Moreover, one may take δ = (ε/2)18.

Interestingly it is not hard to prove Theorem 3.9 either by Borell’s half-space
result, Theorem 2.8, or using a Gaussian variant of his reverse hypercontraction
result, Theorem 2.13.

We next apply reverse hypercontraction in the setting of III. We say that co-
ordinate 1 is pivotal for f at (x3, . . . , xn) if there exists a value of x2 such that
f(−x1, x2, . . . , xn) �= f(x1, x2, . . . , xn). We first prove the following.

Lemma 3.10. Suppose that I1(f) > ε and I2(g) > ε. Let

B = {((xi, yi, zi))
n
i=3 : 1 is pivotal for f(·, ·, x3, . . . , xn)

and 2 is pivotal for g(·, ·, y3, . . . , yn))}.
Then

P[B] ≥ ε3.

Proof. Let

B1 = {((x, y, z))ni=3 : 1 is pivotal for f(·, ·, x3, . . . , xn)},
B2 = {((x, y, z))ni=3 : 2 is pivotal for g(·, ·, y3, . . . , yn)}.

Then P[B1] ≥ I1(f) > ε and P[B2] ≥ I2(g) > ε, and our goal is to obtain a bound
on P[B1 ∩ B2]. Note that the event B1 is determined by x and the event B2 is
determined by y. So the proof follows reverse hypercontraction with ρ = −1/3. �

We can therefore conclude that:

Theorem 3.11. Suppose that there exist voters i and j such that

Ii(f) > ε, Ij(g) > ε.

Then P[f(x) = g(y) = h(z)] > 1
36ε

3.

Proof. Without loss of generality assume that i = 1 and j = 2. Let B = B1 ∩ B2,
where B1 and B2 are the events from Lemma 3.10. By the lemma we have P[B] ≥
ε3. Note that conditioned on any ((x, y, z)ni=3) ∈ B, the functions f, g, and h on
coordinates 1 and 2 satisfy the condition of Arrow’s theorem, Theorem 1.3. Thus
with probability at least 1/36, the outcome is not transitive. Therefore,

P[f(x) = g(y) = h(z)] ≥ 1

36
P[B] ≥ 1

36
ε3. �
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3.4. More general statements. In this subsection we discuss a more general
statement of Arrow’s theorem which is closer to its original formulation and its
quantitative counterpart. This requires that we introduce a number of additional
definitions. The reduction from the more general statements of Arrow’s theorem to
the three candidate case discussed above will be carried out in this subsection.

3.4.1. General setup. Consider A = {a, b, . . .}, a set of k ≥ 3 alternatives. A
transitive preference over A is a ranking of the alternatives from top to bottom
where ties are not allowed. Such a ranking corresponds to a permutation σ of the
elements of A where σi is the rank of alternative i. The set of all rankings will be
denoted by Sk.

A constitution is a function F that associates to every n-tuple σ=(σ(1), . . . , σ(n))
of transitive preferences (also called a profile), and every pair of alternatives a, b
a preference between a and b. Some key properties of constitutions include the
following.

• Transitivity. The constitution F is transitive if F (σ) is transitive for all σ.
In other words, for all σ and for all three alternatives a, b, and c, if F (σ)
prefers a to b, and prefers b to c, it also prefers a to c. Thus F is transitive
if and only if its image is a subset of the permutations on k elements.

• Independence of irrelevant alternatives (IIA). The constitution F satisfies
the IIA property if for every pair of alternatives a and b, the social ranking
of a vs. b (higher or lower) depends only on their relative rankings by all
voters. The IIA condition implies that the pairwise preference between
any pair of outcomes depends only on the individual pairwise preferences.
Thus, if F satisfies the IIA property, then there exists functions fa>b for
every pair of candidates a and b such that

F (σ) = ((fa>b(xa>b) : {a, b} ∈
(
k

2

)
).

• Unanimity. The constitution F satisfies unanimity if the social outcome
ranks a above b whenever all individuals rank a above b.

• The constitution F is a dictator on voter i if F (σ) = σ(i) for all σ or if
F (σ) = −σ for all σ, where −σ(i) is the ranking σk(i) > σk−1(i) · · ·σ2(i) >
σ1(i) by reversing the ranking σ(i).

Arrow’s theorem states [1, 2] the following.

Theorem 3.12. Any constitution on three or more alternatives which satisfies
transitivity, IIA, and unanimity is a dictatorship.

It is possible to give a characterization of all constitutions satisfying IIA and
transitivity. Results of Wilson [74] provide a partial characterization for the case
where voters are allowed to rank some alternatives as equal. In order to obtain
a quantitative version of Arrow’s theorem, we give an explicit and complete char-
acterization of all constitutions satisfying IIA and transitivity in the case where
all voters vote using a strict preference order. Write Fk(n) for the set of all con-
stitutions on k alternatives and n voters satisfying IIA and transitivity. For the
characterization it is useful write A >F B for the statement that for all σ it holds
that F (σ) ranks all alternatives in A above all alternatives in B. We will further
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write FA for the constitution F restricted to the alternatives in A. The IIA condi-
tion implies that FA depends only on the individual rankings of the alternatives in
the set A. The characterization of Fk(n) we prove is the following.

Theorem 3.13. The class Fk(n) consist exactly of all constitutions F satisfying
the following. There exists a partition of the set of alternatives into disjoint sets
A1, . . . , Ar such that the following hold.

• A1 >F A2 >F · · · >F Ar.
• For all As such that |As| ≥ 3, there exists a voter j such that FAs

is a
dictator on voter j.

• For all As such that |As| = 2, the constitution FAs
is a nonconstant function

of the preferences on the alternatives in As.

We note that for all k ≥ 3 all elements of Fk(n) are not desirable as constitutions.
Indeed elements of Fk(n) either have dictators whose vote is followed with respect
to some of the alternatives or they always rank some alternatives on top some
other. For a related discussion see [74]. The statement above follows easily from
[74, Theorem 3]. The exact formulation is taken from [50].

The main goal of the current section is to provide a quantitative version of
Theorem 3.13 assuming voters vote independently and uniformly at random. Note
that Theorem 3.13 above implies that if F �∈ Fk(n), then the probability of a
paradox, P (F ), satisfies P (F ) ≥ (k!)−n. However if n is large and the probability
of a nontransitive outcome is indeed as small as (k!)−n, one may argue that a
nontransitive outcome is so unlikely that in practice Arrow’s theorem is irrelevant.

Theorem 3.14. For every number of alternatives k ≥ 1 and 0.01 > ε > 0, there
exists a δ = δ(ε), such that for every n ≥ 1, if F is a constitution on n voters and
k alternatives satisfying

• IIA and
• P (F ) < δ,

then there exists G ∈ Fk(n) satisfying D(F,G) < k2ε.

We therefore obtain the following.

Corollary 3.15. For any number of alternatives k ≥ 3 and ε > 0, there exists a
δ = δ(ε), such that for every n, if F is a constitution on n voters and k alternatives
satisfying

• IIA, and
• F is k2ε-far from any dictator, so D(F,G) > k2ε for any dictator G,
• for every pair of alternatives a and b, the probability that F ranks a above
b is at least k2ε,

then the probability of a nontransitive outcome, P (F ), is at least δ.

Proof. Assume by contradiction that P (F ) < δ. Then by Theorem 3.14 there
exists a function G ∈ Fn,k satisfying D(F,G) < k2ε. Note that for every pair of
alternatives a and b it holds that

P[G ranks a above b] ≥ P[F ranks a above b]−D(F,G) > 0.

Therefore for every pair of alternatives there is a positive probability that G ranks
a above b. Thus by Theorem 3.14 it follows that G is a dictator which is a contra-
diction. �
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Remark 3.16. Note that ifG ∈ Fk(n) and F is any constitution satisfyingD(F,G) <
k2ε, then P (F ) < k2ε.

Remark 3.17. The bounds stated in Theorem 3.14 and Corollary 3.15 in terms of
k and ε are not optimal. We expect that the true dependency has δ which is some
fixed power of ε. Moreover, we expect that the bound D(F,G) < k2ε should be
improved to D(F,G) < ε.

3.4.2. Nisan’s argument. Noam Nisan argued in his blog [68] that the natural way
to study quantitative versions of Arrow’s theorem is to look at functions from Sn

k

to Sk and check to what extent they satisfy the IIA property. That is, while so
far we insisted on the IIA condition and checked how far we are from transitivity,
Nisan’s suggested that it is more natural to insist on transitivity and ask how far
we are from IIA. The Sn point of view of quantitative versions of Arrow’s theorem
was also taken in [22].

To formalize his approach, Nisan defines a function to be η-IIA if for every two
alternatives a and b, it holds that P[F (σ) �= F(τ )] ≤ η, where σ is uniformly chosen
and τ is uniformly chosen conditioned on the a, b ranking at τ being identical to
that of σ for all voters. In his blog Nisan sketches how a quantitative Arrow’s
theorem proven for the definition used here implies a quantitative Arrow’s theorem
for his definition. We briefly repeat the argument with some minor modifications
and corrections.

Fix alternatives a, b and write pa,b : {0, 1}n → [0, 1] for the probability that,
given a vector of n binary preferences between a and b, F ranks a above b. If
F satisfies the IIA property, then pa,b ∈ {0, 1} almost surely. If F is η-IIA, then
E[2pa,b(1− pa,b)] ≤ η, and therefore E[min(pa,b, 1− pa,b)] ≤ η.

Assume a quantitative Arrow’s theorem such as the one proven here with param-
eters ε, δ, and suppose by contradiction that F : Sn

k → Sk is η-IIA and ε-far from
Fk(n) for some small η to be determined later. Define a function G as follows. Let
G(σ) rank a above b if for the majority of τ which agree with σ in the a, b orderings
it holds that F (τ ) ranks a above b. We note that for every pair of alternatives a, b
it holds that

P[F (σ), G(σ) have different order on a, b] = E[min(pa,b, 1− pa,b)] ≤ η.

By taking a union bound on all pairs of alternatives, this implies that D(F,G) ≤(
k
2

)
η ≤ k2η/2. Note further that G satisfies the IIA property by definition. Since

F is transitive and from the quantitative Arrow’s theorem proven here we conclude
that

D(F,G) ≥ P[P (G)] ≥ δ,

and a contradiction is implied unless k2η/2 ≥ δ. Thus the Arrow’s theorem for the
η-IIA definition holds with η(ε) = 2δ/k2. (We briefly note that moving from F to
G does not preserve the property of the function being balanced so in the setting
of Kalai’s theorem an additional argument is needed.)

3.4.3. Proof of Theorem 3.14.

Proof. The proof follows by applying Theorem 3.1 to triplets of alternatives. As-
sume P (F ) < δ(ε).

Note that if g1, g2 : {−1, 1}n → {−1, 1} are two different functions, each of which
is either a dictator or a constant function, then D(g1, g2) ≥ 1/2. Therefore, for all
a, b it holds that D(fa>b, g) < ε/10 for at most one function g which is either a
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dictator or a constant function. In case there exists such function, we let ga>b = g;
otherwise, we let ga>b = fa>b.

Let G be the social choice function defined by the functions ga>b. Clearly,

D(F,G) <

(
k

2

)
ε < k2ε.

The proof would follow if we could show P (G) = 0 and, therefore, G ∈ Fk(n).
To prove that G ∈ Fk(n) it suffices to show that for every set A of three alterna-

tives, it holds that GA ∈ F3(n). Since P (F ) < δ implies P (FA) < δ, Theorem 3.1
implies that there exists a function HA ∈ F3(n) such that D(HA, FA) < ε. There
are two cases to consider:

• HA is a dictator. This implies that fa>b is ε-close to a dictator for each
a, b and therefore fa>b = ga>b for all pairs a, b, so GA = HA ∈ F3(n).

• There exists an alternative (say a) thatHA always ranks at the top/bottom.
In this case we have that fa>b and f c>a are at most ε-far from the constant
functions 1 and −1 (or −1 and 1). The functions ga>b and gc>a have to take
the same constant values, and therefore again we have that GA ∈ F3(n).

The proof follows. �

Remark 3.18. Note that this proof is generic in the sense that it takes the quantita-
tive Arrow’s result for three alternatives as a black box and produces a quantitative
Arrow’s result for any k ≥ 3 alternatives.

3.4.4. Other probability measures. Given the right analytic tools, it is not hard to
generalize the proof of Theorems 3.1 and 3.14 to other product distributions. This
is done in [60] where some of the tools related to reverse hypercontractivity are
developed. In [60] the authors obtain the following extension.

Theorem 3.19 (Quantitative Arrow’s theorem for general distribution). Let � be
general distribution on Sk with � assigning positive probability to each element of Sk.
Let P denote the distribution �⊗n on Sn

k . Then for any number of alternatives k ≥ 3

and ε > 0, there exists δ = δ(ε, ρ) > 0, such that for every n, if F : Sn
k → {−1, 1}(

k
2)

satisfies

• IIA and
• P{F (σ) is transitive} ≥ 1− δ.

Then there exists a function G which is transitive and satisfies the IIA property and
P{F (σ) �= G(σ)} ≤ ε.

3.5. Other variants. In concluding this section, we discuss the optimal low-influ-
ence function for voting in the case of k > 3 alternatives. When we are considering
k ≥ 3 alternatives, we want to define more formally the possible outcome in Arrow’s
voting. Since for every two alternatives a winner is decided, the aggregation results
in a tournament Gk on the set [k]. Recall that Gk is a tournament on [k] if it is a
directed graph on the vertex set [k] such that for all a, b ∈ [k] either (a > b) ∈ Gk

or (b > a) ∈ Gk. Given individual rankings (σi)
n
i=1 the tournament Gk is defined

as follows.
Let xa>b(i) = 1 if σi(a) > σi(b), and let xa>b(i) = −1 if σi(a) < σi(b). Note

that xb>a = −xa>b.
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The binary decision between each pair of candidates is performed via an anti-
symmetric function f : {−1, 1}n → {−1, 1} so that f(−x) = −f(x) for all x ∈
{−1, 1}. Here we assume that each two candidates are compared using the same
function f . Moreover, since we require that the comparison between a and b and
b and a will be the same, we require that f is antisymmetric. The tournament
Gk = Gk(σ; f) is then defined by letting (a > b) ∈ Gk if and only if f(xa>b) = 1.

Note that there are 2(
k
2) tournaments while there are only k! = 2Θ(k log k) linear

rankings. For the purposes of social choice, some tournaments make more sense
than others.

Definition 3.20. We say that a tournament Gk is linear if it is acyclic. We will
write Acyc(Gk) for the logical statement that Gk is acyclic. Nonlinear tournaments
are often referred to as nonrational in economics as they represent an order where
there are three candidates a, b, and c such that a is preferred to b, b is preferred to
c, and c is preferred to a.

We say that the tournament Gk is a unique max tournament if there is a can-
didate a ∈ [k] such that for all b �= a it holds that (a > b) ∈ Gk. We write
UniqueBest(Gk) for the logical statement that Gk has a unique max. Note that the
unique max property is weaker than linearity. It corresponds to the fact that there
is a candidate that dominates all other candidates.

A generalization of Borell’s result along with a general invariance principle [49,51]
allows us to prove the following [33].

Theorem 3.21. For any k ≥ 1 and ε > 0 there exists a τ (ε, k) > 0 such that for
any antisymmetric f : {−1, 1}n → {−1, 1} satisfying maxi Infi f ≤ τ ,

(15) P[UniqueBestk(f)] ≤ lim
n→∞

P[UniqueBestk(Majn)] + ε.

An alternative proof can be derived via multidimensional generalization of the
inductive Majority Is Stablest theorem using a general notion of ρ-concavity [44,63].

It is not hard to show that

(16) P[UniqueBestk(Majn)] = k−1+o(1).

To prove (16) one can use a multidimensional CLT to represent the advantage of
candidate 1 over candidate i as √

1

3
X +

√
2

3
Zi,

where X,Z2, . . . , Zk are i.i.d. N(0, 1) random variables.
Other than the case k = 3, where the notions of unique-max and linear tourna-

ments coincide, very little is known about which function maximizes the probability
of a linear order. Even computing this probability for Majority provides a surprising
result [51]:

Proposition 3.22. We have

(17) lim
n→∞

P[Acyc(Gk(σ;Majn))] = exp(−Θ(k5/3)).

We find this asymptotic behavior quite surprising. Indeed, given the previous
results that the probability that there is a unique max is k−1+o(1), one may expect
that the probability that the order is linear would be

k−1+o(1)(k − 1)−1+o(1) · · · = (k!)−1+o(1).
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However, it turns out that there is a strong negative correlation between the event
that there is a unique maximum among the k candidates and that among the other
candidates there is a unique max.

Proof. We use the multidimensional CLT. Let

Xa>b =
1√
n
(|{σ : σ(a) > σ(b)}| − |{σ : σ(b) > σ(a)}|) .

By the CLT the collection of variables (Xa>b)a �=b converges to a joint Gaussian
vector (Na>b)a �=b satisfying for all distinct a, b, c, d,

Na>b = −Nb>a, Cov[Na>b, Na>c] =
1

3
, Cov[Na>b, Nc>d] = 0,

and Na>b ∼ N(0, 1) for all a and b.
We are interested in providing bounds on

P [∀a > b : Na>b > 0]

as the probability that the resulting tournament is an order is obtained by multi-
plying this quantity by a k! = exp(Θ(k log k)) factor.

We claim that there exist independent N(0, 1) random variablesXa for 1 ≤ a ≤ k
and Za>b for 1 ≤ a �= b ≤ k such that

Na>b =
1√
3
(Xa −Xb + Za>b),

where Za>b = −Zb>a. This follows from the fact that the joint distribution of
Gaussian random variables is determined by the covariance matrix (this is noted in
the literature in [67]).

We now prove the upper bound. Let α be a constant to be chosen later. Note
that for all α and large enough k it holds that

P [|Xa| > kα] ≤ exp(−Ω(k2α)).

Therefore the probability that for at least half of the a’s in the interval [k/2, k] it
holds that |Xa| > kα is at most

exp(−Θ(k1+2α)).

Let’s assume that at least half of the a’s in the interval [k/2, k] satisfy that
|Xa| < kα. We claim that in this case the number of pairs a > b such that
Xa, Xb ∈ [−kα, kα] and Xa −Xb < 1 is Ω(k2−α).

For the last claim, partition the interval [−kα, kα] into subintervals of length
1 and note that at least Ω(k) of the points belong to subintervals which contain
at least Ω(k1−α) points. This implies that the number of pairs a > b satisfying
|Xa −Xb| < 1 is Ω(k2−α).

Note that, for such pair a > b in order that Na>b > 0, we need that Za>b > −1
which happens with constant probability.

We conclude that, given that half of the X’s fall in [−kα, kα], the probability of
a linear order is bounded by

exp(−Ω(k2−α)).

Thus overall we have bounded the probability by

exp(−Ω(k1+2α)) + exp(−Ω(k2−α)).

The optimal exponent is α = 1/3 giving the desired upper bound.
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For the lower bound we condition on Xa taking value in (a, a + 1)k−2/3. Each
probability is at least exp(−O(k2/3)) and therefore the probability that all Xa take
such values is

exp(−O(k5/3)).

Moreover, conditioned on Xa taking such values, the probability that

Za>b > Xb −Xa,

for all a > b is at least(
k−1∏
i=0

Φ(i)k
2/3

)k

≥
( ∞∏

i=0

Φ(i)

)k5/3

= exp(−O(k5/3)).

This proves the required result. �

4. Manipulation and isoperimetry

4.1. Quantitive manipulation. The Gibbard–Satterthwaite theorem, Theorem
1.4, states that under natural conditions, there exist profiles of voters such that
at least one voter can manipulate the vote. We are interested in quantitative
versions of the statement. A natural approach is to view quantitative statements as
isoperimetric results. In classical isoperimetric theory, the goal is to find conditions
that establish a large boundary between sets. In the context of manipulation we
can consider a voter who can manipulate as a special boundary point, and our goal
is to prove that there are many boundary points.

It is natural to consider the following graph where the vertex set is Sn
k—the set of

all voting profiles and there are edges between voting profiles that differ at a single
voter. The statement of the Gibbard–Satterthwaite theorem can be interpreted in
terms of this graph: for certain natural partitions of Sn

k into k parts, there is an
edge of the graph between two different parts that corresponds to a manipulation.
It is not hard to see that the existence of many edges between different parts of the
graph follows from classical isoperimetric theory.

Thus one may consider quantitative statements of the Gibbard–Satterthwaite
theorem as isoperimetric statements: It is not only the case that there are many
edges between different parts of the partition, but it is also the case that many of
these edges correspond to manipulation by one of the voters.

In the classical setup, isoperimetry and concentration of measure are closely
related. In particular, standard concentration of measure results imply that for
any set of fractional size at least ε in Sn

k , the set of profiles at graph distance at
most C(ε)

√
n contains almost the whole graph. However, it is not known under

what conditions typically a small coalition can manipulate.
It may be useful to consider the following examples:

• Consider the plurality function with q ≥ 3 alternatives and n voters. For
a voter to be able to manipulate, it must hold that the difference between
the top candidate and the second to top is at most 1. This implies that the
probability that there exists a voter who can manipulate is O(1/

√
n).

A second question we can ask is what is the minimal size s of a coalition
S ⊂ [n] that can manipulate with probability close to 1. Since the difference
between the top candidate and the second candidate is typically of order√
n, it is clear that the size has to be at least order

√
n, and in fact it is easy

to see that if s/
√
n → ∞ that for every fixed set S of size s, with probability
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1 − o(1) there exists a subset T ⊂ S that can change the outcome of the
elections by manipulating. Indeed if a is the top candidate, b is the second
from the top, and c is a candidate different than a and b, we may take T
to be all the voters in S that rank c above b above a. If these voters would
rank b as their top candidate, the outcome will be b which is more favorable
to them.

• Consider the case q = 2 and the function g(x) = −f(x) where f is the
tribes function. The tribes function [6] is a balanced monotone function,
where all influences are O(logn/n). In this case a voter can manipulate
if and only if they are influential. Therefore, in general, we cannot expect
that the probability that an individual voter can manipulate is higher than
O(logn/n).

4.1.1. A quantitive Gibbard–Satterthwaite theorem. Our goal in this section is to
sketch the proof of a quantitative version of the manipulation theorem. We will
mostly follow [61,62] who proved a pretty general average manipulation theorem for
a single voter. Some special cases of the theorem were known before: in particular
in the case of three alternatives, this was proved by Friedgut, Kalai, Keller, and
Nisan [24, 26]. The original proofs of Gibbard–Satterthwaite theorem were carried
out by reduction to Arrow’s theorem. The arguments of [24,26] succeed in providing
a quantitive reduction to the quantitive Arrow’s theorem, but only in the case of
k = 3 alternatives.

Here our goal is to sketch the following result: if k ≥ 3 and the SCF f is ε-far
from the family of nonmanipulable functions, then the probability of a ranking
profile being manipulable is bounded from below by a polynomial in 1/n, 1/k, and
ε. We continue by stating the results and their implications, and sketching the
main steps of the proof.

4.1.2. Definitions and formal statements. Recall that our basic setup consists of n
voters electing a winner among k alternatives via an SCF f : Sn

k → [k]. We now
define manipulability in more detail.

Definition 4.1 (Manipulation points). Let σ ∈ Sn
k be a ranking profile. Write

a
σi

> b to denote that alternative a is preferred over b by voter i. An SCF f : Sn
k → [k]

is manipulable at the ranking profile σ ∈ Sn
k if there exists a σ′ ∈ Sn

k and an i ∈ [n]
such that σ and σ′ only differ in the ith coordinate and

f(σ′)
σi

> f(σ).

In this case we also say that σ is a manipulation point of f , and that (σ, σ′) is a
manipulation pair for f . We say that f is manipulable if it is manipulable at some
point σ. We also say that σ is an r-manipulation point of f if f has a manipulation
pair (σ, σ′) such that σ′ is obtained from σ by permuting (at most) r adjacent
alternatives in one of the coordinates of σ. (We allow r > k—any manipulation
point is an r-manipulation point for r > k.)

Let M (f) denote the set of manipulation points of the SCF f , and for a given r
let Mr (f) denote the set of r-manipulation points of f . When the SCF is obvious
from the context, we write simply M and Mr.

We first recall the Gibbard–Satterthwaite theorem (stated as Theorem 1.4 in the
Introduction).
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Theorem 4.2 (Gibbard and Satterthwaite [28, 71]). Any SCF f : Sn
k → [k] which

takes at least three values and is not a dictator (i.e., not a function of only one
voter) is manipulable.

This theorem is tight in the sense that monotone SCFs, which are dictators or
only have two possible outcomes, are indeed nonmanipulable (a function is non-
monotone, and clearly manipulable, if for some ranking profile a voter can change
the outcome from, say, a to b by moving a ahead of b in her preference). It is useful
to introduce a refined notion of a dictator before defining the set of nonmanipulable
SCFs.

Definition 4.3 (Dictator on a subset). For a subset of alternatives H ⊆ [k], let
topH be the SCF on one voter whose output is always the top-ranked alternative
among those in H.

Definition 4.4 (Nonmanipulable SCFs). We denote by

NONMANIP ≡ NONMANIP (n, k)

the set of nonmanipulable SCFs, which is the following:

NONMANIP (n, k) =
{
f : Sn

k → [k] | f (σ) = topH (σi)

for some i ∈ [n] , H ⊆ [k] , H �= ∅
}

∪
{
f : Sn

k → [k] | f
is a monotone function taking on exactly two values

}
.

When the parameters n and k are obvious from the context, we omit them.

Another useful class of functions, which is larger than NONMANIP but which
has a simpler description, is the following.

Definition 4.5. Define, for parameters n and k that remain implicit,

NONMANIP=
{
f : Sn

k → [k] | f
only depends on one coordinate or takes at most two values

}
.

The notation should be thought of as “closure” rather than “complement”.
As discussed previously, our goal is to study manipulability from a quantitative

viewpoint, and in order to do so we need to define the distance between SCFs.

Definition 4.6 (Distance between SCFs). The distance D(f, g) between two SCFs
f, g : Sn

k → [k] is defined as the fraction of inputs on which they differ: D (f, g) =
P (f (σ) �= g (σ)), where σ ∈ Sn

k is uniformly selected. For a class G of SCFs, we
write D (f,G) = ming∈G D (f, g).

The concepts of anonymity and neutrality of SCFs will be important to us, so
we define them here.

Definition 4.7 (Anonymity). An SCF is anonymous if it is invariant under changes
made to the names of the voters. More precisely, an SCF f : Sn

k → [k] is anonymous
if for every σ = (σ1, . . . , σn) ∈ Sn

k and every π ∈ Sn,

f (σ1, . . . , σn) = f
(
σπ(1), . . . , σπ(n)

)
.
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Definition 4.8 (Neutrality). An SCF is neutral if it commutes with changes made
to the names of the alternatives. More precisely, an SCF f : Sn

k → [k] is neutral if
for every σ = (σ1, . . . , σn) ∈ Sn

k and every π ∈ Sk,

f (π ◦ σ1, . . . , π ◦ σn) = π (f (σ)) .

Our goal is to sketch the proof of the following theorem.

Theorem 4.9. Suppose we have n ≥ 1 voters, k ≥ 3 alternatives, and an SCF
f : Sn

k → [k] satisfying D (f,NONMANIP) ≥ ε. Then

(18) P (σ ∈ M (f)) ≥ P (σ ∈ M4 (f)) ≥ p

(
ε,

1

n
,
1

k

)
for some polynomial p, where σ ∈ Sn

k is selected uniformly.
An immediate consequence is that

P ((σ, σ′) is a manipulation pair for f) ≥ q

(
ε,

1

n
,
1

k

)
for some polynomial q, where σ ∈ Sn

k is uniformly selected, and σ′ is obtained
from σ by uniformly selecting a coordinate i ∈ {1, . . . , n}, uniformly selecting j ∈
{1, . . . , k − 3}, and then uniformly randomly permuting the following four adjacent
alternatives in σi : σi (j) , σi (j + 1) , σi (j + 2), and σi (j + 3).

4.1.3. Proof ideas. We first present our techniques that achieve a lower bound for
the probability of manipulation that involves factors of 1

k! and then describe how a
refined approach leads to a lower bound which has inverse polynomial dependence
on k.

Rankings graph and applying the original Gibbard–Satterthwaite the-
orem. Consider the graph G = (V,E) having vertex set V = Sn

k , the set of all
ranking profiles, and let (σ, σ′) ∈ E if and only if σ and σ′ differ in exactly one
coordinate. The SCF f : Sn

k → [k] naturally partitions V into k subsets. Since
every manipulation point must be on the boundary between two such subsets, we
are interested in the size of such boundaries.

For two alternatives a and b and for voter i, denote by Ba,b
i the boundary between

f−1 (a) and f−1 (b) in voter i. A simple lemma tells us that at least two of the

boundaries are large. In the following assume that these are Ba,b
1 and Ba,c

2 . The

case where the boundaries are Ba,b
1 and Bc,d

2 , where a, b, c, d are distinct, is easier
due to the independence between the relative ranking of a vs. b and c vs. d.

Now if a ranking profile σ lies on both of these boundaries, then applying the
original Gibbard–Satterthwaite theorem to the restricted SCF on two voters where
we fix all coordinates of σ except the first two, we get that there must exist a
manipulation point which agrees with σ in all but the first two coordinates. Con-

sequently, if we can show that the intersection of the boundaries Ba,b
1 and Ba,c

2 is
large, then we have many manipulation points.

Fibers and reverse hypercontractivity. In order to have more “control” over
what is happening at the boundaries, we partition the graph further—this idea is
due to Friedgut et al. [24, 26]. Given a ranking profile σ and two alternatives a
and b, σ induces a vector of preferences xa,b (σ) ∈ {−1, 1}n between a and b. For
a vector za,b ∈ {−1, 1}n, we define the fiber with respect to preferences between a
and b, denoted by F

(
za,b

)
, to be the set of ranking profiles for which the vector of
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preferences between a and b is za,b. We can then partition the vertex set V into
such fibers, and work inside each fiber separately. Working inside a specific fiber is
advantageous, because it gives us the extra knowledge of the vector of preferences
between a and b.

We distinguish two types of fibers: large and small. We say that a fiber with
respect to preferences between a and b is large if almost all of the ranking profiles in

this fiber lie on the boundary Ba,b
1 , and is small otherwise. Now since the boundary

Ba,b
1 is large, either there is big mass on the large fibers with respect to preferences

between a and b or big mass on the small fibers. This holds analogously for the
boundary Ba,c

2 and fibers with respect to preferences between a and c.

Consider the case when there is big mass on the large fibers of both Ba,b
1 and

Ba,c
2 . Notice that for a ranking profile σ, being in a fiber with respect to preferences

between a and b only depends on the vector of preferences between a and b, xa,b (σ),
which is a uniform bit vector. Similarly, being in a fiber with respect to preferences
between a and c only depends on xa,c (σ). Moreover, we know the exact correlation
between the coordinates of xa,b (σ) and xa,c (σ), and it is in exactly this setting
where reverse hypercontractivity applies and shows that the intersection of the

large fibers of Ba,b
1 and Ba,c

2 is also large. Finally, by the definition of a large fiber

it follows that the intersection of the boundaries Ba,b
1 and Ba,c

2 is large as well, and
we can finish the argument using the Gibbard–Satterthwaite theorem as above.

To deal with the case when there is big mass on the small fibers of Ba,b
1 , we use

various isoperimetric techniques, including the canonical path method. In particu-

lar, we use the fact that for a small fiber for Ba,b
1 , the relative size of the boundary

of Ba,b
1 in the small fiber is comparable to the size of Ba,b

1 in the small fiber itself,
up to polynomial factors.

A refined geometry. Using this approach with the rankings graph above, our
bound includes 1

k! factors. In order to obtain inverse polynomial dependence on k,
we use a refined approach. Instead of the rankings graph outlined above, we use an
underlying graph with a different edge structure: (σ, σ′) ∈ E if and only if σ and
σ′ differ in exactly one coordinate, and in this coordinate they differ by a single
adjacent transposition. In order to prove the refined result, we need to show that
the geometric and combinatorial quantities, such as boundaries and manipulation
points, are roughly the same in the refined graph as in the original rankings graph.
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à la pluralité des voix, De l’Imprimerie Royale, 1785.

[17] J. Corneli, I. Corwin, S. Hurder, V. Sesum, Y. Xu, E. Adams, D. Davis, M. Lee, R. Visocchi,
and N. Hoffman, Double bubbles in Gauss space and spheres, Houston J. Math. 34 (2008),
no. 1, 181–204. MR2383703

[18] A. De, E. Mossel, and J. Neeman, Majority is stablest: discrete and SoS, STOC’13—
Proceedings of the 2013 ACM Symposium on Theory of Computing, ACM, New York, 2013,
pp. 477–486, DOI 10.1145/2488608.2488668. MR3210809

[19] A. De, E. Mossel, and J. Neeman,Majority is stablest: Discrete and sos, Theory of Computing
12 (2016), no. 4, 1–50.

[20] P. Dubey and L. S. Shapley, Mathematical properties of the Banzhaf power index, Math.
Oper. Res. 4 (1979), no. 2, 99–131, DOI 10.1287/moor.4.2.99. MR543924

https://www.ams.org/mathscinet-getitem?mr=0039976
https://www.ams.org/mathscinet-getitem?mr=614478
https://www.ams.org/mathscinet-getitem?mr=385456
https://www.ams.org/mathscinet-getitem?mr=636170
https://www.ams.org/mathscinet-getitem?mr=1813223
https://www.ams.org/mathscinet-getitem?mr=1428506
https://www.ams.org/mathscinet-getitem?mr=249940
https://www.ams.org/mathscinet-getitem?mr=283496
https://www.ams.org/mathscinet-getitem?mr=661699
https://www.ams.org/mathscinet-getitem?mr=795785
https://www.ams.org/mathscinet-getitem?mr=1194785
https://www.ams.org/mathscinet-getitem?mr=2383703
https://www.ams.org/mathscinet-getitem?mr=3210809
https://www.ams.org/mathscinet-getitem?mr=543924


328 ELCHANAN MOSSEL

[21] R. Eldan, A two-sided estimate for the Gaussian noise stability deficit, Invent. Math. 201
(2015), no. 2, 561–624, DOI 10.1007/s00222-014-0556-6. MR3370621

[22] D. Falik and E. Friedgut, Between Arrow and Gibbard–Satterthwaite; a representation theo-
retic approach, Israel J. Math. 201 (2014), no. 1, 247–297, DOI 10.1007/s11856-014-1064-5.
MR3265286

[23] Y. Filmus, N. Lifshitz, D. Minzer, and E. Mossel, AND testing and robust judgement aggre-
gation, Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,

2020, pp. 222–233.
[24] E. Friedgut, G. Kalai, N. Keller, and N. Nisan, A quantitative version of the Gibbard–

Satterthwaite theorem for three alternatives, SIAM J. Comput. 40 (2011), no. 3, 934–952,
DOI 10.1137/090756740. MR2823513

[25] E. Friedgut, G. Kalai, and A. Naor, Boolean functions whose Fourier transform is con-
centrated on the first two levels, Adv. in Appl. Math. 29 (2002), no. 3, 427–437, DOI
10.1016/S0196-8858(02)00024-6. MR1942632

[26] E. Friedgut, G. Kalai, and N. Nisan, Elections can be manipulated often, Proceedings of the
49th annual ieee symposium on foundations of computer science (focs), 2009, pp. 243–249.

[27] W. V Gehrlein, Condorcet’s paradox, Theory and Decision Library C, vol. 40, Springer-Verlag
Berlin Heidelberg, 2006, DOI 10.1007/3-540-33799-7.

[28] A. Gibbard, Manipulation of voting schemes: a general result, Econometrica 41 (1973), 587–
601, DOI 10.2307/1914083. MR441407

[29] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), no. 4, 1061–1083, DOI
10.2307/2373688. MR420249

[30] S. Heilman, E. Mossel, and J. Neeman, Standard simplices and pluralities are not the most
noise stable (abstract), Proceedings of the 2015 Conference on Innovations in Theoretical
Computer Science, 2015, pp. 255–255.

[31] S. Heilman and A. Tarter, Three candidate plurality is stablest for small correlations,
arXiv:2011.05583, 2020.

[32] M. Isaksson, G. Kindler, and E. Mossel, The geometry of manipulation—a quantitative
proof of the Gibbard–Satterthwaite theorem, Combinatorica 32 (2012), no. 2, 221–250, DOI
10.1007/s00493-012-2704-1. MR2927640

[33] M. Isaksson and E. Mossel, Maximally stable Gaussian partitions with discrete applications,
Israel J. Math. 189 (2012), 347–396, DOI 10.1007/s11856-011-0181-7. MR2931402

[34] J. Jendrej, K. Oleszkiewicz, and J. O. Wojtaszczyk, On some extensions of the FKN theorem,
Theory Comput. 11 (2015), 445–469, DOI 10.4086/toc.2015.v011a018. MR3446023

[35] C. Jones, A noisy-influence regularity lemma for Boolean functions, arXiv:1610.06950, 2016.
[36] J. Kahn, G. Kalai, and N. Linial, The influence of variables on Boolean functions, Proceedings

of the 29th Annual Symposium on Foundations of Computer Science, 1988, pp. 68–80.
[37] G. Kalai, A Fourier-theoretic perspective on the Condorcet paradox and Arrow’s theo-

rem, Adv. in Appl. Math. 29 (2002), no. 3, 412–426, DOI 10.1016/S0196-8858(02)00023-4.
MR1942631

[38] G. Kalai, Social indeterminacy, Econometrica 72 (2004), no. 5, 1565–1581, DOI
10.1111/j.1468-0262.2004.00543.x. MR2078213

[39] N. Keller, A tight quantitative version of Arrow’s impossibility theorem, J. Eur. Math. Soc.
(JEMS) 14 (2012), no. 5, 1331–1355, DOI 10.4171/JEMS/334. MR2966653

[40] N. Keller, E. Mossel, and A. Sen, Geometric influences, Annals of Probability 40 (2012),
no. 3, 1135–1166.

[41] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell, Optimal inapproximability results for
MAX-CUT and other 2-variable CSPs?, SIAM J. Comput. 37 (2007), no. 1, 319–357, DOI
10.1137/S0097539705447372. MR2306295

[42] G. Kindler, N. Kirshner, and R. O’Donnell, Gaussian noise sensitivity and Fourier tails,
Israel J. Math. 225 (2018), no. 1, 71–109, DOI 10.1007/s11856-018-1646-8. MR3805643

[43] L. A Kornhauser and L. G Sager, Unpacking the court, Yale Law Jour. 96 (1986), 82.

[44] M. Ledoux, Remarks on Gaussian noise stability, Brascamp-Lieb and Slepian inequalities,
Geometric aspects of functional analysis, Lecture Notes in Math., vol. 2116, Springer, Cham,
2014, pp. 309–333, DOI 10.1007/978-3-319-09477-9 20. MR3364694

[45] C. List and P. Pettit, Aggregating sets of judgments: An impossibility result, Economics and
Philosophy 18 (2002), no. 1, 89–110.

https://www.ams.org/mathscinet-getitem?mr=3370621
https://www.ams.org/mathscinet-getitem?mr=3265286
https://www.ams.org/mathscinet-getitem?mr=2823513
https://www.ams.org/mathscinet-getitem?mr=1942632
https://www.ams.org/mathscinet-getitem?mr=441407
https://www.ams.org/mathscinet-getitem?mr=420249
https://arxiv.org/abs/2011.05583
https://www.ams.org/mathscinet-getitem?mr=2927640
https://www.ams.org/mathscinet-getitem?mr=2931402
https://www.ams.org/mathscinet-getitem?mr=3446023
https://arxiv.org/abs/1610.06950
https://www.ams.org/mathscinet-getitem?mr=1942631
https://www.ams.org/mathscinet-getitem?mr=2078213
https://www.ams.org/mathscinet-getitem?mr=2966653
https://www.ams.org/mathscinet-getitem?mr=2306295
https://www.ams.org/mathscinet-getitem?mr=3805643
https://www.ams.org/mathscinet-getitem?mr=3364694


PROBABILISTIC VIEW OF VOTING, PARADOXES, AND MANIPULATION 329

[46] C. List and P. Pettit, Aggregating sets of judgments: two impossibility results compared,
Synthese 140 (2004), no. 1-2, 207–235, DOI 10.1023/B:SYNT.0000029950.50517.59. With a
comment by Isaac Levi. MR2077375

[47] E. Milman and J. Neeman, The Gaussian double-bubble conjecture, arXiv:1801.09296, 2018.
[48] E. Milman and J. Neeman, The Gaussian multi-bubble conjecture, arXiv:1805.10961, 2018.
[49] E. Mossel,Gaussian bounds for noise correlation of functions and tight analysis of long codes,

Foundations of Computer Science, 2008 (FOCS 08), 2008, pp. 156–165.

[50] E. Mossel, Arrow’s impossibility theorem without unanimity, arXiv:0901.4727, 2009.
[51] E. Mossel, Gaussian bounds for noise correlation of functions, Geom. Funct. Anal. 19 (2010),

no. 6, 1713–1756, DOI 10.1007/s00039-010-0047-x. MR2594620
[52] E. Mossel, A quantitative Arrow theorem, Probab. Theory Related Fields 154 (2012), no. 1-2,

49–88, DOI 10.1007/s00440-011-0362-7. MR2981417
[53] E. Mossel, Gaussian bounds for noise correlation of resilient functions, Israel J. Math. 235

(2020), no. 1, 111–137, DOI 10.1007/s11856-019-1951-x. MR4068779
[54] E. Mossel, Probabilistic aspects of voting, intransitivity and manipulation, arXiv:2012.10352,

2020.
[55] E. Mossel and J. Neeman, Robust optimality of Gaussian noise stability, J. Eur. Math. Soc.

(JEMS) 17 (2015), no. 2, 433–482, DOI 10.4171/JEMS/507. MR3317748
[56] E. Mossel and R. O’Donnell, On the noise sensitivity of monotone functions, Random Struc-

tures Algorithms 23 (2003), no. 3, 333–350, DOI 10.1002/rsa.10097. MR1999039
[57] E. Mossel, R. O’Donnell, and K. Oleszkiewicz, Noise stability of functions with low influences:

invariance and optimality (extended abstract), 46th annual ieee symposium on foundations
of computer science (focs 2005), 23-25 october 2005, pittsburgh, pa, usa, proceedings, 2005,
pp. 21–30.

[58] E. Mossel, R. O’Donnell, and K. Oleszkiewicz, Noise stability of functions with low influences:
invariance and optimality, Annals of Mathematics 171 (2010), no. 1, 295–341.

[59] E. Mossel, R. O’Donnell, O. Regev, J. E. Steif, and B. Sudakov, Non-interactive correla-
tion distillation, inhomogeneous Markov chains, and the reverse Bonami-Beckner inequality,
Israel J. Math. 154 (2006), 299–336. MR2254545

[60] E. Mossel, K. Oleszkiewicz, and A. Sen, On reverse hypercontractivity, Geom. Funct. Anal.

23 (2013), no. 3, 1062–1097, DOI 10.1007/s00039-013-0229-4. MR3061780
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