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MODELING THE CARDIAC ELECTROMECHANICAL

FUNCTION: A MATHEMATICAL JOURNEY

ALFIO QUARTERONI, LUCA DEDÈ, AND FRANCESCO REGAZZONI

Abstract. In this paper we introduce the electromechanical mathematical
model of the human heart. After deriving it from physical first principles,
we discuss its mathematical properties and the way numerical methods can
be set up to obtain numerical approximations of the (otherwise unachievable)
mathematical solutions. The major challenges that we need to face—e.g.,
possible lack of initial and boundary data, the trade off between increasing
the accuracy of the numerical model and its computational complexity—are
addressed. Numerical tests here presented have a twofold aim: to show that
numerical solutions match the expected theoretical rate of convergence, and
that our model can provide a preliminary valuable tool to face problems of
clinical relevance.
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1. Introduction

Historical tips. Since the dawn of history, the heart and its functioning have fas-
cinated the best minds on our planet, through a long journey marked by intuitions
and dazzles. Three centuries bc, Aristotle claimed that the blood vessels transmit-
ted animal heat from the heart to the periphery. Shortly thereafter, Praxagoras
of Kos sensed the different role of arteries and veins and assumed that the arter-
ies transported air, and veins blood. It was Galen in the second century ad to
recognize that arteries also carry blood.

Thirteen centuries later, the great Leonardo Da Vinci distinguished for the first
time ventricles from atria (auriculae), describing the moti del core as a result of
the contraction of the atria that coincides with the ventricular diastole, while,
conversely, the ventricular systole occurs along with the expansion of the atria.
In the seventeenth century Harvey correctly described the blood circulation for the
first time. Thanks to the beating heart vivisection of various animals, he recognized
that the heart valves in the veins were designed to activate only if the blood flowed
to the heart and therefore concluded that “the blood has a movement, and it
is circular”. In the following century, the great mathematicians Leonhard Euler
and Daniel Bernoulli made decisive steps forward. In 1730 Bernoulli, professor of
mathematics and anatomy at the University of Basel, formulated his famous vis
viva equation between pressure, density, and velocity of blood. In 1775 Euler, in
a work entitled Principia pro motu sanguinis per arteria determinando [30], wrote
a series of differential equations—still fundamental and used in areas as diverse as
the gas motion in pipes or aircraft aerodynamics design—to describe the evolution
of blood flow and pressure in an idealized cylindrical blood vessel. These equations
have then been generalized and today still set the ground for a one-dimensional
model of blood flow in the complex network of arteries and veins of our circulatory
system.

An integrated heart model. The ambition of today’s mathematicians is to travel
the furrow traced by Euler for creating a virtual, immaterial heart, made only of
equations, able to reproduce all the vital cardiac processes: the propagation of
the electric potential, the contraction and relaxation of the myocardium (the heart
muscle), the blood dynamics in atria and ventricles, the coronaries perfusion of the
myocardium, the valve dynamics, and all their mutual interactions. This extraor-
dinary complexity, which mysteriously determines the harmonious synchronization
producing the heartbeat, can be turned into a mathematical model, thanks to the
first principles of physics, that is Newton’s laws, thermodynamics, chemical kinet-
ics, Navier–Stokes for blood dynamics and Maxwell’s for the propagation of the
electric field, etc. However, this is not enough, as the corresponding equations
need to be supplemented with constitutive equations that characterize the specific
nature of the cardiac tissue at hand. One such relationship relates stresses and
strains for the cardiac muscles and accounts for the material properties of the my-
ocardium. Other equations are necessary to characterize the way cardiomyocytes
(the elementary components of the cardiac muscle) contract and relax once stim-
ulated by electrical signal propagating through the myocardium. The result is a
system of coupled nonlinear differential equations, ordinary differential equations
(ODEs), and partial differential equations (PDEs): once properly solved—and this
will inevitably call into play computers, as a matter of fact supercomputers!—this
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system ought be suitable to simulate the human heart function. The solution of
this integrated heart model (IHM) represents a scientifically arduous challenge: the
dream is however to provide researchers in applied mathematics, bioengineering,
and life sciences, as well as physiologists, cardiologists, and cardiac surgeons, with
an effective and powerful tool aimed to the qualitative and quantitative study of
the heart, both in physiological or pathological conditions, and at making advances
in the diagnosis and treatment of heart diseases.

In this paper, we provide an in-depth and rigorous mathematical presentation
of the most crucial aspect of the entire IHM: the so-called electromechanical (EM)
mathematical model. We will first derive it from basic principles. In particular, we
will highlight the way the activation force triggered by the transmembrane electric
potential is generated at the cardiomyocytes level and then affects the whole muscle
deformation. We will then recall the main mathematical results inherent to the
well-posedness of the electromechanical model components.

The role of data. A mathematical model, if properly designed, enjoys the prop-
erty of universality, that is its validity is independent of the specific context to
which it is applied. Of course, what makes the mathematical model most valu-
able is its ability to adapt to any specific context: in our case, virtually to every
possible individual, thanks to the data that characterize it. Data are needed to
feed models. For an IHM, data concern the geometrical shape of a specific heart,
initial and boundary conditions that must supplement the differential equations,
parameters that characterize material properties, just to mention a few. Data is
a crucial issue. Shapes can be retrieved from medical images (such as computer
tomography or magnetic resonance imaging) after a good deal of geometric pre-
processing. Initial and boundary conditions are seldom available, as they would
require invasive (and unnecessary) clinical examinations on patients. Also material
parameters are not easy to obtain for specific patients due to the difficulty of pro-
ducing ad hoc measurements. To compensate for the insufficiency (or lack) of data,
mathematicians have historically came up with brilliant ideas such as parameters
identification, variational or Kalman filter-based techniques for data assimilation.
Moreover, whereas the mathematical model is deterministic in itself, data could be
uncertain. It is therefore of paramount importance to quantify how this uncertainty
propagates from the input data to the outputs. Dealing with uncertainty in data
has required ad hoc, often sophisticated, mathematical tools as well.

Road to solution. Once the differential system is completed by the missing data,
closed-form solutions seldom (almost never) exist. The first step is an a priori
mathematical analysis to understand in which regimes a solution exists, whether it
is unique and if it continuously depends on data (this is the well-posedness in the
sense of Hadamard).

Once our problem is set upon rigorous mathematical ground, the next step con-
sists of approximating it by reducing it to a finite dimension, say N (typically very
large, of an order of millions or more). A mathematically rigorous strategy consists
in projecting the variational formulation (that is the weak formulation) of the dif-
ferential system onto finite-dimensional subspaces of the Sobolev spaces (typically
H1, see, e.g., [3]) to which the weak solution of the original system belongs. To
make sure that we have suitably operated, our new finite-dimensional (numerical)
problem must enjoy the properties of stability and convergence. Stability is the
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continuous dependence (uniformly, with respect to N), in suitable norms, of the
solution to the problem’s data. Convergence is the property of the numerical solu-
tion to tend to the exact (unknown) one once N tends to infinity. Error estimates
represent a further peculiar feature of numerical problems. Besides being conver-
gent, the numerical solution should converge to the exact one in suitable norms
with a specific rate of convergence with respect to 1/N . In practice, for models of
this kind of complexity, a tradeoff between accuracy and computational effort has
to be pursued. Needless to say, as N is unavoidably extremely large (often reach-
ing hundreds of millions), supercomputers are necessary at this stage. Indeed, the
simulation of a single heartbeat (about one second of physical time) may require
several hours of computation on a big, modern supercomputer.

But what is all that for? From a mathematician’s perspective, mathematical and
numerical models of the heart function represent an inexhaustible source of math-
ematical challenges. From an applied mathematician’s perspective, the excitement
is further enhanced by the ambition to provide doctors with a “tool” that may help
them with diagnosis and treatment.

In this paper we will illustrate the paradigm (data, mathematical model; nu-
merical approximation, computer simulation), and we will show in a few examples
the way we can nowadays provide doctors with solutions of clinical relevance. In
this regard cardiac electromechanics provides an excellent testing ground, more
and more as the state of the art in mathematical modeling, numerical meth-
ods, and computational platforms advances. As a matter of fact, starting from
the visionary works of C. S. Peskin [62, 63], this topic has inspired an impres-
sive body of research from many research groups around the world (see, e.g.,
[10, 11, 17, 21, 25, 26, 32, 37, 39, 57, 65, 83, 85, 86, 90, 94]).

Paper outline. The outline of the paper is as follows. In Part 1 we will give a
short introduction to the elementary concepts of cardiac anatomy and physiology.
Then we will introduce the mathematical model of cardiac electrophysiology and
active force generation. We will then focus on the modeling of cardiac mechanics
and will conclude with the multiscale model of cardiac electromechanics. Part 2 will
be devoted to the finite-dimensional approximation in space (by the finite element
method) and in time. We will then comment on the use of efficient solvers for the
associated nonlinear algebraic systems of very large size. Part 3 will then illustrate
the numerical solutions that we can achieve, as well as some examples that are
relevant to clinical applications. Conclusions and possible generalizations follow.

Part 1. From the physical problem to the mathematical model

2. Cardiac anatomy and physiology at a glance

The human heart is a sophisticated machine, whose functional role is pumping
blood throughout the body to its cells, supplying the organs with oxygen, and
removing the metabolic waste. The contraction of the heart muscle is due to that
of the cardiomyocytes, the cardiac cells, once activated by electrical processes. As
a matter of fact, at each heartbeat, an electrical potential propagates through the
heart tissue until it reaches each cardiomyocyte of the atria and ventricles (the heart
chambers). This synchronized propagation activates an orderly contraction of the
heart chambers and generates the heart rhythm. More specifically, each heartbeat
is triggered by an electrical signal, originating from the sino-atrial node, the heart’s
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Figure 1. (a) The heart is made of four chambers (two atria and
two ventricles). The heart contraction is triggered by the sino-
atrial (SA) node, from which an electric signal propagates through
the atria. Then it reaches the atrioventricular (AV) node and it
propagates through the Purkinje fibers, thus reaching all the ven-
tricular cells. (b) The cell membrane of cardiomyocytes is scattered
by ion channels, which selectively allow the transit of specific ion
species. (c) Among these ionic species, calcium serves as the in-
tracellular messenger by triggering the contraction of sarcomeres.
The latter are made of an almost crystalline arrangement of thin
filaments and thick filaments. The sliding between the two families
of filaments yields to the contraction of the muscle.

natural pacemaker consisting of a group of self-excitable cells that is located in
the upper part of the right atrium (see Figure 1). The signal propagates from
one cell to another through the two atria and reaches the atrioventricular node,
located between the atria and the ventricles. The atrioventricular node acts as a
filter for signal propagation to ensure that the contraction of the ventricles begins
once the blood has passed from the atria into the same ventricles. The electrical
signal then propagates from the atrioventricular node through the Purkinje fibers,
a high-conductibility network of fibers, reaching the myocardial cells.

In order to derive a mathematical description of these macroscopic processes, it
is necessary to start from a description of the microscopic mechanisms that generate
them, following a micro-to-macro approach. This process starts from the elemen-
tary components of the cardiac muscle tissue, cardiomyocytes (i.e., cardiac muscle
cells). These are in fact excitable: when electrically stimulated, the electrochemi-
cal balance of the cell membrane changes, giving rise to a sequence of biochemical
processes that determine a significant variation in cell potential: rapid depolariza-
tion followed by a repolarization. This phenomenon, known as action potential,
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is due to the opening and closing of ion channels, located in the cell membrane.
The latter becomes permeable to different ions (calcium, potassium, magnesium)
thanks to the transmembrane potential, that is the difference in voltage between
the internal and external part of the cell. The ionic fluxes determine a variation
of the transmembrane potential and have a feedback effect on the voltage differ-
ence itself. Among the various ionic species involved in the dynamics of the action
potential, calcium ions play an important role. Calcium represents the trigger for
muscle contraction: calcium ions induce a complex chain of reactions generating an
active force inside the cardiomyocytes. Finally, thanks to a process of transmission
through different space-time scales, the active force at the microscopic scales (that
of cardiomyocytes) generates a resultant force at the organ level, thus giving rise to
the contraction of ventricles and atria. The combined effect of active and passive
force (i.e., the reaction of the myocardium to mechanical stress), as well as the co-
ordinated action of the atria and ventricles, governs the blood fluid dynamics in the
four chambers as well as the valve dynamics. The building blocks of this complex
network of interactions are summarized in Figure 2. In Sections 3, 4, 5, and 6,
starting from the microscale and progressively climbing the hierarchy of scales up
to the macroscale, we present mathematical models describing the above mentioned
processes.

3. Modeling cardiac electrophysiology

As mentioned, the driver of the cardiac function is electrophysiology, i.e., the
result of chemical and electrical processes taking place at different spatial scales,
from subcellular to the the whole organ scale. A mathematical description of these
processes is based on the translation into mathematical terms of the principles ruling
the electro-chemical activity of ions species at the finest scale; then, by progressively
climbing up the hierarchy of spatial scales, a set of equations describing the tissue-
level electrophysiological activity is derived.

Let Ω0 ⊂ R
3 be an open connected set, denoting the region of space occupied

by the cardiac tissue. This region can be split into two subregions, namely the
inner space of cells (intracellular space) and the region located outside the cell
membranes (extracellular space). The intracellular and extracellular spaces are
separated by the cell membranes, which are scattered by ion channels. An ion
channel can be understood as an opening in the cell membrane that selectively
allows the transit of specific ion species. The movement of electrically charged ions
generates an electric current. Starting from Maxwell’s laws of electromagnetism
and Einstein’s theory on Brownian motion [29], one can derive a system of PDEs
describing the ion dynamics. An analytical solution of this system can be obtained
under the (realistic) assumption that the ion dynamics in the direction tangential
to the cell membrane is negligible compared to the transmembrane one. By further
neglecting the space variations across the membrane and focusing exclusively on
space-averaged equations, this allows us to link the electric current crossing the
membrane (denoted by Iion) with the concentration of ionic species and with the
transmembrane potential, defined as v = ui−ue, where ui and ue denote the electric
potential in the intracellular and extracellular spaces, respectively.

Themembrane of cardiomyocytes is selectively permeable tomultiple ionic species,
such as sodium, potassium, and calcium, whose fluxes are regulated by the opening
and closing of the ion channels. To track the opening and closing of these channels,
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Figure 2. The cardiac function is the result of several physical
processes acting in concert, including electrophysiology, active and
passive mechanics, perfusion, fluid dynamics, and valve dynam-
ics. These physical processes are tightly coupled together; they
are visually conveyed being grouped in the same box. We also
highlight the way the integrated heart model of the left ventricle
interacts with external circulation. Specifically, red arrows denote
oxygenated blood fluxes, blue arrows denote de-oxygenated blood
fluxes. Solid arrows represent the main blood pathways (namely,
systemic and pulmonary circulations), while dashed arrows rep-
resent coronary circulation, consisting in the blood vessels that
perfuse the myocardium itself.

as well as the resulting electric current, several models have been proposed in the
literature. These models are written in the general form

(3.1)
dzion
dt

= Φion(v, zion), Iion = Iion(v, zion),

where Iion and Φion are suitably defined functions and zion(t) ∈ R
Nion is a vector

collecting the so-called ionic variables, describing ion channels, concentrations, or
simply phenomenological variables. For the latter, a typical example concerns re-
covery variables, namely variables that account for the tissue refractoriness, without
a one-to-one relationship with measurable physical quantities. Ideally, system (3.1)
applies at any cell location. Notable examples are provided by the Aliev–Panfilov
model [4], which envisages a single ionic variable (i.e., Nion = 1) that accounts
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for tissue refractoriness; the Ten Tusscher–Panfilov model [89], which includes 18
variables describing ionic concentrations and the probability of opening of specific
ion channels; the O’Hara–Rudy model [59], featuring Nion = 41 variables, which
was built and calibrated upon data coming from more than 100 undiseased human
hearts.

To complete a model describing the electrical activity across the cell membrane,
we need to relate the total ionic current Iion to the dynamics of the transmembrane
potential v. With this aim, the cell membrane is modeled as a capacitor with
capacity Cm: when a current I crosses the cell membrane for an infinitesimal
time interval dt, the transmembrane potential difference decreases by I/Cm dt (by
convention, current and potential difference are taken with opposite signs).

Furthermore, equation (3.1) describes the electrical activity of a single cell. How-
ever, in the cardiac tissue, the nearly three billion cells are not electrically isolated.
Indeed, they are connected by the so-called gap junctions, which link the intra-
cellular and extracellular spaces of adjacent cells and which allow the electrical
signal to propagate from one cell to another. The following equation, known as the
monodomain model [24], accounts for these effects by means of a diffusive term:

(3.2) χmCm∂tv −∇ · (D∇v) + χmIion = Iapp in Ω0 × (0, T ].

In the above equation Iapp represents an externally applied current, while χm

denotes the area-to-volume ratio (i.e., the amount of membrane area per volume
of tissue), and it allows us to relate the microscopic cell dynamics to quantities
related to a macroscopical characterization of the tissue. The tensor D, known
as the conductivity tensor, characterizes the electrical properties of the tissue. A
feature of cardiac tissue is that the electrical signal propagates with a larger speed
in the fibers’ direction (i.e., f0) than in the orthogonal directions. To account for
such an anisotropic property, D is typically defined as

D = σf f0 ⊗ f0 + σss0 ⊗ s0 + σnn0 ⊗ n0,(3.3)

where σf , σs, and σn represent the conductivity coefficients in the fibers, sheets, and
cross-fibers directions. The triplet (f0, s0,n0) not only characterizes the electrical
behavior of the tissue, but also its mechanical response, as we will describe in
Section 5.

The applied current Iapp is typically prescribed as a function with support re-
stricted to a short time interval (usually a few milliseconds) at the beginning of
each heartbeat and to a few spots located close to the surface of the myocardium,
representing the end points of the Purkinje fibers. The typical solution of (3.2) is
in the form of a traveling wave for the variable v, originating from the locations
where Iapp is applied. When a point of the domain is reached by the wavefront,
v quickly raises (depolarization), then features a plateau, and finally returns to its
resting position (repolarization); this yields the so called action potential. Due to
the quick depolarization, the potential wave is characterized by a very steep front.

The monodomain model can be derived from the bidomain model, in which two
separate variables are associated with the electric potential of the intracellular and
extracellular space. In its turn, the bidomain model can be rigorously derived by
assuming the existence of the extracellular and intracellular spaces as two simply
connected subdomains and by employing a homogenization technique [24].

A general comment is in order. Even when it is derived from physical princi-
ples, the mathematical meaningfulness of a model is not guaranteed a priori yet.
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Specifically, one should check that the problem is well-posed from a mathematical
standpoint, that is, a solution exists, it is unique, and it depends continuously on
data (the importance of the latter assumption is related to the uncertainty that
unavoidably affects the measurements of these data). Moreover, the existence of
solutions is an essential requirement to address the numerical approximation of a
model. As a matter of fact, even if approximate solutions exist, they would be
meaningless in the absence of an exact solution to which they can converge. In
this regard, we report that a well-posedness result for the bidomain model coupled
with the FitzHugh–Nagumo model [33] is presented in [34]. Another well-posedness
result, that makes use of a fixed-point argument, is provided in [93].

4. Modeling active force generation

Due to the action potential dynamics, in the first stages of each heartbeat the
calcium concentration inside cardiomyocytes (denoted by [Ca2+]i, where i stands
for intracellular) quickly raises by nearly one order of magnitude before returning
to its resting value in nearly a half second. In fact calcium acts as a cellular mes-
senger by triggering the contraction of cardiomyocytes. At the microscopic scale,
cardiomyocytes are organized in sarcomeres, cylinder shaped contractile elements
of the size of nearly 2 μm. Sarcomeres are composed of myofilaments, thin filaments
made of the proteins troponin, tropomyosin, and actin, and thick filaments made of
the protein myosin. The active force is generated by the interaction between actin
and myosin, molecular motors capable of transforming the chemical energy into
mechanical work [47]. The long-standing hypothesis that muscle contraction was
led by folding of elongated protein filaments was challenged by the discovery that
the filaments’ length remains constant during contraction and that it is instead the
mutual sliding between the two families of filaments (thin and thick) that makes
the muscle contract [45, 46]. This discovery, known as sliding filaments theory,
was made independently by two research teams: on one side, the British biologist
H. Huxley and biophysicist J. Hanson, working at MIT; on the other, the British
physiologist A. F. Huxley (Nobel prize winner in 1963 for his work on the action
potential) and the German physician R. Niedergerke, working at the University
of Cambridge. The two teams decided to publish their work in two consecutive
articles in the same issue of Nature [45, 46].

Many models describing these microscopic mechanisms have been proposed in
the literature. In general terms, these force generation models are written in the
form

(4.1)
dzact
dt

= Φact

(
zact, [Ca

2+]i, SL,
d SL

dt

)
, Ta = q(zact),

where zact(t) ∈ R
Nact denotes a vector collecting the state variables associated

with the dynamics of the contractile proteins and Ta denotes the generated active
force. The state variables zact may be associated either with the probability of the
regulatory proteins of being in a given state [51,70,78,95], or with the elongation of
the contractile proteins [72, 97], or finally they may be phenomenological variables
[51, 55]. The dynamics of zact(t) is driven by that of the calcium concentration
([Ca2+]i) and of the sarcomere length, denoted by SL. As a matter of fact, when
the sarcomere is elongated (i.e., for large SL), the generated force tends to increase;
moreover, when the sarcomere is shortening (i.e., when dSL/dt < 0), the generated
force is lower than in steady-state conditions (i.e., when dSL/dt = 0).
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In recent years, many efforts have been devoted to the development of force
generation models [50, 56, 70, 77, 80]. The main challenge facing modelers is to
describe the complex subcellular processes underlying force generation in a compact
way [74,77]. In fact, despite several models that describe in a biophysically detailed
manner the force generation mechanisms that have been proposed, these are not
suitable for numerical simulations because of the overwhelming computational cost
associated with their numerical approximation. These difficulties are mainly related
to two reasons.

The first reason is the stochastic nature of the processes in play, due to the scale
at which they occur (the spatial scales are so small that the effects of thermal agi-
tation cannot be overlooked) [81]. For this reason, the output of a force generation
model is not a deterministic solution, but rather a probability distribution on the
space of the trajectories of the system. Clearly, this dramatically increases the
dimensionality of the problem.

The second reason lies in the nearest-neighbor interactions taking place between
the proteins that make up the sarcomere [48, 77]. Because of these interactions, in
fact, mean-field approximations, which are widely used in the context of molecular
dynamics to lower the computational burden of numerical simulations, cannot be
adopted without compromising the validity of the results. In fact, these nearest-
neighbor interactions are at the basis of an important phenomenon, namely the
cooperativity of contractile units, for which the calcium-activated units favor the
activation of neighboring units, thus generating a highly nonlinear relationship
between calcium concentration and generated force. These cooperative processes,
of fundamental importance for an efficient functioning of the organism, cannot be
grasped by mean-field models, in which a single representative unit is considered
and the other units are taken into account through the average effect they have on
the representative unit [77].

To give a concrete example, let us consider the model proposed in the seminal
work [78], in which the authors demonstrated the importance of a spatially explicit
description of the sarcomere proteins. In this model, each contractile unit is de-
scribed by a 4-state Markov chain. Considering a single myofilament with N = 32
units, we have 4N � 2 · 1019 possible states. Hence, to characterize a probabil-
ity distribution over this set, we need an order of 1019 variables. In conclusion,
to simulate on a computer the dynamics of this stochastic model, more than 105

petabytes (i.e., 1020 bytes) would be required just to store the system state in the
computer memory. This corresponds to more than 30000 times the storage capacity
of the largest supercomputer in the world (up to June 2020).1 This situation is not
uncommon: a mathematical model is available; however, its practical interest is
very limited because of the overwhelming computational cost of its numerical ap-
proximation. In these cases, suitable modeling assumptions and/or mathematical
tools are employed to derive an approximate, yet computationally feasible, reduced
mathematical model.

In the case at hand, in order to capture the cooperative effects without explic-
itly tracking the joint probability of units of the whole filament, several strategies
have been proposed in the literature. Among these, we mention Monte Carlo sam-
pling techniques [96, 97] and the reduction of the number of unknowns obtained
by grouping together suitable subsets of the states [18, 49, 95]. Alternatively, in

1
The TOP500 Project, https://www.top500.org (URL consulted on July 29, 2020).

https://www.top500.org
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[79] the transition rates of the Markov chain were expressed as nonlinear functions
of the calcium concentration, to phenomenologically reproduce the cooperative be-
havior. In [71,72], we introduced a physically motivated assumption of conditional
independence of the stochastic processes associated with units that are far from
each other along the filament, given the state of the intermediate units. With this
assumption, we can describe the protein dynamics through a nonlinear system of
nearly 2000 ODEs, thus allowing us to numerically approximate the solution of one
heartbeat in just a few seconds of computational time.

A different approach is that of phenomenological models [44, 50, 55, 79]: these
do not derive equations from first principles, rather they are built by fitting the
measured data with simple laws, chosen a priori by the modeler. The numerical
solution of these models, typically expressed as systems of few ODEs, feature a lower
computational cost than physics-based models. However, they provide a poorer
insight than physically detailed models and they are characterized by a hampered
predictive power under experimental conditions different from those under which
they are built.

5. Modeling cardiac mechanics

During each heartbeat, the heart muscle undergoes large deformations (up to
few centimeters). To model the myocardium displacement, the strain of the tissue
must be related to the internal stress induced by cardiomyocytes’ contraction and
to the pressure exerted by the blood onto the endocardium, the internal surface of
the cardiac chambers. The conceptual framework to describe this phenomenon is
continuum mechanics, of which we recall basic notions in the following. For more
detail, we refer the interested readers to, e.g., [8, 58].

Let Ω0 ⊂ R
3 be an open connected set, which we denote as the reference (or

undeformed) configuration, designating the region of space occupied by an elastic
body at rest. In our setting this will be the region occupied by the heart muscle,
say at the end of the diastole (the time t = 0 of our simulations). We consider
a time-dependent deformation map ϕ : Ω0 × [0, T ] → R

d, such that x = ϕ(X, t)
(spatial coordinate) represents the position occupied by the point X ∈ Ω0 (material
coordinate) at time t. We thus define the displacement field d(X) := ϕ(X) − X
and the deformation gradient tensor F(X, t) = ∇ϕ(X, t) = I + ∇d, where I de-
notes the identity tensor and ∇ is the gradient operator in the reference (material)
coordinate. The deformation map is assumed to be smooth enough (typically twice
continuously differentiable, but weaker regularity is admitted), injective, and ori-
entation preserving (i.e., its Jacobian J = detF > 0 for any X ∈ Ω0). By denoting
by Lin the vector space of the linear transformations from R

d into itself, let us
introduce the subset Lin+ := {A ∈ Lin s.t. detA > 0}.

By Newton’s second law, the displacement field d(t) satisfies the momentum
balance equation,

(5.1) ρ ∂ttd−∇ ·P = h in Ω0 × (0, T ],

endowed with suitable boundary conditions, where ρ is the mass density of the
body and where h represents an externally applied load (force per unit volume).
The tensor P, known as the first Piola–Kirchhoff stress tensor (or simply the Piola
stress tensor), encodes the internal stresses of the body. For the sake of model
closure, the stress tensor P is defined via a constitutive law, which is a relationship
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linking the state of strain of the body with its state of stress. This law can possibly
depend on the rate of strain (e.g., in the case of visco-elastic materials). For elastic
materials the stress tensor can be written in terms of the strain, i.e., P = PF(F).
Here we focus on hyperelastic materials, characterized by a strain energy density
W , such that

∫
Ω0

W(X)dV0 provides the total elastic energy stored by the body

as a consequence of the deformation, where W(X) = WF(F(X)) for some WF :
Lin+ → R ∪ {+∞}. By definition, hyperelastic materials are such that

(5.2) P =
∂W
∂F

.

The passive mechanical response of the heart is significantly anisotropic, due to
the presence of fibers. Many anisotropic constitutive laws have been proposed in
the literature to describe the cardiac tissue (see, e.g., [39, 40, 43, 92]), accounting
for the different elastic response along the three directions f0, s0, and n0, the three
preferential directions that also characterize the electrical diffusivity of the cardiac
tissue (see Section 3). These energies typically feature an exponential dependence
on the strain to model the large stiffening of the tissue when it is over-stretched.
As an example, the material model of [92] is defined by the strain energy density
function

W =
C

2

(
eQ − 1

)
+

B

2
(J − 1) log J,

Q = bffE
2
ff + bssE

2
ss + bnnE

2
nn + 2bfsE

2
fs + 2bfnE

2
fn + 2bsnE

2
sn,

(5.3)

where C > 0 is a constant and Eab = Ea0 · b0, for a, b ∈ {f, s, n}, are the entries
of the Green–Saint Venant tensor E = 1

2 (F
TF − I) in the (f0, s0,n0) frame of

reference. The constant B > 0 is the bulk modulus which weights the volumetric
term 1

2 (J − 1) log J by penalizing those deformations that would lead to a change
of volume occupied by the tissue (J = detF 
= 1). The latter term leads to a quasi-
incompressible formulation, as little volume variations are allowed. The strongly
incompressible formulation is an alternative, in which the balance of the momentum
equation (5.1) is coupled with the constraint J = 1, and the Piola stress tensor is
redefined as P = ∂W

∂F − p J F−T , thus yielding a saddle-point problem, wherein the
pressure p acts as a Lagrange multiplier.

The cardiac tissue is in fact an active material. This means that its internal stress
is not uniquely identified by strain, but rather it can be produced by microscopic
mechanisms that turn the chemical energy of ATP into mechanical work. The
models presented in Section 4 describe these processes at the microscale and allow to
obtain Ta, a scalar that represents the magnitude of active force per unit area. This
quantity must be related to the macroscopic balance of the momentum equation
(5.1), by writing the Piola stress tensor as

(5.4) P = Ppass +Pact,

namely as the sum of a passive term (given by Ppass = ∂W
∂F ) and an active term

Pact which must be constitutively defined by suitably upscaling the microscopically
generated stress. In particular, if we suppose that cardiac muscle fibers, aligned
along f0, generate a force per unit area of magnitude Ta, directed along the fibers’
direction in the current configuration f := Ff0/|Ff0|, we get

(5.5) Pact = Ta
Ff0 ⊗ f0
|Ff0|

.
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Alternative to the active stress approach (5.4) is the active strain one, wherein
activation is modeled as a prescribed strain [5,6]. We only consider here the active
stress approach, which is by far the most widely used in the literature.

For the mathematical well-posedness of nonlinear elasticity models, we refer
interested readers to [12, 53]. Existence results require suitable hypotheses on the
energy density function W . The celebrated existence result by J. Ball [12], based on
the notion of polyconvexity (a weaker notion than convexity) and on suitable growth
and regularity conditions, is based on the direct method of calculus of variations
[27]. These results, derived for passive materials, cannot be directly applied to heart
mechanics, as the cardiac tissue is in fact an active material. The well-posedness of
active strain models has been studied in [6], while hypotheses for the well-posedness
of active stress models have been derived in [70].

6. Modeling blood circulation

The balance of momentum equation (5.1) must be supplemented with suitable
boundary conditions to account for the forces acting between the myocardium and
the surrounding environment. In particular, the internal surfaces of cardiac cham-
bers (the endocardium) are in contact with the blood, which exerts pressure. Since
the blood dynamics in the chambers is tightly related to that of the whole vas-
cular network, it is necessary to develop models of the entire circulatory system.
For this purpose, several blood circulation models, with different degrees of ac-
curacy, have been proposed. These range from three-dimensional fluid-structure
interaction (FSI) models, where the blood flow in blood vessels is described by
the Navier–Stokes equations [62, 65, 87, 88, 94], to zero-dimensional models (whose
variables only depend on time, but not on spatial coordinates) [65, 75].

In the latter family of models, also known as lumped parameters models, the
circulatory system is split into a finite number of compartments and an average
pressure is associated with each of them. Then, equations describing the dynamics
of these pressure variables and of the blood volume contained in each compartment
are derived by the principles of conservation of mass and momentum. Lumped
parameters models may be limited to a subset of the circulatory systems [19,36], or
may describe the whole closed-loop cardio-circulatory system [16,42,75]. In general
terms, they are written as systems of ODEs, in the form

(6.1)
dzcirc
dt

= Φcirc (zcirc, t) ,

where the vector zcirc(t) ∈ R
Ncirc collects the state variables (pressure and volumes).

The right-hand side may depend on the time variable, to account for the different
phases of the cardiac cycle. A concrete example of (6.1) is available in [75]. The
zero-dimensional model of blood circulation (6.1) must be suitably coupled with the
three-dimensional model of cardiac mechanics (see Section 5). With this aim, we
require that the volume enclosed by the ventricular cavity when the domain Ω0 is
moved by the displacement d (which we denote by V3D

LV (d)) equals the one predicted
by the zero-dimensional circulation model (which we denote by V0D

LV (zcirc)). This
coupling is enforced via a Lagrange multiplier, which, in the case at hand, represents
the blood pressure inside the ventricular cavity pLV (more details will be provided
in Section 7).
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An intermediate class of models for vessel circulation consists of 1D models, in
which only the main direction of blood flow is explicitly represented and the equa-
tions are averaged in the orthogonal directions. The development of 1D models for
blood circulation owes its origin to Leonhard Euler, back in 1775 [30]. The math-
ematical models of the circulatory system also need to account for the dynamics
of the four cardiac valves. The latter regulate blood flow between the atria and
the corresponding ventricles, between the right ventricle and the pulmonary artery,
and between the left ventricle and the ascending aorta. Their sudden opening and
closing is driven by the pressure gradient. The motion of cardiac valves can be
described with different levels of detail, ranging from three-dimensional FSI models
[61, 63] to zero-dimensional models [16]. For the sake of space, three-dimensional
and one-dimensional circulation models will not be further discussed in this paper.

7. A fully coupled cardiac electromechanics model

The mathematical models discussed in Sections 3, 4, 5, and 6 describe different
physical processes occurring at different spatio-temporal scales along each heart-
beat, which cannot however be understood independently of one another. These
are indeed connected though a complex and fascinating web of interactions, feed-
back loops, and self-regulation mechanisms aimed at preserving the physiological
working regime of the heart and responding to external stimuli (see Figure 3). In
mathematical terms, in order to describe the whole cardiac function, these models
must be coupled to yield a unique system of PDEs and ODEs.

Let us consider for simplicity a single chamber, namely the left ventricle. Hence,
the open connected domain Ω0 ⊂ R

3 represents the region of space occupied by
the left ventricle at rest (e.g., at the end of the diastole). Its boundary is split

into ∂Ω0 = Γ
endo

0 ∪ Γ
epi

0 ∪ Γ
base

0 , where Γendo
0 , Γepi

0 , and Γbase
0 are disjoint sets

respectively denoting the endocardial and epicardial surfaces and the ventricular
base, namely the artificial boundary located where the left ventricle geometry is

Figure 3. Diagram illustrating our multiphysics cardiac elec-
tromechanics model. The 3D left ventricle picture has the pur-
pose of displaying the finite-element grid as well as the different
boundary components.
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cut (see Figure 3). Then, the fully coupled electromechanical problem consists in
finding

v : Ω0 × [0, T ] → R, d : Ω0 × [0, T ] → R
3, zion : Ω0 × [0, T ] → R

Nion ,

zact : Ω0 × [0, T ] → R
Nact , zcirc : [0, T ] → R

Ncirc , pLV : [0, T ] → R
(7.1)

such that we have, in Ω0 × (0, T ],

(7.2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

χmCm∂tv −∇ ·
(
JF−1DF−T ∇v

)
+ χmIion(v, zion) = Iapp,

ρ ∂ttd−∇ ·P = 0, P =
∂W
∂F

+ Ta(zact)
Ff0 ⊗ f0
|Ff0|

,

∂tzion = Φion(v, zion),

∂tzact = Φact

(
zact, [Ca

2+]i(zion), SL(d), ∂tSL(d)
)

with boundary conditions

(7.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
JF−1DF−T ∇v

)
·N = 0 on ∂Ω0 × (0, T ],

PN+Kepid+ Cepi∂td = 0 on Γepi
0 × (0, T ],

PN = −pLVJF
−TN on Γendo

0 × (0, T ],

PN = pLV |JF−TN|
∫
Γendo
0

JF−TNdΓ0∫
Γbase
0

|JF−TN|dΓ0
on Γbase

0 × (0, T ],

and coupled with the following equations in (0, T ],

(7.4)
dzcirc
dt

= Φcirc (zcirc, pLV, t) , V3D
LV (d) = V0D

LV (zcirc)

with initial conditions (in Ω0 × {0})
(7.5) v = v0, d = d0, ∂td = 0, zion = zion,0, zact = zact,0, zcirc = zcirc,0.

We remark that the displacement of the myocardium (encoded in the variable d)
affects the conductivity properties of the tissue (thanks to the so-called mechano-
electrical feedback), for which (3.3) is rephrased in the deformed configuration, as
the tensor

D = σf
Ff0 ⊗ Ff0
|Ff0|2

+ σs
Fs0 ⊗ Fs0
|Fs0|2

+ σn
Fn0 ⊗ Fn0

|Fn0|2
,(7.6)

namely the pullback of the conductivity tensor in the reference configuration Ω0 is
replaced into (3.2).

The state variable of the ionic model (i.e., zion) provides the value of [Ca2+]i at
each point of the computational domain and at each time t, which is an input for
the force generation model to be solved at each point in Ω0. To provide the missing
input to the latter model, namely the sarcomere length and its time derivative, we
observe that the elongation of sarcomeres can be obtained as SL(d) = SL0|Ff0|,
where SL0 is the reference sarcomere length.

On its turn, the state variable of the force generation model (i.e., zact) provides
the magnitude of Ta, the active force generated at a given point of Ω0 and at a given
time t ∈ [0, T ], which is employed within the equation describing the mechanics of
the myocardium. The associated boundary conditions model the interaction of the
cardiac tissue with the surrounding tissue. Specifically, the boundary condition
imposed on Γepi

0 encodes an elastic (Kepi) and viscous (Cepi) interaction with the
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pericardium, a thin membrane enclosing the heart [36]. Conversely, the boundary
condition enforced on Γendo

0 models the stress exerted by the blood contained in the
cavity, whose pressure—tracked by the variable pLV—is assumed to be constant in
space. The variable pLV acts in fact as a Lagrange multiplier, enforcing the geomet-
rical compatibility condition V3D

LV (d) = V0D
LV (zcirc) at each time t ∈ (0, T ]. Finally,

the boundary condition imposed on Γbase
0 —known as energy-consistent boundary

condition—accounts for the stress exerted by the upper portion of the heart (that
we have deliberately disregarded for the sake of simplicity) on Ω0, consistently with
the principles of energy conservation (see [73] for a thorough derivation). We re-
mark that different sets of boundary conditions, representing different means of
interaction with the surrounding tissue, could be considered [36, 73].

Despite the large amount of work on cardiac electromechanical models, there are
still many open questions about the mathematical well-posedness of these systems of
equations. In [60] the authors studied the existence of solutions for the fully coupled
electromechanical model, considering different kinds of mechano-electrical feedback
in an active stress setting. Concerning the active strain setting, instead, in [7], the
authors proved existence of weak solutions and uniqueness of regular solutions for a
simplified electromechanical model, where the nonlinear elastic model is linearized
and where the FitzHugh–Nagumo ionic model [54] is employed. In [15] these results
have been generalized to the more realistic Beeler–Reuter [14] and Luo–Rudy [52]
ionic models. The latter results are based on the Faedo–Galerkin method and
compactness arguments. (A similar approach, named the Galerkin method, stands
also at the basis of the numerical approximation and will be outlined in Section 9.)

Part 2. Numerical approximation

8. Why should we turn to numerical approximation

The electromechanical model (7.1)–(7.5) is in principle able to encode the EM
heart function. As a matter of fact, reality is more complex than that. Indeed,
(7.1)–(7.5) has been proposed for the left ventricle. A model with a similar math-
ematical structure can be derived for the right ventricle, as well as for each one of
the two atria. The complete EM model would require using different constitutive
laws for the atria (their tissue is much thinner than in ventricles), accounting for
the electrical signal activation (from the sino-atrial node to the sino-ventricular one,
then spreading through the whole myocardium), and coupling the four chambers
together; see [65]. In this work, we focus only on the left ventricle model (7.1)–
(7.5), as the associated mathematical considerations will highlight what is relevant
for the complete model too.

There are a few other issues that need to be addressed, though. This is precisely
where applied mathematicians must put their hands into the “real matter”: How do
we generate nonhomogeneous boundary data? How do we provide an initial state
to our system (i.e., initial data for our initial boundary value problem)? How do
we prescribe a patient-specific problem’s coefficients (like fibers orientation) with-
out subjecting a patient to unnecessary expensive and invasive clinical exams and
measurements? Here is where we must depart from the beauty and lightness of
PDE theory where problems are invariably formulated under the following incipit:
“Let us consider the following PDE with regular enough boundary conditions given
by (some Dirichlet or Neumann data) and initial conditions (some suitable initial
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functions)”. As a matter of fact, boundary and initial functions are often missing
for a living system, and even when available they are often incomplete and discrete
(that is available only at few selected points) their “regularity” is hard to attribute,
actually it might not even be appropriate to talk about functional spaces for bound-
ary or initial data. In practice, this shortcoming (a troublesome issue) is overcome
by resorting to suitable mathematical procedures aimed at providing part of the
missing data “coherently” with the original physical problem. See for instance [65]
and [69]. See also Sections 11 and 13 where some of these issues will be addressed
in the context of our numerical simulations.

From a theoretical standpoint, the first and foremost question we should address
is whether (7.1)–(7.5) is well-posed. To our knowledge, a rigorous existence and
uniqueness theorem, under realistic assumptions on boundary data, initial condi-
tions, and the problem’s coefficients, is not provable as yet. Partial results do exist
concerning the electrophysiology subproblem (3.2) with suitable boundary condi-
tions [34, 93], as well as for the passive mechanics problem (5.1) under suitable
boundary conditions [12, 27]. See [7, 15, 60] for existence results on the coupled
electromechanical model under simplifying assumptions. This may raise questions
about the actual solvability of problem (7.1)–(7.5) and suggests a cautious attitude
to mathematicians. On the other side, if we are confident—based on the deriva-
tion of (7.1)–(7.5) from physics first principles and from biophysically motivated
assumptions—that this model represents a faithful description of the reality, then
reality suggests to us that “a solution” should exist, and is unique, under physio-
logical (living) conditions. The above heuristic considerations prompt us to try to
find numerical solutions (exact, analytic solutions in closed form are impossible to
obtain, unless under severe, unrealistic simplistic assumptions).

Generally speaking, the approximation of an initial boundary value problem
(IBVP) (either scalar, or vectorial, as the case of (7.1)–(7.5)) can be operated
following different strategies. To avoid unnecessary (and lengthy) generalization,
here we will stick with sequential approximations, first in space and next in time
(simultaneous space-time approximations can be pursued as well).

9. Space discretization

Space approximation has the aim of reducing the given IBVP to a system of
ODEs (i.e., an IVP). This again can be operated according to many different
paradigms. Here we will use the Galerkin method that consists in projecting the
weak (variational) formulation of our IBVP at every time t into a finite dimensional
subspace of the (Sobolev) space, say V , to which the exact (weak) solution belongs.
More specifically we will use the Galerkin finite element (FE) method for which
the finite-dimensional space, say Vh, is made of piecewise polynomial functions (ei-
ther continuous or discontinuous) on a partition of the computational domain into
simplexes (triangles in 2D, tetrahedra in 3D); see, e.g., [22, 68]. The subindex h
denotes the characteristic diameter of the simplexes: the smaller the h, the finer
the FE partition, the higher the dimension, say Nh, of the vector space Vh, the
more accurate (in principle) the numerical solution. Accordingly, we will denote
by yh(X, t) the FE approximation of the solution y(X, t) of the IBVP. By suitably

defining a basis of the vector space Vh, say {ϕi}Nh
i=1, the numerical solution is ex-

pressed as a linear combination of this basis through Nh (unknown) coefficients that

depend on the time variable t, that is to say yh(X, t) =
∑Nh

i=1 ϕi(X) yi,h(t), where
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y(t) = (y1,h(t), . . . , yNh,h(t))
T ∈ R

Nh for all t ∈ [0, T ]. By computing the result of
this projection against the Nh basis functions, after simple algebraic manipulation
we end up with a system of Nh differential equations for the unknown coefficients,
known as the semidiscretized problem,

(9.1)

⎧⎨
⎩

M dy
dt (t) +Ay(t) + F(y(t)) = f(t) in (0, T ],

y(0) = y0,

where A ∈ R
Nh×Nh , M ∈ R

Nh×Nh , and F : R
Nh → R

Nh are three operators
corresponding to the linear, mass, and nonlinear terms of the IBVP, respectively.

We recall that the electromechanical model considered in this paper is in fact a
multiphysics problem, being made of several subproblems coupled together to form
problem (7.1)–(7.5). In this setting, the semidiscretized problem (9.1) is still valid,
provided that the unknowns vector y collects the coefficients associated with the
FE discretization of all the unknowns of problem (7.1)–(7.5).

10. Time discretization

At this stage we need to perform a further approximation: the time-derivatives
are discretized using suitable differential quotients (i.e., Taylor developments), after
having introduced a suitable discretization of the time interval into subintervals of
(say, uniform) length Δt. The smaller Δt, the finer the time interval partition, the
more accurate (with respect to Δt) the expected solution. The result is a system
of Nh nonlinear algebraic equations that need to be solved at every time step.

Let us partition for simplicity the time interval [0, T ] in Nt time instances
tn = nΔt, for n = 0, . . . , Nt, where the time step size is Δt = T

Nt
. We indicate with

yn = (yn1,h, . . . , y
n
Nh,h

)T ∈ R
Nh the approximation of y(tn) for all n = 0, . . . , Nt; in

this manner, the combined FE and time discretizations applied to y will yield the

approximation y(tn) ≈
∑Nh

i=1 ϕi y
n
i,h. By way of example, let us consider first-order

accurate backward differentiation formulas (BDF)—a family of multistep methods
for the approximation of ODEs (see [67])—by starting from the semidiscrete prob-
lem (9.1). This yields to a sequence of algebraic problems in the unknowns yn for
n = 0, . . . , Nt:
(10.1){ 1

ΔtMyn+1 +Ayn+1 + F(yn+1) = 1
ΔtMyn + f(tn+1) for n = 0, . . . , Nt − 1,

y0 = y0.

At this stage we recall that in the case of multiphysics coupled problems, the
unknown vector y collects the coefficients associated with several functions, related
to different physical entities and to different differential operators. In this setting,
the time discretization considered above (see (10.1)) represents an example of the so-
called monolithic approach, as the semidiscrete problem (9.1) is discretized in time
as a unique monolithic system, disregarding the underlying separation in different
core models; see, e.g., [36]. The monolithic approach, however, is not the only
possible one in the context of coupled problems. Alternative approaches are based
on the so-called operator splitting strategy: if an IBVP is governed by an operator,
say L, that is the sum of two (or several) operators, say L1 and L2, the operator
splitting strategy consists in advancing sequentially the single operators Li from one
time-step to the next one. Different algorithms are of course available to accomplish
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this strategy; see, e.g., [20]. The net result is that at any given step of the algorithm
only one operator is dealt with at a time. Framing this in a different terminology,
operator splitting techniques allow us to split a multiphysics (coupled) problem into
a sequence of subproblems, each one dealing with a single type of physics (that is
with a single core mathematical model).

The numerical solution of every subproblem allows us to lower the computa-
tional complexity inherent to the monolithic approach; see, e.g., [28]. Moreover,
different time and spatial scales can be more easily accommodated in an operator
splitting context, by operating ad hoc choices of FE subspaces, spatial partitions of
computational domains, temporal discretizations ([82]). However, operator split-
ting methods can sometimes require a more severe restriction on the time step
to ensure stability, and they invariably introduce a further error with respect to
Δt, called a splitting error. The choice between monolithic methods and operator
splitting methods heavily depends on the IBVP at hand, its multiscale nature, the
way solutions depend on data, and the availability of suitable numerical arsenal to
face the solution of the whole problem using a monolithic approach. As a matter
of fact, when using monolithic methods, one faces a potentially gigantic nonlinear
algebraic system that is severely ill conditioned—a concept crucial in numerical
analysis that, roughly speaking, expresses the way roundoff errors due to inexact
machine arithmetic propagate all along the solution process. Ill-conditioning—that
can be quantified through the ratio between the largest and smallest moduli of
the eigenvalues of the Jacobian matrices of the nonlinear algebraic systems—can
be cured by preconditioning strategies, i.e., by a suitable scaling of the differen-
tial operators to be implemented at the algebraic level on the Jacobian matrices.
Preconditioning, in its turn, calls for scalable algorithms, i.e., the realization of
preconditioning (scaling) matrices whose associated linear systems can be solved
on parallel computer architectures by a full exploitation of the parallelism [38, 91].

From a mathematical standpoint, several questions are in order. How should
we choose our FE spaces and our temporal discretizations in order for our fully
discrete nonlinear algebraic system to be nonsingular. And what about solution
uniqueness? Moreover, in case we have ensured a unique solution, is it stable with
respect to coefficients and data perturbations, uniformly with respect to both Δt
and h, in suitable Sobolev norms? Furthermore, with respect to the same norms, is
it convergent to the exact (weak) solution when both Δt and h tend to zero? And if
so, which are the convergence rates with respect to Δt and h? Proving these results
requires sophisticated arguments of functional analysis, a priori estimates for the
original IBVP, theoretical estimates for piecewise polynomial (FE) approximations
in Sobolev norms [64, 68].

Error estimates with precise convergence rates are important (whenever possible)
to drive the choice of the FE partition in space and the discretization of the time
interval to ensure the desired level of accuracy with the least computational effort.
Indeed, the tradeoff is always the one between improving the accuracy and lowering
the computational complexity. Roughly speaking, the latter is measured in terms
of the size of the nonlinear algebraic systems and the computational time needed
for the determination of the numerical solution. In this respect, a crucial decision
is whether the given IBVP (7.1)–(7.5) is approximated as a whole (monolithically)
or by segregating the mechanical model from the electrophysiology one.
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Part 3. Numerical solution

11. Numerical results for cardiac electromechanics

We present numerical solutions of the electromechanical problem (7.1)–(7.5) ob-
tained by a FE discretization in space and a segregated scheme in time. Fur-
ther details on the numerical schemes can be found in [76]. This numerical algo-
rithm has been implemented in lifex (https://lifex.gitlab.io/lifex), a high-
performance C++ library developed within the iHEART project.2 To meet the signif-
icant demand of computational resources associated to the numerical approximation
of this multiscale and multiphysics problem, we rely on the high-performance com-
puting resources available at MOX, Politecnico di Milano (48 Intel Xeon ES-2640
CPUs), thanks to the parallel implementation of the lifex code.

11.1. Convergence analysis in space. As mentioned above, an essential prop-
erty of a numerical method is convergence, that is the ability of the method to pro-
duce a numerical solution arbitrarily close to the exact one, provided sufficiently
fine discretization parameters (h and Δt) are used. For many of the numerical
methods known in the literature, it is also possible to find a convergence estimate,
i.e., an upper bound on the error as a function of the discretization parameters.
After a numerical method is implemented in a software code, the following test is
often performed. One considers a problem for which an exact solution is known
(typically on a simple geometry and for suitable data) and solves the numerical
problem many times, by progressively refining the discretization parameters. Af-
terwards, the errors with respect to the exact solution are computed and the error
trend is plotted on a graph, in comparison with the theoretical trend. This analysis
is an example of so-called numerical verification. Its purpose is twofold: on the one
hand it verifies that the implementation is bug free, on the other hand it validates
the theoretical result.

The complexity of the models underlying the coupled problem of cardiac elec-
tromechanics is such that an exact solution is never known, even in the simplest
cases. Nevertheless, a numerical verification of convergence can be done in the fol-
lowing way. We consider a sequence (indexed by k = 0, 1, . . . ) of refinements of the
space-discretization parameter h, defined by hk = αkh0, for a suitable reduction
factor α ∈ (0, 1). Let uh denote the numerical solution associated with h, and let
us suppose that a numerical method has convergence order p. This means that, for
h → 0+, we have uh = uex+chp+o(hp), where uex is the exact solution and where
c = d

d(hp)uh. Hence, the difference between the numerical solutions obtained for

two consecutive refinements of h asymptotically decreases according to the estimate

uhk+1
− uhk

� c (hp
k+1 − hp

k) = chp
0 (α

p − 1)αkp.

This entails that the logarithm of the norm of the solution increment from step k
to step k + 1 is an affine function of k:

(11.1) log ‖uhk+1
− uhk

‖ � log (‖c‖hp
0 (1− αp)) + kp logα.

In conclusion, plotting the increment norms ‖uhk+1
− uhk

‖ in a semilogarithmic
plane, we expect a line with slope equal to the product between the convergence
order p and the reduction factor α.

2iHEART—An Integrated Heart Model for the simulation of the cardiac function, European
Research Council (ERC) grant agreement No 740132, P.I., A. Quarteroni.

https://lifex.gitlab.io/lifex
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Figure 4. Time evolution of the maximum displacement ob-
tained for the slab problem for progressively refined computational
meshes. The mesh size h follows the rule hk = αkh0, where
h0 = 1mm, α = 2−1/3 and where the index k is reported in the
legend. In the left bottom corner, an enlargement of the curves is
shown.

Returning to the specific case of cardiac electromechanics, let us consider a tissue
slab, that is a parallelepiped with dimensions 10×10×3mm, with fibers and sheets
oriented as the x and y axis, respectively. We stimulate the tissue by applying a
Gaussian impulse in a corner of the domain, so that an electrical impulse travels
through the slab and makes it contract. Because of the different geometry than
the one considered for (7.1)–(7.5), we have to adapt the boundary conditions of the
mechanical subproblem. Specifically, we anchor the displacement of the tissue on
one of the two vertical faces orthogonal to f0 by setting a homogeneous Dirichlet
boundary condition on the displacement (i.e., d = 0), we set the epicardial bound-
ary conditions of (7.3) on the remaining vertical faces, while we leave the horizontal
faces unloaded (homogeneous Neumann boundary conditions, i.e., PN = 0).

We fix Δt = 1× 10−4 s, and, starting from h0 = 1mm, we progressively reduce
h by twelve refinements with a factor α = 2−1/3, so that h is halved every three
refinements. For each value of k, we numerically approximate the solution of (7.1)–
(7.5) with piecewise linear finite elements and with a fully segregated scheme. In
practice, when performing the numerical convergence study, one typically focuses
on some quantity of interest (QoI). In the current case, we focus on the maximum
displacement of the surface opposite the slab anchoring. The time evolution of
this QoI is an index determined by all the processes involved in the model, being
the result of the propagation of the electrical signal, the consequent generation of
force, and finally of the elastic response of the tissue. In Figure 4 we show the
time evolution of the QoI numerically obtained for k ranging between 0 and 12. As
expected, the curves visually converge towards a limit curve.

In Figure 5 we plot both the L∞(0, T ) (i.e., the maximum increment in the time
window) and the L2(0, T ) norm of the increments between consecutive curves as
function of k. We verify in this manner that the QoI converges with order one:
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Figure 5. Norms of the solution increments between consecutive
refinements as function of k. The dashed line has the theoretical
slope log(α).

indeed, the curves shown in Figure 5 for both the norms follow the same behavior
of the reference dashed line with slope equal to log(α).

11.2. Left ventricle electromechanics. We now turn to an electromechanical
simulation in a realistic geometry. We consider a computational domain derived
from the Zygote heart model [2], representing that of an average 21-year-old healthy
caucasian man. The computational mesh is represented in Figure 3. It is made of
346 · 103 vertices. Since each vertex corresponds to 24 unknowns, the discretized
problem features more than 8 million unknowns for each time step. We discretize
the time interval (0, 0.8 s] with a time step size Δt = 2× 10−4 s. The fibers, sheets
and cross-fibers directions (f0, s0, and n0), represented in Figure 6, are generated
by exploiting the algorithm proposed in [13].

To trigger the propagation of the electrical potential, we apply an electric stimu-
lus Iapp in three spherical regions located in the endocardium to mimic the action of
the Purkinje fibers. This originates a traveling wave that quickly covers the whole
ventricle. Figure 7 shows the variable describing the intracellular calcium concen-
tration [Ca2+]i at different times. An output of the simulation which is commonly
used in clinical applications is shown in Figure 8, that is the so-called activation
time. It corresponds to the time delay from trigger of the stimulus and the time
when the action potential wave reaches a given point of the domain Ω0. More
precisely, it is defined as the time corresponding the steepest growth of transmural
potential (i.e., tact(t,x) = argmaxt∈[0,T ] ∂tu(t,x)).

The increase of calcium concentration represented in Figure 7 triggers the micro-
scopic mechanisms of active force generation. As a consequence, the active tension
Ta increases significantly and the ventricle contracts. Figure 9 depicts the values of
Ta at different times and the corresponding mechanical deformation of the ventricle.
The contracting ventricle features a characteristic twisting movement, which is to
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f0 s0 n0

Figure 6. Representation of the fibers, sheets, and cross-fibers
directions f0, s0, and n0.

t = 0.01 s t = 0.03 s t = 0.05 s t = 0.07 s t = 0.09 s

t = 0.1 s t = 0.12 s t = 0.2 s t = 0.4 s t = 0.6 s

Figure 7. Representation of the variable [Ca2+]i (intracellular
calcium concentration) in the domain Ω0 at different times t.

be ascribed to the presence of fibers (see Figure 6), accompanied by a thickening
of the cardiac wall.

12. Towards clinical applications

As of 2016, cardiovascular diseases stand as the leading cause of death in the
world [1], with nearly 18 million individuals deceased, 85% of which are due to heart
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Figure 8. Representation of the activation time. From left to
right: lateral view, top view, frontal view with a cut in the domain.

attack and stroke. Still, recent advancements in clinical practice are steadily im-
proving patients’ conditions and the treatment of cardiac diseases. In this context,
mathematical and numerical modeling are increasingly playing a role by provid-
ing medical doctors and clinicians with valuable diagnostic and predictive tools for
virtually exploring therapeutic scenarios or even planning surgical interventions.
We are actually experiencing the emergence of a new discipline known as compu-
tational medicine, the meeting point of mathematics, scientific computing, data
science, engineering, and medicine.

Using integrated cardiac or electromechanics modeling to address clinical ques-
tions is still at the outset of computational medicine, due to the relative complexity
and novelty of these models. Exploiting instead a few core models is becoming more
customary in recent years, as it is occurring for cardiac electrophysiology to deal
with electric dysfunctions; see, e.g., [9]. We report on the following two examples of
clinical applications being addressed by the iHEART team at Politecnico di Milano.

In collaboration with the Arrhythmology and Cardiac Electrophysiology Unit of
IRCCS San Raffaele Hospital in Milan (Italy), we investigated factors that favor
triggering and sustenance of arrhythmias, as for example ventricular tachycardia.
Indeed, structural abnormalities of the tissue that can be modeled as localized alter-
ations of the electrical conductivities σf , σs, and σn in (3.3), generated by an episode
of acute myocardial infarction, can create conditions for triggering a re-entry cir-
cuit near the scar area. Along this circuit, the electric impulse can continually
reactivate the ventricles in an accelerated and uncontrolled manner, in some cases
leading to sudden cardiac arrest, a fatal condition if not immediately treated. Con-
ventional therapy consists of an electrophysiological study with catheter ablation,
an invasive clinical procedure that identifies and eliminates those channels—called
isthmuses—that sustain the circuits. A similar procedure allows the treatment of
atrial fibrillation, a disorganization of the electric signal in the left atrium, which
can be linked to progressive tissue damage. The numerical simulation of cardiac
arrhythmias is very challenging: the electric potential exhibits a complex pattern
with spiral waves or along re-entry circuits, unlike the ordered propagation typical
of normal pacing. We performed numerical simulations of instability mechanisms,
which are capable of generating ventricular tachycardia and atrial fibrillation, in
the presence of heterogeneity in the tissue [35]. These, in combination with elec-
trical measurements on the patient, could help in identifying the channels at the
base of the re-entry circuits, and, possibly in the near future, to improve ablative
procedures.
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t = 0 s t = 0.12 s t = 0.24 s t = 0.36 s t = 0.6 s

Figure 9. Representation of the variable Ta (active tension) in
the domain Ω(t) at different times t. The deformed domain Ω(t)
is obtained from the reference domain Ω0 (which is represented in
transparency) by deforming the latter according to the displace-
ment d(t). The first row shows a frontal view; the second row
shows a vertical cut of the domain, with three slices that display
the solution inside the domain; the third row shows the top view
with a vertical cut in the domain.

In collaboration with the Cardiology and Radiology Departments of S. Maria del
Carmine Hospital in Rovereto (Trento, Italy), our team has taken the first steps
towards the optimization of the cardiac resynchronization therapy (CRT). CRT
consists in implanting a device capable of restoring the correct pacing after the
synchronous heartbeat has been compromised by conduction disturbances or tissue
scars. A mapping of the coronary veins of the left ventricle is carried out by inserting
a catheter–electrode through the blood vessels to detect electrical activity. This
mapping serves to identify the point of later activation wherein the left electrode of
the CRT is positioned. Our research team has developed a computational pipeline
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to reduce the duration of this invasive clinical procedure and to calculate the point
of later activation by enabling a deeper exploration aside the points mapped by the
catheter [84].

In the papers previously mentioned, a few validation results are reported by com-
paring some specific outputs provided by the numerical models with corresponding
indicators or biomarkers collected in a clinical environment. For the sake of brevity,
in this paper we do not deal with the topic of validation, which is, nonetheless, a
step of utmost importance for a clinical exploitation of such computational tools.

13. Conclusions and a look ahead

So far we have limited ourselves to studying the direct (forward) problem, namely
problem (7.1)–(7.5), and to showing how its solution can be approximated in an
input-output framework. Actually, many topics have remained in the background,
even if they are fundamental in facing a problem of such complexity. Major chal-
lenges facing cardiac modeling include parameter inference from uncertain exper-
imental measurements, model personalization to patient data, model selection,
model discrepancy from reality, and the way these factors affect the confidence
in model prediction. Two kinds of uncertainties are usually considered: Epistemic
uncertainty is due to either lack of knowledge (e.g., a quantity or a coefficient that
was not possible to measure) or experimental errors (e.g., a quantity that was not
correctly measured). Aleatory uncertainty is instead due to stochasticity (e.g., ev-
ery individual reacts differently each time, which represents an intrinsic kind of
uncertainty) or to variability between individuals (every individual behaves differ-
ently than everyone else, which is an extrinsic uncertainty).

Epistemic uncertainty can be addressed by uncertainty quantification (UQ)math-
ematical techniques. We distinguish between forward UQ, which deals with the
propagation of the uncertainty on the parameters on the outputs of the model, and
backward UQ, which studies how the measurement errors on the outputs affect the
estimation of the parameters.

Aleatory and epistemic uncertainty can be faced in the framework of reduced
order models (ROM). ROM can in fact be used with multiple purposes. A canonical
usage is to allow the simultaneous approximation of the whole solution manifold
of a boundary value problem (but it could be as well an IVP or an IBVP) that is
made of the set of solutions corresponding to the whole range of parameters (or
coefficients) that characterize the given boundary value problem. In abstract terms,
using for the sake of readability an algebraic standpoint, let us denote by y(t;μ)
the solution of a time-dependent nonlinear problem (μ ∈ P ⊂ R

p denotes a set of
input parameters) of the form

(13.1)

⎧⎨
⎩

M(μ) dy
dt (t, μ) +A(μ)y(t;μ) + F(y(t;μ);μ) = f(t;μ) in (0, T ],

y(0;μ) = y0(μ),

deriving, e.g., from the finite-element discretization of a parametrized IBVP (similar
to (9.1)).

The dimensional reduction is made possible by exploiting the parametric depen-
dence of the solution manifold, that is, the set Mh = {y(t;μ) : t ∈ (0, T ], μ ∈ P},
thanks to the evaluation of a database of solutions, or snapshots, for selected param-
eter values, and to a Galerkin projection onto the finite-dimensional space spanned
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by a set of selected basis functions. These basis functions can be selected either
through a greedy approach or by means of proper orthogonal decomposition (POD):
in the case of a stationary problem, the basis functions are the snapshots themselves
if a greedy algorithm is used, or else the first singular vectors of the snapshot matrix
if POD is used; see, e.g., [23, 41, 66]. One possible ROM approximation of(13.1)
might be
(13.2)⎧⎪⎪⎨

⎪⎪⎩
MN (μ)

dyN

dt
(t, μ) +AN (μ)yN (t;μ) +WT

N F(WN yN (t;μ);μ) = fN (t;μ)

in (0, T ],

yN (0;μ) = yN,0(μ),

where MN (μ) = WT
N M(μ)WN , AN (μ) = WT

N A(μ)WN , and fN (μ) = WT
N f(t;μ),

and WN is a rectangular matrix whose columns encode the snapshot solutions. For
time-dependent problems, the parameter space can still be sampled by one of the
two techniques mentioned, whereas POD is usually exploited to reduce trajectories
of the system over the time interval. In mathematical terms, the solution mani-
fold is approximated by a linear subspace VN generated by a handful of N  Nh

(snapshot) basis functions corresponding to a wise choice of N representative pa-
rameters. These basis functions are computed offline by solving N finite-element
problems, each one consisting of a large number (Nh) of equations. This heavy
computational task can however be computed once and for all (offline). Then, for
every new value of the parameter μ (say, μnew), the corresponding solution unew is
obtained by solving a Galerkin problem of reduced size N in the reduced subspace
VN . This online computation is generally very cheap (thanks to the small size of
the reduced subspace) and is carried out online. Thanks to this very distinguishing
feature, ROM enable the solution in “real time” of large FE problems, allowing us
therefore to cultivate the dream of a real-time interaction between mathematicians
and clinicians.

Needless to say, many mathematical and numerical issues need to be addressed
in order to make the previous strategy theoretically rigorous and computationally
efficient. From a theoretical standpoint, the original IBVP should be reducible: this
means that it should be possible to accurately approximate its solution manifold
by a single linear subspace of (low) dimension N . This property, which depends
on the regularity of the solution manifold Mh ∈ V with respect to the parameter
variations, can be assessed by investigating the so-called Kolmogorov N-width, that
is the minimum distance (in a suitable Sobolev norm) of an arbitrary element of
the manifold from linear subspaces of dimension N :

dN (Mh, V ) = inf
VN⊂V

dimVN=N

sup
y∈Mh

inf
yN∈VN

‖y − yN‖V .

For ample classes of boundary value problems, the Kolmogorov N -width (KNW)
decreases exponentially fast with respect to N . In those less benign cases where the
KNW is much slower to decrease with respect to N , nonlinear approximation ROM
techniques can be set up. In this case the solution manifold is approximated by a
set of local linear subspaces that better exploit the local (nonuniform) regularity
properties of the solution manifold [23, 41, 66].
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From the computational viewpoint, efficiency relies on the possibility of using
an offline-online computational splitting, where the online phase requires computa-
tional time depending only on the reduced dimension N and not on the full-order
dimensionNh (this property will enable real-time simulations). Precisely, the arrays
appearing in (13.2) can be efficiently assembled in a rapid online phase by combin-
ing parameter-independent quantities stored during a more expensive offline phase,
provided that the dependence of the high-fidelity arrays, such as A(μ) and f(t;μ),
is affine.

When this is not the case, or at any rate when the original problem is nonlinear,
further approximations should be operated, and extra reduced spaces should be
used to independently approximate the nonlinear terms. This procedure is some-
times called hyper-reduction [31] and should obviously be accompanied by extra
investigation on the corresponding approximation properties of the hyper-reduced
solution.
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P. Della Bella, Outer loop and isthmus in ventricular tachycardia circuits: Characteristics
and implications, Heart Rhythm 17 (2020), no. 10, 1719–1728, Focus Issue: Sudden Death.
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