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GEOMETRY, ANALYSIS, AND MORPHOGENESIS:

PROBLEMS AND PROSPECTS

MARTA LEWICKA AND L. MAHADEVAN

Abstract. The remarkable range of biological forms in and around us, such
as the undulating shape of a leaf or flower in the garden, the coils in our gut,
or the folds in our brain, raise a number of questions at the interface of bi-
ology, physics, and mathematics. How might these shapes be predicted, and
how can they eventually be designed? We review our current understanding of
this problem, which brings together analysis, geometry, and mechanics in the
description of the morphogenesis of low-dimensional objects. Starting from
the view that shape is the consequence of metric frustration in an ambient
space, we examine the links between the classical Nash embedding problem
and biological morphogenesis. Then, motivated by a range of experimental
observations and numerical computations, we revisit known rigorous results
on curvature-driven patterning of thin elastic films, especially the asymptotic
behaviors of the solutions as the (scaled) thickness becomes vanishingly small
and the local curvature can become large. Along the way, we discuss open
problems that include those in mathematical modeling and analysis along with
questions driven by the allure of being able to tame soft surfaces for applica-
tions in science and engineering.

1. Introduction

A walk in the garden, a visit to the zoo, or watching a nature documentary
reminds us of the remarkable range of living forms on our planet. How these
shapes come to be is a question that has interested scientists for eons, and yet it is
only over the last century that we have finally begun to grapple with the framework
for morphogenesis, a subject that naturally brings together biologists, physicists,
and mathematicians. This confluence of approaches is the basis for a book, equally
lauded for both its substance and its scientific style, D’Arcy Thompson’s opus, On
growth and form [116], where the author says:

An organism is so complex a thing, and growth so complex a phe-
nomenon, that for growth to be so uniform and constant in all
the parts as to keep the whole shape unchanged would indeed be
an unlikely and an unusual circumstance. Rates vary, proportions
change, and the whole configuration alters accordingly.
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From both mathematical and mechanical perspectives, this suggests a simple
principle: differential growth in a body leads to residual strains that will generi-
cally result in changes in the shape of a tissue, organ, or body. Surprisingly then,
it is only recently that this principle has been taken up seriously by both exper-
imental and theoretical communities as a viable candidate for patterning at the
cellular and tissue level, perhaps because of the dual difficulty of measuring and of
calculating the mechanical causes and consequences of these effects. Nevertheless,
with an increasing number of testable predictions and high throughput imaging in
space-time, this geometric and mechanical perspective on morphogenesis has be-
gun to be viewed as a complement to the biochemical aspects of morphogenesis,
as famously exemplified by the work of Alan Turing in his prescient paper, The
chemical basis for morphogenesis [119]. It is worth pointing out that differential
diffusion and growth are only parts of an entire spectrum of mechanisms involved in
morphogenesis that include differential adhesion, differential mobility, differential
affinity, and differential activity, all of which we must eventually come to grips with
to truly understand the development and evolution of biological shape.

In this review, we consider the interplay between geometry, analysis, and mor-
phogenesis of thin surfaces driven by three motivations: the allure of quantifying
the aesthetic seen in examples such as flowers, the hope of explaining the origin of
shape in biological systems, and the promise of mimicking them in artificial sys-
tems [64, 106]. While these issues also arise in three-dimensional tissues in such
examples as the folding of the brain [113, 114] or the looping of the gut [105, 111],
the separation of scales in slender structures that grow in the plane and out of it
links the physical problem of growing elastic films to the geometrical problem of
determining a slowly evolving approximately two-dimensional film in three dimen-
sions. Indeed, as we will see, many of the questions we review here are related to
a classical theme in differential geometry—that of embedding a shape with a given
metric in a space of possibly different dimension [95, 96], and eventually that of
designing the metric to achieve any given shape. However, the goal now is not only
to state the conditions when it might be done (or not) but also to determine the
resulting shapes in terms of an appropriate mechanical theory and to understand
the limiting behaviors of the solutions as a function of the geometric parameters.

The outline of this paper is as follows. Starting from the view that shape is the
consequence of metric frustration in an ambient space, in section 2 we describe the
background and objectives of non-Euclidean elasticity formalism as well as present
an example of growth equations in this context. In section 3 we examine the links
between the classical Nash embedding problem and biological morphogenesis. Then,
motivated by a range of experimental observations and numerical computations, we
revisit known rigorous results on curvature-driven patterning of thin elastic films in
section 4, where we also offer a new estimate regarding the scaling of non-Euclidean
energies from convex integration. In section 5, we focus on the asymptotic behaviors
of the solutions as the (scaled) thickness of the films becomes vanishingly small and
the local curvature can become large. In section 6 we digress to consider the weak
prestrains and the related Monge–Ampère constrained energies. In section 7, the
complete range of results is compared with the hierarchy of classical geometrically
nonlinear theories for elastic plates and shells without prestrain. Along the way
and particularly in section 8, we discuss open mathematical problems and future
research directions.
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Figure 1. Patterns in a range of systems in terrestrial and aquatic
environments show the myriad forms that reflect the consequence
of inhomogeneous growth of a thin sheet: the impossibility of em-
bedding an arbitrary biological growth metric coupled with the
constraint of minimizing an elastic energy leads to frustration
embodied as shape. The examples shown are (a) a terrestrial
cockscomb flower, (b) a marine nudibranch sea-slug, (c) a lily
flower in its bud and opened states [90], (d) a normal and mu-
tant snapdragon leaf, (e) a crocheted scarf. All these are frus-
trated embeddings of a hyperbolic metric into R

3. (This figure
is available via Creative Commons Attribution–NonCommercial–
NoDerivatives 4.0 International license.)

2. Non-Euclidean elasticity and an example of growth equations

An inexpensive surgical experiment serves as a clue to the biological processes
at work in determining shape: if one takes a sharp knife and cuts a long, rippled
leaf into narrow strips parallel to the midrib, the strips flatten out when “freed”
from the constraints of being contiguous with each other. This suggests that the
shape is the result of geometric frustration and feedback, driven by the twin effects



334 MARTA LEWICKA AND L. MAHADEVAN

of embedding a non-Euclidean metric due to inhomogeneous growth and of mini-
mizing an elastic energy that selects the particular observed shape. Experiments
confirm the generality of this idea in a variety of situations, ranging from undulating
submarine avascular algal blades to saddle-shaped, coiled, or edge-rippled leaves of
many terrestrial plants [66, 89]. Understanding the origin of the morphologies of
slender structures as a consequence of either their growth or the constraints im-
posed by external forces, requires a mathematical theory for how shape is generated
by inhomogeneous growth in a tissue.

2.1. Non-Euclidean elasticity. Biological growth arises from changes in four
fields: cell number, size, shape, and motion, all of which conspire to determine
the local metric, which in general will not be compatible with the existence of an
isometric immersion. For simplicity, growth is often coarse-grained by averaging
over cellular details, thus ignoring microscopic structure due to cellular polarity,
orientation (nematic order), anisotropy, etc. While recent work has begun to ad-
dress these more challenging questions [93, 122], we limit our review to the case
of homogeneous, isotropic thin growing bodies. This has proceeded along three
parallel paths, all leading to a set of coupled hyperelliptic PDEs that follow from a
variational principle:

• by using the differential geometry of surfaces as a starting point to determine a
plausible class of elastic energies written in terms of the first and second funda-
mental forms or their discrete analogues and deviations from some natural state
[49];

• by drawing on an analogy between growth and thermoelasticity [91] and plasticity
[73], since they both drive changes in the local metric tensor and the second
fundamental form, and by using this to build an energy functional whose local
minima determines shape;

• by starting from a three-dimensional theory for a growing elastic body with ge-
ometrically incompatible growth tensors, driving the changes of the first and
second fundamental forms of a two-dimensional surface embedded in three di-
mensions [7, 27].

The resulting shape can be seen as a consequence of the heterogeneous incompati-
bility of strains that leads to geometric (and energetic) frustration. This coupling
between residual strain and shape implies an energetic formulation of non-Euclidean
elasticity that attempts to minimize an appropriate energy associated with the frus-
tration between the induced and intrinsic geometries. Within this framework, a few
different types of problems may be posed:

• questions about the nature of the (regular and singular) solutions that arise;
• questions about their connection to experimental observations;
• problems related to the limiting behavior of the solutions and their associated
energies in the limit of small (scaled) thickness;

• questions about identifying the form of feedback laws linking growth to shape
that lead to the self-regulated reproducible forms seen in nature;

• problems in formulating inverse problems in the context of shaping sheets for
function.
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2.2. An example of growth equations. To get a glimpse of the analytical struc-
tures to be investigated, we begin by writing down a minimal theory that couples
growth to the shape of a thin lamina of uniform thickness [7,89,91], now generalized
to account for differential growth:

Δ(trσ) +
α

2
detκ = −αΔ(tr s),

βΔ(trκ)− tr(σκ) = −βΔ(trb).
(2.1)

Here, Δ is the two-dimensional Laplace–Beltrami operator, σ is the two-dimensional
depth-averaged stress tensor, and κ is the curvature tensor. The scalar coefficients
α and β characterize the elastic moduli of the sheet, assumed to be made of a linear
isotropic material: α is the resistance to stretching (and shearing) in the plane, and
β is the resistance to bending out of the plane. The right-hand side of (2.1) quan-
tifies the source that drives in-plane differential growth due to a prescribed metric
tensor s, and the out-of-plane differential growth gradient across the thickness due
to a prescribed second fundamental form (a curvature tensor) b.

The first equation in the system (2.1) corresponds to the incompatibility of the
in-plane strain due to both the Gauss curvature and the additional contribution
from in-plane differential growth, and it is a geometric compatibility relation. The
second equation in system (2.1) is a manifestation of force balance in the out-of-
plane direction due to the in-plane stresses in the curved shell and to the growth
curvature tensor associated with transverse gradients that leads to an effective
normal pressure. We observe that β/α = O(h2), where h is the thickness of the
tissue, so there is a natural small parameter in the problem a = h/L � 1, where
L is the lateral size of the system. The nonlinear hyperelliptic equations (2.1)
need to be complemented with an appropriate set of boundary conditions on some
combination of the displacements, stresses, and their derivatives. However, it is
not even clear if and when it is possible to realize reasonable physical surfaces for
arbitrarily prescribed tensors s,b, and so one must resort to a range of approximate
methods to determine the behavior of the solutions in general.

There are two large classes of problems associated with the appearance of fine
scales or sharp localized conical features, and they are characterized by two distin-
guished limits of (2.1). These correspond to the situation when either the in-plane
stress is relatively large or when it is relatively small. In the first case, when |σ| ∼ α,
i.e., the case where stretching dominates, one can rescale equations (2.1) so that
they yield the singularly perturbed limit:

Δ(trσ) +
1

2
detκ = −Δ(tr s),

a2Δ(trκ)− tr(σκ) = −a2Δ(trb).
(2.2)

As a2 → 0, at leading order, the second of the equations above implies tr(σκ) =
0, which has a simple geometric interpretation. Namely, the stress-scaled mean
curvature vanishes, which is an interesting generalization of the Plateau–Lagrange
problem for minimal surfaces. Then, system (2.2) describes a finely decorated
minimal surface, where wrinkling patterns appear in regions with a sufficiently
negative stress.

In the second case, when the in-plane stress is relatively small |σ| ∼ αa2, i.e., the
case when bending dominates, one can rescale (2.1) to obtain a different singularly



336 MARTA LEWICKA AND L. MAHADEVAN

perturbed limit:

a2Δ(trσ) +
1

2
detκ = −Δ(tr s),

Δ(trκ)− tr(σκ) = −Δ(trb).
(2.3)

As a2 → 0, at leading order the first of the equations above yields detκ = −2Δ(tr s),
which can be seen as a Monge–Ampère type equation for the Gauss curvature.
Then, system (2.3) describes a spontaneously crumpled, freely growing sheet with
conical and ridge-like singularities, similar to the result of many a failed calculation
that ends up in the recycling bin.

Adding the growth terms in (2.1) is however only part of the biological picture,
since in general there is likely to be feedback; i.e., just as growth leads to shape,
shape (and residual strain) can change the growth patterns. Then, the growth
tensors s,b must themselves be coupled to the shape of the sheet via additional
(dynamical) equations.

Open Problem 2.1. The above description follows the one-way coupling of growth
to shape and ignores the feedback from the residual strain. It is known that bi-
ological mechanisms inhibit cell growth if the cell experiences sufficient external
pressure. Although there are proposals for how shape couples back to growth, this
remains a largely open question of much current interest in biology, and we will
return to this briefly in the concluding sections.

3. Shape from geometric frustration in growing laminae

The variety of forms seen in the three-dimensional shapes of leaves or flowers,
reflects their developmental and evolutionary history and the physical processes
that shape them, posing many questions at the nexus of biology, physics, and
mathematics. From a biological perspective, it is known that genetic mutants
responsible for differential cell proliferation lead to a range of leaf shapes [97, 125].
From a physical perspective, stresses induced by external loads lead to phenotypic
plasticity in algal blades that switch between long, narrow blade-like shapes in
rapid flow to broader undulating shapes in slow flow [66]. Similar questions arise
from observations of a blooming flower—long an inspiration for art and poetry, but
seemingly not so from scientific perspectives. When a flower blossoms, its petals
change curvature on a time scale of a few hours, consistent with the idea that these
movements are driven by cellular processes. In flowers that bloom once, differential
cell proliferation is the dominant mode of growth, while in those that open and
close repeatedly, cell elongation plays an important role.

Although proposed explanations for petal movements posit a difference in growth
rate of its two sides (surfaces) or an active role for the midribs, experimental,
theoretical, and computational studies [90] have shown that the change of the shape
of a lamina is due to excess growth of the margins relative to the center (see Figure
1). Indeed, there is now ample evidence of how relative growth leads to variations in
shape in such contexts as leaves, flowers, micro-organisms (i.e., euglenids), swelling
sheets of gels, 4d printed structures etc. [3, 8,36,47,62,63,107,124]. A particularly
striking example is that of the formation of self-similar wrinkled structures as shown
in the example of a kale leaf in Figure 2. A demonstration of the same phenomenon
with everyday materials is also shown in Figure 2—when a garbage bag is torn, its
edge shows multiple generations of wrinkles [106].
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Figure 2. The image of purple kale on the left shows that the
edges of the leaf are wrinkled hierarchically as the thickness of the
kale reduces. This can be captured [23] in a simple tearing ex-
periment of a garbage bag—the tearing edge thins, is plastically
deformed, and thus wrinkles. There is a clear hierarchy seen. The
images on the right show the analogy between the mechanically
deformed edge of the torn sheet and the edge of a beet leaf. (The
figure on the left is available via Creative Commons Attribution–
NonCommercial–NoDerivatives 4.0 International license. The fig-
ure on the right appeared in [23], Cerda, Ravi-Chandar, and Ma-
hadevan,Wrinkling of a stretched elastic sheet, Nature, 419 (2002),
579; c© 2002, Springer Nature.)

3.1. The setup. The experimental observations described above suggest a com-
mon mathematical framework for understanding the origin of shape: an elastic
three-dimensional body Ω seeks to realize a configuration with a prescribed Rie-
mann metric g by means of an isometric immersion. The deviation from or inability
to reach such a state, is due to a combination of geometric incompatibility and the
requirements of elastic energy minimization. Borrowing from the theory of finite
plasticity [73], where a multiplicative decomposition of the deformation gradient
into an elastic and a plastic use was postulated, a similar hypothesis was suggested
for growth [104], with the underlying hypothesis of the presence of a reference
configuration Ω with respect to which all displacements are measured.

Let g : Ω → R
3×3
sym,> be a smooth Romanian metric, given on an open, bounded

domain Ω ⊂ R
3, and let u : Ω → R

3 be an immersion that corresponds to the
elastic body. Excluding nonphysical deformations that change the orientation in
any neighborhood of the immersion, a natural way to pose the question of the
origin of shape is by postulating that it arises from a variational principle that
minimizes an elastic energy E(u) which measures how far a given u is from being an
orientation-preserving realization of g. Equivalently, E(u) quantifies the total point-
wise deviation of ∇u from g1/2, modulo orientation-preserving rotations that do not
cost any energy. The infamy of E in absence of any forces or boundary conditions is
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then indeed strictly positive for a non-Euclidean g, pointing to existence of residual
strain.

Since the matrix g(x) is symmetric and positive definite, it possesses a unique

symmetric, positive definite square root A(x) = g(x)1/2 ∈ R
3×3
sym,> which corre-

sponds to the growth prestrain. This allows us to define an energy,

(3.1) E(u) =
ˆ
Ω

W
(
(∇u)A−1

)
dx ∀u ∈ W 1,2(Ω,R3),

where the energy density W : R3×3 → [0,∞] obeys the principles of material frame
invariance (with respect to the special orthogonal group of proper rotations SO(3)),
normalization, nondegeneracy, and material consistency valid for all F ∈ R

3×3 and
all R ∈ SO(3),

W (RF ) = W (F ), W (Id3) = 0, W (F ) ≥ c dist2(F, SO(3)),

W (F ) → +∞ as detF → 0+, and ∀ detF ≤ 0 W (F ) = +∞.
(3.2)

These models,1 corresponding to a range of hyperelastic energy functionals that
approximate the behavior of a large class of elastomeric materials, are consistent
with microscopic derivations based on statistical mechanics, and they naturally
reduce to classical linear elasticity when |(FTF )1/2 − Id | � 1. Minimizing the
energy (3.1) is thus a prescription for shape and may be defined naturally in terms
of the energetic cost of deviating from an isometric immersion.

3.2. Isometric immersions and residual stress. The model in (3.1) assumes
that the 3d elastic body Ω seeks to realize a configuration with a prescribed Rie-
mannian metric g, through minimizing the energy that is determined by the elastic
part Fe = (∇u)A−1 of the deformation gradient ∇u. Observe that W (Fe) = 0 if
and only if Fe ∈ SO(3) in ω, or equivalently when:

(∇u)T∇u = g and det∇u > 0 in ω,

Further, any u ∈ W 1,2(Ω,R3) that satisfies the above must automatically be
smooth. Indeed, writing ∇u = Rg1/2 for some rotation field R : Ω → SO(3),
it follows that u ∈ W 1,∞ and so div

(
cof ∇u

)
= 0 holds, in the sense of distribu-

tions.2 Further, we have

cof ∇u = cof(Rg1/2) = det(Rg1/2)
(
Rg1/2

)T,−1

=
√
det g

(
Rg−1/2

)
=

√
det g

(
(∇u)g−1

)
.

(3.3)

It follows that each of the three scalar components of u is harmonic with respect
to the Laplace–Beltrami operator Δg, and thus u must be smooth:

0 = div
(
cof ∇u

)
= div

(
(
√
det g)(∇u)g−1

)
=

√
det g ·

[
Δgu

m
]3
m=1

.

Thus, E(u) = 0 if and only if the deformation u is an orientation-preserving iso-
metric immersion of g into R

3. Such smooth (local) immersion exists [112, Vol. II,
Chapter 4] and is automatically unique up to rigid motions of R3, if and only if the
Riemann curvature tensor [Rij,kl]i,j,k,l=1···3 of g vanishes identically throughout Ω.

1Examples of W satisfying these conditions are W1(F ) = |(FTF )1/2 − Id |2 + | log detF |q or

W2(F ) = |(FTF )1/2 − Id |2 +
∣∣(detF )−1 − 1

∣∣q for detF > 0, where q > 1 and W1,2 equal +∞ if

detF ≤ 0.
2The divergence of a matrix field is taken row-wise.
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It is instructive to point out that one could define the energy as the difference
between the prescribed metric g and the pull-back metric of u on Ω:

I(u) =

ˆ
Ω

|(∇u)T∇u− g|2 dx.

From a variational point of view, the formulation above does not capture an es-
sential aspect of the physics, namely that thin laminae resist bending deformations
that are a consequence of the extrinsic geometry, and thus depend on the mean cur-
vature as well. Indeed, the functional I always minimizes to 0 because there always
exists a Lipschitz isometric immersion u ∈ W 1,∞(Ω,R3) of g, for which I(u) = 0. If
Rij,kl(x) = 0 for some x ∈ Ω, then such u must have a folding structure [50] around
x; it cannot be orientation preserving (or reversing) in any open neighborhood
of x. Perhaps even more surprisingly, the set of such Lipschitz isometric immer-
sions is dense in the set of short immersions as for every u0 ∈ C1(Ω̄,R3) satisfying
(∇u0)

T∇u0 < g,3 there exists a sequence {un ∈ W 1,∞(Ω,R3)}n→∞ satisfying

I(un) = 0 and ‖un − u0‖C(Ω) → 0 as n → ∞.

The above statement is an example of the h-principle in differential geometry, and
it follows through the method of convex integration (the Nash–Kuiper scheme), to
which we come back in the following sections. An intuitive example in dimension 1
is shown in Figure 3. Setting g ≡ 1 on Ω = (−1, 1) ⊂ R

1, it is easily seen that any
u0 : (−1, 1) → R with Lipschitz constant less than 1 can be uniformly approximated
by un having the form of a zigzag, where |u′

n| = 1.

Figure 3. (a) A short map approximation of u0 (darker line) by a
zigzag un with u′

n = ±1. (b) A computational realization of hierar-
chical wrinkles that arise when a thin stiff film is coated atop a soft
substrate and the system is then subject to a reduction in temper-
ature that leads to differential shrinkage [39]. (c) An experimental
realization of the hierarchical wrinkles that shows two (of a total of
six) generations of wrinkles. The three examples serve to link con-
vex integration to models and experiments in materials science [39].
(This figure appeared in [39], Efimenko, Rackaitis, Manias, Vaziri,
Mahadevan, and Genzer, Self-similar nested wrinkling patterns in
skins, Nature–Materials, 4 (2005), 293–297; c© 2005, Springer Na-
ture.)

3That is, the matrix g(x)−∇u0(x)T∇u0(x) is positive definite at each x ∈ ω.
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Regarding the energy E in (3.1), in [85] it has been proved that inf E > 0 for any g
with no orientation-preserving isometric immersion. This results in the dichotomy:
either g and E are, by a smooth change of variable, equivalent to the case with
g = Id3 and min E = 0, or otherwise the zero energy level cannot be achieved
through a sequence of weakly regular W 1,2 deformations. The latter case points to
existence of residual strain at free equilibria.

Proposition 3.1 ([85]). If [Rij,kl] ≡ 0 in Ω, then inf
{
E(u); u ∈ W 1,2(Ω,R3)

}
> 0.

Sketch of proof. Assume, by contradiction, that E(un) → 0 along some sequence
{un ∈ W 1,2(Ω,R3)}n→∞. By truncation and approximation in Sobolev spaces, we
may, without loss of generality, assume that each un is Lipschitz with a uniform
Lipschitz constant M . Decompose un = zn +wn as a sum of a deformation that is
clamped at the boundary,

[Δgz
m
n ]3m=1 = [Δgu

m
n ]3m=1 in Ω, zn = 0 on ∂Ω,

and a harmonic correction, [Δgw
m
n ]3m=1 = 0 in Ω, with wn = un on ∂Ω. Observe

that ˆ
Ω

〈
(
√
det g)∇zng

−1 : ∇zn
〉
dx =

ˆ
Ω

〈
(
√
det g)∇ung

−1 : ∇zn
〉
dx

=

ˆ
Ω

〈
(
√
det g)∇ung

−1 : ∇zn
〉
− 〈cof ∇un : ∇zn〉 dx

≤ ‖∇zn‖L2

∥∥(√det g)∇ung
−1 − cof ∇un

∥∥
L2 ,

where the first equality follows by zn = 0 on ∂Ω, as div
(
(
√
det g)(∇u)g−1

)
=

√
det g

[
Δgu

m
]3
m=1

, while the second by div(cof ∇u) = 0. The left-hand side is also

equivalent to ‖∇zn‖2L2 , so

(3.4) ‖∇zn‖L2 ≤ C
∥∥(√det g)∇ung

−1 − cof ∇un

∥∥
L2 ≤ CME(un)

1/2 → 0.

Above, we used (3.3) which ensures vanishing of the expression under the norm
when (∇un)A

−1 ∈ SO(3), together with Lipschitz continuity of the operator in the
integral expression for E . In particular, we get that both sequences {∇zn}n→∞ and
{∇wn}n→∞ are bounded in L2.

Since {wn} are harmonic, this further implies that ∇un converges, up to a sub-
sequence, in L2

loc to some ∇u. Then by (3.4) ∇un → ∇u, which yields E(u) = 0,
and ends the proof. �
Open Problem 3.2. In the above context, prove that inf E as in Proposition 3.1
is equivalent to ‖[Rij,kl]‖2H−2 , up to multiplicative constants depending on Ω and
W but not on g. The case of Ω ⊂ R

2 and R replaced by the Gaussian curvature
has been considered in [72].

4. Microstructural patterning of thin elastic prestrained films

Inspired partly by biological observations of growth-induced patterning in thin
sheets and the promise of engineering applications, various techniques have been
invented for the construction of self-actuating elastic sheets with prescribed target
metrics. The materials typically involve the use of gels that respond to pH, hu-
midity, temperature, and other stimuli [115], and that result in the formation of
complex controllable shapes (see Figure 4) that include both large-scale buckling
and small-scale wrinkling forms.
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In one example [64], NIPA monomers with a BIS crosslinker in water and a cata-
lyst, leads to the polymerization of a cross-linked elastic hydrogel, which undergoes
a sharp, reversible, volume-reduction transition at a threshold temperature, allow-
ing for temperature-controlled swelling in thin composite sheets. Another method
[63] involves the photopatterning of polymer films to yield temperature-responsive
gel sheets with the ability to print nearly continuous patterns of swelling. A third
method [47] uses 3d printing of complex-fluid based inks to create bilayers with
varying line density and anisotropy in order to achieve control over the extent and
orientation of swelling. All these methods have been used to fabricate surfaces with
constant Gaussian curvature (spherical caps, saddles, cones) or zero mean curvature
(Enneper’s surfaces), as well as more complex and nearly closed shapes. A natu-
ral question that these controlled experiments raise is the ability (or lack thereof)
of the resulting patterns to approximate isometric immersions of prescribed met-
rics. From a mathematical perspective, this leads to questions of the asymptotic
behavior of energy minimizing deformations and their associated energetics.

4.1. The setup. In this and the next sections, we will consider a family
(Ωh, uh, g, A, Eh)h>0 (or more generally (Ωh, uh, gh, Ah, Eh)h>0) given in the func-
tion of the film’s thickness parameter h. The main objective is now to predict the
scaling of inf Eh as h → 0 and to analyze the asymptotic behavior of minimizing
deformations uh in relation to the curvatures associated with the prestrain A. We
assume that A = g1/2 : Ω1 → R

3×3
sym,> is a smooth, symmetric, and positive definite

tensor field on the unit thickness domain Ω1, where for each h > 0 we define

Ωh = ω ×
(
− h

2
,
h

2

)
.

The open, bounded set ω ⊂ R
2 with Lipschitz boundary is viewed as the midplate

of the thin film Ωh, on which we pose the energy of elastic deformations,

(4.1) Eh(uh) =
1

h

ˆ
Ωh

W
(
(∇uh)A−1

)
dx for all uh ∈ W 1,2(Ωh,R3).

4.2. Isometric immersions and energy scaling. As in section 3.2, there is a
connection between inf Eh and existence of isometric immersions, although this case
is a bit more subtle. In the context of dimension reduction, this connection relies
on the isometric immersions of the midplate metric g(·, 0)2×2 on ω into R

3, namely
parametrized surfaces y : ω → R

3 with

(4.2) (∇y)T∇y = g(·, 0)2×2 in ω.

It turns out that existence of y with regularity W 2,2 is equivalent to the vanishing
of inf Eh of order square in the film’s thickness h → 0. The following result was
proved first for g = g(x′) in [85] and then in the abstract setting of Riemannian
manifolds in [71].

Theorem 4.1 ([12]). Let uh ∈ W 1,2(Ωh,R3) satisfy Eh(uh) ≤ Ch2. Then we have:

(i) Compactness. There exist ch ∈ R
3 and Rh ∈ SO(3) such that the rescaled

deformations yh(x′, x3) = Rhuh(x′, hx3) − ch converge, up to a subsequence
in W 1,2(Ω1,R3), to some y ∈ W 2,2(Ω1,R3) depending only on the tangential
variable x′ and satisfying (4.2).
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Figure 4. Imposing nontrivial target metrics in sheets of NIPA
gels. The figures shown are (a) radially symmetric discs cast by
injecting the solution into the gap between two flat glass plates
through a central hole [64, c© 2007, reprinted with permission
from AAAS], (b) nonaxisymmetric swelling patterns constructed
by half-tone gel lithography in [63, c© 2012, reprinted with permis-
sion from AAAS].

(ii) Liminf inequality. There holds the lower bound,

(4.3) lim inf
h→0

1

h2
Eh(uh) ≥ I2,g(y) =

1

24

ˆ
ω

Q2

(
x′, (∇y)T∇�b− 1

2
∂3g(·, 0)2×2

)
dx′,

where Q2(x
′, ·) are nonnegative quadratic forms given in terms of D2W (Id3)

(see (4.5)), and where �b satisfies
[
∂1y, ∂2y,�b

]
∈ SO(3)g(·, 0)1/2. Equivalently,

�b is the Cosserat vector comprising the sheer, in addition to the direction �N
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that is normal to the surface y(ω),

(4.4) �b = (∇y)g−1
2×2

[
g13
g23

]
+

√
det g√

det g2×2

�N, with �N =
∂1y × ∂2y

|∂1y × ∂2y|
.

Moreover, there holds:

(iii) Limsup inequality. For all y ∈ W 2,2(ω,R3) satisfying (4.2) there exists a
sequence {uh ∈ W 1,2(Ωh,R3)}h→0 for which convergence as in (i) above holds
with ch = 0, Rh = Id3, and

lim
h→0

1

h2
Eh(uh) = I2,g(y).

The energy density in (4.3) is given in terms of a family of quadratic forms
Q2(x

′, ·), that carry the two-dimensional reduction of the lowest-order nonzero term
in the Taylor expansion of W close to its energy well SO(3), namely,4

(4.5) Q2(x
′, F2×2) = min

{
Q3

(
g(x′, 0)−1/2F̃ g(x′, 0)−1/2

)
,

F̃ ∈ R
3×3 with F̃2×2 = F2×2

}
,

where Q3(F ) = D2W (Id3)(F, F ).
From Theorem 4.1, one can deduce a counterpart of Proposition 3.1, stating

an equivalent condition for existence of a W 2,2 isometric immersion of a two-
dimensional metric in R

3.

Corollary 4.2. A smooth metric ḡ on ω̄ ⊂ R
2 has an isometric immersion y ∈

W 2,2(ω,R3) if and only if inf Eh ≤ Ch2 for some (equivalently, for any) metric g
on Ω1 with g(·, 0)2×2 = ḡ.

The question of existence of local isometric immersions of a given two-dimensional
Riemannian manifold into R

3 is a long-standing problem in differential geometry,
its main feature consisting of finding the optimal regularity. By a classical result
in [69], a C1 isometric embedding can be obtained by means of convex integration.
This statement has been improved in [15] to C1,α regularity for all α < 1/7 and
analytic metrics ḡ, in [28] to C2 metrics, and in [32] for all α < 1/5.5 This regularity
is far from W 2,2, where information about the second derivatives is also available.
On the other hand, a smooth isometric immersion exists for some special cases, e.g.,
for smooth ḡ with uniformly positive or negative Gaussian curvatures κ on bounded
domains in R

2 [52, Theorems 9.0.1 and 10.0.2]. Counterexamples to such theories
are largely unexplored. By [58], there exists an analytic metric ḡ with nonnegative
κ on 2d sphere, with no local C3 isometric embedding. However, such metric always
admits a C1,1 embedding [51, 55]; for a related example see also [102].

4.3. Γ-convergence and convergence of minimizers. Statements (ii) and (iii)
in Theorem 4.1 can be summarized in terms of Γ-convergence [30], which is one
of the basic notions of convergence in the calculus of variations. A sequence of

4Both Q3 and all Q2(x′, ·) are nonnegative definite and depend only on the symmetric parts
of their arguments, in view of assumptions on W .

5Of interest is also the result in [31], stating that for α > 1/2 the Levi-Civita connection of
any isometric immersion is induced by the Euclidean connection, whereas for any α < 1/2 this
property fails to hold.
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functionals {Fn : Z → R̄}n→∞ defined on a metric space Z is said to Γ-converge to
F : Z → R̄ when the following two conditions hold:

(i) For any converging sequence {zn}n→∞ in Z we have

F
(
lim
n→∞

zn
)
≤ lim inf

n→0
Fn(zn).

(ii) For every z ∈ Z there exists {zn}n→∞ converging to z and such that F (z) =
limn→∞ Fn(zn).

We then write Fn
Γ−→ F . It is an exercise to show that if, additionally, there exists

a compact set K ⊂ Z with the property that infZ Fn = infK Fn for all n, then we
have the following:

• For any sequence {zn ∈ K}n→∞ of approximate minimizers to Fn, namely
when |Fn(zn) − infZ Fn| → 0, any accumulation point z = limk→∞ znk

is
a minimizer of F , i.e., F (z) = infX F . In particular, F has at least one
minimizer, and it has at least one minimizer in K.

• For every minimizer z ∈ Z of F , there exists a recovery sequence of approxi-
mate minimizers zn → z so that |Fn(zn)− infZ Fn| → 0.

In view of the compactness assertion (i), Theorem 4.1 hence yields the following.

Corollary 4.3. There holds, with respect to the strong convergence in W 1,2(Ω1,R3),

1

h2
Eh

(
y(x′, hx3)

) Γ−→
{

I2,g(y) if y ∈ W 2,2(ω,R3) satisfies (4.2),
+∞ otherwise.

Consequently, there is a one-to-one correspondence between limits of sequences of
(global) approximate minimizers to the energies Eh and (global) minimizers of I2,g,
provided that the induced metric g(·, 0)2×2 has a W 2,2 isometric immersion from ω
to R

3.

It is useful to make a couple of observations. First, we point out that, in general,
one cannot expect Eh to posses a minimizer. The lower semicontinuity of the energy
E in (3.1) allowing for the direct method of the calculus of variations, is tied to the
quasiconvexity of the energy density, whereas F �→ dist2(F, SO(3)) is not even
rank-one convex [127, proof of Proposition 1.6].

Second, we comment on the relation of Corollary 4.3 with the experimental find-
ings in [65] that constructed a thickness-parametrized family of axially symmetric
hydrogel disks (see Figure 5). The explicit control on the radial concentration c(r) of
the temperature-responsive polymer (N-isopropylacrylamide) resulted in the ability
to control the (locally isotropic) shrinkage factors of distances η(r) = η(c(r)) and led
to the target metric g2×2 = dr2 + κ−1 sin(ρκ1/2)2dθ2 on the midplate ω = B(0, R),
written in polar coordinates (r, θ) and in terms of the prescribed constant Gaussian
curvature κ ≡ ±0.0011. While decreasing the thickness h, all disks with κ > 0
kept the same basic dome-like shape, with minor variations along the edge (see left
column figures in Figure 5. The energy related to (4.1) was observed to stabilize as
h → 0, approaching a constant multiple of h2 and exhibiting equipartition between
bending and stretching. Hence, discs with positive curvature minimize their energy
via the scenario in Corollary 4.3 by settling near the isometric immersion that is of
the lowest bending content.

On the other hand, for κ < 0, the disks were observed to undergo a set of
bifurcations in which the number of nodes (within a single wave configuration)
increases and is roughly proportional to h−1/2. Measuring the bending content in
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Figure 5. As a function of the thickness of a swollen sheet, one
can achieve either elliptical or hyperbolic geometries. In the limit
of vanishing thickness, the shape converges to the limit implied by
the Γ-convergence result in Theorem 4.1 for the elliptic case (to a
spherical dish) but shows an increasing preponderance to wrinkling
on finer scales in the hyperbolic case. The multilobed swelling-
induced wrinkling begs the question of the limiting behavior [65,
c© 2021, reprinted with permission of the American Physical Soci-
ety].

this case led to Eh ∼ h which seems to be linked to a stretching-driven process: the
sharp increase of the bending content is compensated by a simultaneous decrease
in the stretching content. Hence, hyperbolic disks minimize their energy via a set
of bifurcations despite the existence of the smooth immersions y.

Open Problem 4.4. Analyze the possible origins of the diversity of behavior
of the elliptic and hyperbolic disks in [65], as well as the discrepancy between
the experimentally observed linear in h energy scaling and the quadratic scaling
obtained in Corollary 4.3. The accuracy of the experiment determining the target
metric g is finite, and the sensitivity to perturbations seems to be more pronounced
in the negative Gauss curvature regimes.

4.4. Energy scaling from convex integration. A separate energy bound may
be obtained by constructing deformations uh through the Kirchhoff–Love extension
of isometric immersions of regularity C1,α. Existence of such is guaranteed by
techniques of convex integration [32] for all α < 1/5, and this threshold implies
the particular energy scaling bound in Proposition 4.5 below. If we could take
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α < 1/3 (corresponding to the so-called “one step” in each “stage” of the Nash–
Kuiper iteration scheme), then the exponent would be β < 1. If we could take
α < 1/2 for the flexibility threshold as conjectured in [33], then β < 4/3. Recall
that existence of a W 2,2 isometric immersion implies that inf Eh may be further
decreased to Ch2.

Proposition 4.5. Assume that ω ⊂ R
2 is simply connected with C1,1-regular bound-

ary. Then

inf Eh ≤ Chβ for all β <
2

3
.

Proof. Fix α ∈ (0, 1/5) and let y ∈ C1,α(ω̄,R3) satisfy (4.2). Define the vector field
�b1 ∈ C0,α(ω̄,R3) by (4.4), yielding the auxiliary matrix field,

B =
[
∂1y, ∂2y, �b

]
∈ C0,α(ω̄,R3×3) satisfying detB > 0, BTB = g(·, 0) in ω̄.

The last assertion above implies that

(4.6) B(x′)A(x′, 0)−1 ∈ SO(3) for all x′ ∈ ω̄.

Regularize now y,�b to yε, bε ∈ C∞(ω̄,R3) by means of the family of standard con-
volution kernels {φε(x) = ε−2φ(x/ε)}ε→0, where ε is a power of h to be chosen
later:

yε = y ∗ φε, bε = �b ∗ φε, Bε = B ∗ φε, and ε = ht.

We will utilize the following bound, resulting from the commutator estimate [28,
Lemma 1], ∥∥BT

ε Bε − g(·, 0)
∥∥
C0(ω)

≤
∥∥BT

ε Bε − (BTB) ∗ φε

∥∥
C0(ω)

+
∥∥g(·, 0) ∗ φε − g(·, 0)

∥∥
C0(ω)

≤ Cε2α + Cε2 ≤ Cε2α,

(4.7)

where the Cε2 bound results by Taylor-expanding g up to second-order terms.
Denoting Dε =

[
∂1bε, ∂2bε, 0

]
, we get the uniform bounds,

(4.8) ‖Bε −B‖C0(ω) ≤ Cεα, ‖Dε‖C0(ω) ≤ Cεα−1.

Consider the sequence of deformations uh ∈ C∞(Ω̄h,R3) in

uh(x′, x3) = yε(x
′) + x3bε(x

′), so that ∇uh = Bε + x3Dε.

In particular, ‖∇uh(x′, hx3)−B(x′)‖C0(Ω1)≤C(εα+hεα−1) and sinceA(x′, hx3)
−1=

A(x′)−1 +O(h) for all (x′, x3) ∈ Ω1, it follows by (4.6) that∥∥ dist (∇uhA−1, SO(3)
)∥∥

C0(Ωh)
≤

∥∥∇uhA−1(x′, hx3)−BA−1(x′, 0)
∥∥
C0(Ω1)

≤ C(εα + hεα−1 + h) → 0 as h → 0,

if only hεα−1 → 0. We then use the polar decomposition theorem and conclude
that for some Rh = Rh(x′, hx3) ∈ SO(3) there holds

Rh∇uh(x′, hx3)A(x′, hx3)
−1 =

(
A−1(∇uh)T∇uhA−1

)1/2
(x′, hx3)

=
(
A(x′, hx3)

−1(BT
ε Bε(x

′) +O(hDε))A(x′, hx3)
−1

)1/2
=

(
(A(x′, 0)−1 +O(h))(g(x′, 0) +O(ε2α + hεα−1)(A(x′, 0)−1 +O(h))

)1/2
=

(
Id3 +O(h+ ε2α + hεα−1

)1/2
= Id3 +O(h+ ε2α + hεα−1),
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by virtue of (4.7) and (4.8). Consequently, we obtain the energy bound

Eh(uh) =

ˆ
Ω1

W
(
Rh∇uh(Ah)−1(x′, hx3)

)
d(x′, x3)

≤ C
(
h+ ε2α + hεα−1

)2
= C

(
h+ h2αt + h1+(α−1)t

)2
.

Minimizing the right-hand side above corresponds to maximizing the minimal of the
three displayed exponents. We hence choose t in ε = ht so that 2αt = 1 + (α− 1)t,
namely t = 1

α+1 . This leads to the estimate,

inf Eh ≤ Ch
4α

α+1 for all α <
1

5
,

which completes the proof. �

Open Problem 4.6. Analyze the limiting behavior of minimizing deformations
in the intermediate energy scaling regime inf Eh � Chβ for β ∈ [2/3, 2). Is it
necessarily guided by an isometric immersion of some prescribed regularity? Find
the Γ-limits of scaled energies 1

hβ Eh.

4.5. The intermediate scalings. As a point of comparison, we remark that
higher energy scalings inf Eh ∼ hβ may result due to the sheet being forced at
a boundary, due to the presence of external forces associated with gravity, the pres-
ence of an elastic substrate, etc., all of which can lead to a range of microstructural
patterns that are wrinkle-like. From Theorem 4.1, we recall that the regime β ≥ 2
pertains to the “no wrinkling” family of almost minimizing deformations, that are
perturbations of a W 2,2 isometric immersion. While the systematic description of
the singular limits associated with exponents β < 2 is not yet available, there are
a number of examples of the variety of emerging patterns that are illustrative.

When a thin film is either clamped or weakly adhered to a substrate and subject
to thermal or mechanical loads, it can buckle and blister [5, 9, 10, 61]; in these
cases, the energy scaling estimates yield β = 1. A similar exponent is also seen
in cases when a thin film wrinkles in response to metric constraints [5], or forms
a hanging drape exhibiting fluted patterns that coarsen as a function of distance
from the point of support [6, 22]. In related experiments and theory, when a thin
shell of nonzero curvature is placed on a liquid bath, it forms complex wrinkling
patterns [117] with a range of β between 0 and 1, depending on the strengths of the
elastic and substrate forces. Moving from sheets or surfaces toward ribbons that
have all three dimensions far from each other, papers [67, 68] analyze wrinkling
in the center of a stretched and twisted ribbon and find that β = 4/3. Moving
away from situations associated with nonlocal wrinkled microstructures, there have
been a number of studies of localized structures associated with the theoretical and
experimental analysis of conical singularities that arise in crumpled sheets [19–21]
that have been recently analyzed mathematically [94,100,101] and lead to energetic
estimates for this singularity of the form Eh ∼ h2 log(1/h). And, in cases where
the sheet is strongly creased, as in origami patterns, energy levels are associated
with β = 5/3 [29, 121]. We remark that the mentioned papers do not address
the dimension reduction but rather analyze the chosen actual configuration of the
prestrained sheet.

Closely related is also the literature on shape selection in non-Euclidean plates,
exhibiting hierarchical buckling patterns in the limit of zero strain plates with β = 2,
where the complex morphology is due to nonsmooth energy minimization [44–46].
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Various geometrically nonlinear thin plate theories have been used to analyze the
self-similar structures with metric asymptotically flat at infinity [4] that include a
disk with edge-localized growth [40], the shape of a long leaf [89], or torn plastic
sheets [107].

5. Hierarchy of limiting theories in the nonwrinkling regimes

We now detail the complete set of results relating the context of dimension re-
duction in non-Euclidean elasticity with the quantitative immersability of Riemann
metrics. As shown in Figure 6, a range of distinct behaviors of a thin sheet takes
place in response to the prestrains of different orders. Within the formalism of
finite elasticity, such patterns result from the sheet buckling to relieve growth or
swelling induced by the residual strains. These will be measured via the scaling of
the prestrain metric’s Riemann curvatures, as explained below.

Figure 6. A range of patterns arise when a thin sheet is inhomo-
geneously stretched plastically or swells in response to a solvent.
(a) By dragging one’s nails along the edges of a foam strip weakly,
a flat surface transitions to one that is hyperbolic. (b) The same
process carried out strongly leads to a surface that is strongly rip-
pled, much like the edges of a leaf [89]. (c) Thin sheets of a circular
gel disk deform into a hyperbolic surface with two lobes. (d) Thin-
ner sheets deform into multilobed sheets which are able to relieve
the swelling-induced frustration by changing their curvature on
multiple scales [64, c© 2012, reprinted with permission from
AAAS].
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5.1. The energy scaling quantization. Observe that in view of Theorem 4.1,
there holds limh→0

1
h2 inf Eh = 0 if and only if there exists y ∈ W 2,2(ω,R3) such

that with �b as in (4.4),

(5.1) (∇y)T∇y = g(·, 0)2×2 and sym
(
(∇y)T∇�b

)
=

1

2
∂3g(·, 0)2×2 in ω.

The above compatibility of tensors g(·, 0)2×2 and ∂3g(·, 0)2×2 is equivalent to the
satisfaction of the Gauss–Codazzi–Meinardi equations for the related first and sec-
ond fundamental forms

I = (∇y)T∇y,

II = (∇y)T∇ �N=
√

g33
(
sym((∇y)T∇�b)− 1

2
∂3g(·, 0)2×2

)
− 1√

g33

[
Γ3
ij(·, 0)

]
i,j=1···2.

These three compatibility conditions turn out to be precisely expressed by

(5.2) R12,12(·, 0) = R12,13(·, 0) = R12,23(·, 0) = 0 in ω.

Corollary 5.1 ([12, 76, 88]). Condition 1
h2 inf Eh → 0 as h → 0 is equivalent

to min I2,g = 0, and further to (5.2). In case (5.2) holds, we have Ker I2,g ={
Ry0+c; R ∈ SO(3), c ∈ R

3
}
, where y0 : ω̄ → R

3 is a unique “compatible” smooth
isometric immersion of g(·, 0)2×2 satisfying (5.1) together with its corresponding

Cosserat vector �b = �b1. Moreover, inf Eh ≤ Ch4.

To justify the last assertion, we define the family {uh}h→0 as in the proof of
Proposition 4.5,

uh(x′, x3) = y0(x
′) + x3

�b1(x
′) +

x2
3

2
�b(x′), so that ∇uh = B0 + x3B1 +O(x2

3).

By polar decomposition, the tensor (∇uh)A−1 coincides with

Z
.
=

((
(∇uh)A−1

)T (
(∇uh)A−1

))1/2
up to a rotation. Since

(∇uh)T∇uh = BT
0 B0 + 2x3 sym(BT

0 B1) +O(x2
3),

A(x′, x3)
−1 = A(x′, 0)−1 − x3A

−1(∂3A)A−1(x′, 0) +O(x2
3),

it follows that Z2 equals

A−1(∇uh)T (∇uh)A−1 = A−1
(
g(x′, 0) + 2x3 sym(BT

0 B1) +O(x2
3)
)
A−1

= Id3 +2x3A
−1 sym

(
BT

0 B1 −A∂3A
)
A−1(x′, 0) +O(x2

3)

= Id3 +O(x2
3).

The last equality above is achieved by choosing �b2 : ω̄ → R
3 such that

sym
(
BT

0 B1 −A∂3A(·, 0)
)
= 0,

because the 2× 2 minor of the indicated tensor is zero due to (5.1). Consequently,

Eh(uh) =
1

h

ˆ
Ωh

W (Z) ≤ 1

h

ˆ
Ωh

W
(
Id3 +O(x2

3)
)
≤ Ch4.

The following general result proves that the only viable scalings of inf Eh ∼ hβ

in the regime β ≥ 2 are the even powers β = 2n.
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Theorem 5.2 ([75]). For every n ≥ 2, if limh→0
1

h2n inf Eh = 0, then inf Eh ≤
Ch2(n+1). Further, the following three statements are equivalent:

(i) inf Eh ≤ Ch2(n+1).

(ii) R12,12(·, 0) = R12,13(·, 0) = R12,23(·, 0) = 0 and ∂
(k)
3 Ri3,j3(·, 0) = 0 in ω, for

all k = 0 · · ·n− 2 and all i, j = 1 · · · 2.
(iii) There exist smooth fields y0, {�bk}n+1

k=1 : ω̄ → R
3 and frames{

Bk =
[
∂1�bk, ∂2�bk, �bk+1

]}n

k=1
,

B0 =
[
∂1y0, ∂2y0, �b1

]
,

such that
∑m

k=0

(
m
k

)
BT

k Bm−k − ∂
(m)
3 g(·, 0) = 0 for all m = 0 · · ·n. Equiva-

lently,
(∑n

k=0
xk
3

k! Bk

)T(∑n
k=0

xk
3

k! Bk

)
= g(x′, x3) +O(hn+1) on Ωh as h → 0.

The field y0 is the unique smooth isometric immersion of g(·, 0)2×2 into R
3 for

which I2,g(y0) = 0.

We note that if R(·, 0) = 0 and ∂
(m)
3

[
Ri3,j3(·, 0)

]
i,j=1···2 = 0 on ω for all m =

0 · · ·n − 2 but ∂
(n−1)
3

[
Ri3,j3(·, 0)

]
i,j=1···2 = 0, then ch2(n+1) ≤ inf Eh ≤ Ch2(n+1)

for some c, C > 0. The conformal metrics g(x′, x3) = e2φ(x3) Id3 provide a class of
examples for the viability of all scalings inf Eh ∼ h2n by choosing φ(k)(0) = 0 for
k = 1 · · ·n− 1 and φ(n)(0) = 0.

5.2. The infinite hierarchy of Γ-limits. To derive the counterpart of Corollary
4.3 for higher energy scalings, one observes the following compactness properties
under the assumption that Eh(uh) ≤ Ch2(n+1), for some n ≥ 1. First ([75]), there
exist ch ∈ R

3, Rh ∈ SO(3) such that

V h(x′) =
1

hn

 h/2

−h/2

(R̄h)T
(
uh(x′, x3)− ch

)
−
(
y0(x

′) +
n∑

k=1

xk
3

k!
�bk(x

′)
)
dx3

converge as h → 0 in W 1,2(ω,R3), to a limiting displacement V that is an infini-
tesimal isometry

V ∈ Vy0
=

{
V ∈ W 2,2(ω,R3); sym

(
(∇y0)

T∇V
)
= 0

}
.

In particular, there exists �p ∈ W 1,2(ω,R3) with sym
(
BT

0

[
∇V, �p

])
= 0. Second,

the strains
1

h
sym

(
(∇y0)

T∇V h
)

converge as h → 0, weakly in L2(ω,R2×2) to a limiting S in the finite strain space

S ∈ Sy0
= clL2

{
sym((∇y0)

T∇wn); wn ∈ W 1,2(ω,R3)
}
.

The space Sy0
can be identified, in particular, in the following two cases on ω

simply connected. When y0 = id2, then Sy0
= {S ∈ L2(ω,R2×2

sym); curl curl S = 0}.
When the Gauss curvature κ((∇y0)

T∇y0) = κ
(
g(·, 0)2×2) > 0 on ω̄, then Sy0

=

L2(ω,R2×2
sym), as shown in [82].

Further, we have the following Γ-convergence results with respect to the above
compactness statements. The infinite hierarchy of the limiting prestrained theories
is gathered in Table 1.
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Table 1. The infinite hierarchy of Γ-limits for prestrained films,
scaling β ≥ 2

β asymptotic expansion constraint / regularity limiting energy Iβ,g

2
y(x′){
3d : y(x′) + x3

�b(x′)
} y ∈ W 2,2

(∇y)T∇y = g(x′, 0)2×2

c‖(∇y)T∇�b− 1
2∂3g(x

′, 0)2×2‖2Q2[
∂3y, ∂2y,�b

]
∈ SO(3)g(x′, 0)1/2

4
y0(x

′) + hV (x′)

+ h2wh(x′)

R12,12,R12,13,R12,23(x
′, 0) = 0(

(∇y0)
T∇V

)
sym

= 0,(
(∇y0)

T∇wh
)
sym

→ S

V ∈ W 2,2(ω,R), wh ∈ W 1,2(ω,R3)

c1‖ 1
2 (∇V )T∇V + S+ 1

24 (∇�b1)T∇�b1
− 1

48∂33g(x
′, 0)2×2‖2Q2

+ c2‖(∇y0)
T∇�p+ (∇V )T∇�b1‖2Q2

+ c3‖
[
Ri3,j3(x

′, 0)
]
i,j=1,2

‖2Q2

6
...

y0(x
′) + h2V (x′)

Rab,cd(x
′, 0) = 0(

(∇y0)
T∇V

)
sym

= 0, V ∈ W 2,2
c2‖(∇y0)

T∇�p+ (∇V )T∇�b1 + α
[
∂3R

]
‖2Q2

+c3‖PS⊥
y0

[
∂3R

]
‖2Q2

+ c4‖PSy0

[
∂3R

]
‖2Q2

2n
...

y0(x
′) + hn−1V (x′){

3d : y0 +
∑n−1

k=1
xk
3

k!
�bk(x

′)

+ hn−1V (x′)

+ hn−1x3�p(x
′)
}

Rab,cd(x
′, 0) = 0[

∂
(k)
3 R

]
(x′, 0) = 0 ∀k ≤ n− 3(

(∇y0)
T∇V

)
sym

= 0, V ∈ W 2,2

c2‖(∇y0)
T∇�p+ (∇V )T∇�b1 + α

[
∂
(n−2)
3 R

]
‖2Q2

+c3‖PS⊥
y0

[
∂
(n−2)
3 R

]
‖2Q2

+c4‖PSy0

[
∂
(n−2)
3 R

]
‖2Q2

Theorem 5.3 ([75,76]). In the energy (4.1) scaling regimes indicated in Theorem
5.2, the following holds. For the von Kármán-like regime, we have for all V ∈ Vy0

and S ∈ Sy0
that

1

h4
Eh Γ−→ I4,g(V, S)

=
1

2

ˆ
ω
Q2

(
x′, S(x′) +

1

2
∇V (x′)T∇V (x′) +

1

24
∇�b1(x

′)T∇�b1(x
′)− 1

48
∂33g(x

′, 0)2×2︸ ︷︷ ︸
stretching

)
dx′

+
1

24

ˆ
ω
Q2

(
x′,∇y0(x

′)T∇�p(x′) +∇V (x′)T∇�b1(x
′)︸ ︷︷ ︸

bending

)
dx′

+
1

1440

ˆ
ω
Q2

(
x′,

[
R13,13 R13,23

R13,23 R23,23

]
︸ ︷︷ ︸

curvature

)
dx′.

For all n ≥ 1 (which is the case parallel to linear elasticity), we have for all V ∈ Vy0

that
1

h2(n+1)
Eh Γ−→ I2(n+1),g(V )

=
1

24

ˆ
ω

Q2

(
x′, (∇y0)

T∇�p+(∇V )T∇�b1+αn

[
∂
(n−1)
3 Ri3,j3

]
i,j=1···2︸ ︷︷ ︸

bending

)
dx′

+ βn

ˆ
ω

Q2

(
x′,PS⊥

y0

([
∂
(n−1)
3 Ri3,j3

]
i,j=1···2

))
dx′

+ γn

ˆ
ω

Q2

(
x′,PSy0

([
∂
(n−1)
3 Ri3,j3

]
i,j=1···2

))
dx′,

where PSy0
, PS⊥

y0
denote orthogonal projections onto Sy0

and onto its L2-orthogonal

complement S⊥
y0
. The coefficients αn, βn, γn ≥ 0 are given explicitly, and αn = 0 if

and only if n is even.

The functional I4,g is indeed a von Kármán-like energy, consisting of stretching
and bending (with respect to the unique, up-to-rigid motions, smooth isometric



352 MARTA LEWICKA AND L. MAHADEVAN

immersion y0 that has zero energy in the prior Γ-limit (4.3)) plus a new term
quantifying the remaining three Riemann curvatures. When g = Id3, then I4,g(V, S)
reduces to the classical von Kármán functional, given in terms of the out-of-plane
displacement v in V = (αx⊥ + β, v) for which �p = (−∇v, 0), and the in-plane
displacement w in S = sym∇w,

(5.3) I4(v, w) =
1

2

ˆ
ω

Q2

(
sym∇w +

1

2
∇v ⊗∇v

)
dx′ +

1

24

ˆ
ω

Q2(∇2v) dx′.

We point out in passing that in [35, 36], a variant of the Föppl–von Kármán equi-
librium equations has been formally derived from finite incompressible elasticity
via the multiplicative decomposition of deformation gradient [104] used in finite
plasticity [73] and hyperelastic growth.

Likewise, each I2(n+1),Id3
reduces to the classical linear elasticity,

(5.4) I2(n+1)(v) =
1

24

ˆ
ω

Q2

(
∇2v

)
dx′.

In the present geometric context, the bending term (∇y0)
T∇�p + (∇V )T∇�b1

in I2(n+1),g is of order hnx3 and it interacts with the curvature[
∂
(n−1)
3 Ri3,j3(·, 0)

]
i,j=1···2,

which is of order xn+1
3 . The interaction occurs only when the two terms have the

same parity in x3, namely at even n, so that αn = 0 for all n odd. The two

remaining terms measure the L2 norm of
[
∂
(n−1)
3 Ri3,j3(·, 0)

]
i,j=1···2, with distinct

weights assigned to Sy0
and

(
Sy0

)⊥
projections, again according to the parity of n.

We also have infVy0
I2(n+1),g ∼

∥∥[∂(n−1)
3 Ri3,j3(·, 0)

]
i,j=1···2‖

2
L2(ω).

Remark 5.4. Parallel general results can be derived in the abstract setting of Rie-
mannian manifolds: in [70, 71] Γ-convergence statements were proved for any di-
mension ambient manifold and codimension midplate, in the scaling regimes O(h2)
and O(1), respectively. In [92], the authors analyze scaling orders o(h2), O(h4),
and o(h4).

6. Floral morphogenesis, weak prestrain, and special solutions of

Monge–Ampère equations

We digress in this section to consider an interesting set of questions inspired
by the remarkable examples of floral morphogenesis resembling parts of a pseudo-
sphere (see Figure 7) altered by the presence of ripples along the free boundary.
Early work [99], revisited in [98], suggested that information on the profile of the
boundary of a plant’s leaf fluctuating in a direction transversal to the leaf’s sur-
face can be read from the Jacobian of the conformal mapping corresponding to an
isometric embedding of the given prestrain metric. This leads to the question of
constructing solutions to the classical Monge–Ampère equation, without prescribed
boundary conditions but approximating the smallest bending content possible while
preserving the regularity that allows for the consistent association of this bending
content.

A similar point of view has been adopted in [44] for the choice of the target
midplate metric, g2×2 = Id2 +2ε2f(x2)dx

2
1, posed on the infinite strip ω = R ×

[0,W ]. The coefficient field f(x2) corresponds to the x2-dependent growth in the
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Figure 7. (a) Pseudosphere. (b) Picture of a calla lily. (c) Sample
plots of the Jacobian function encoding the Gauss curvature of the
prestrain [99].

x1 direction, localized near the x2 = 0 edge of the sheet. An interesting class of
buckling patterns that lower the bending energy of the sheet while satisfying the
approximate isometry condition was constructed by introducing “branch point”
singularities, resulting in the multiple asymptotic directions, into solutions to the
Gauss curvature constraint equation, det∇2v = κ(g2×2) = −f ′′.

For weakly hyperbolic sheets with constant κ < 0, the same construction has
been recently refined in [109, 126], using a discrete differential geometric approach
linked with the notion of index of topological defects, to argue that the branch
points are energetically preferred and may lead to the fractal-like recursive buckling
patterns seen in some flowers and leaves.

Open Problem 6.1. While we will consider the problem here solely from a static
elastic perspective, it is worth asking an allied question: How does a growing front
leave behind a partially relaxed shape, i.e., that of a flower?

6.1. Weak prestrain and the Monge–Ampère constrained theories. We
assume that the given prestrain tensor Ah = (gh)1/2 on Ωh is incompatible only
through a perturbation of order which is a power of the film’s thickness h:

(6.1) Ah(x′, x3) = Id3 + hγS(x′) + hγ/2x3B(x′).
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Here, S,B : ω̄ → R
3×3
sym are smooth tensors that correspond to stretching and

bending with the choice6 of the exponents γ, γ
2 . In this context, the counterpart of

Theorem 4.1 is as follows:

Theorem 6.2 ([80, 84]). Let uh ∈ W 1,2(Ωh,R3) satisfy: Eh(uh) ≤ Chγ+2, for
some γ ∈ (1, 2).

(i) Compactness. There exist Rh ∈ SO(3), ch ∈ R
3 such that the following

holds for {yh(x′, x3) = Rhuh(x′, hx3) − ch}h→0. First, yh converge to x′ in

W 1,2(Ω1,R3). Second, the scaled displacements, V h(x′) = 1
hγ/2

ffl 1/2

−1/2
yh(x′, t)−

x′ dt ∈ W 1,2(ω,R3) converge, up to a subsequence, to a displacement field V
of the form V = (0, 0, v)T , satisfying

(6.2) v ∈ W 2,2(ω,R), det∇2v = −curl curlS2×2.

(ii) Γ-convergence. If ω is simply connected with C1,1 boundary, then we have, with
the same quadratic forms Q2 defined in (4.5),

(6.3)
1

hγ+2
Eh(uh)

Γ−→ IS,B(v) =
1

12

ˆ
ω

Q2

(
x′,∇2v +B2×2

)
dx′.

Similarly to Corollary 4.2, one can deduce the following.

Corollary 6.3. The Monge–Ampère problem (6.2) has a solution v ∈ W 2,2 iff
inf Eh ≤ Chγ+2. Moreover, chγ+2 ≤ inf Eh ≤ hγ+2 for some c, C > 0 is equiva-
lent to the solvability of (6.2) and the simultaneous nonvanishing of the lowest-order
terms (i.e., terms of order γ and γ

2 , respectively) in R12,12(·, 0) and [R12,i3(·, 0)]i=1,2.
This last condition is equivalent to

curl curlS2×2 + detB2×2 ≡ 0 or curlB2×2 ≡ 0 in ω.

Equation (6.2) can be seen as an equivalent condition for the family of defor-
mations on ω (which, indeed, corresponds to the recovery sequence in Theorem
6.2(ii)) given through the out-of-plane displacement v : ω → R, and any in-plane
displacement w : ω → R

2,

φh(x′) =
(
x′ + hγw(x′), hγ/2v(x′)

)
: ω → R

3

to match the metric gh(·, 0)2×2 at the lowest-order terms of its Gauss curvature.
Indeed,

κ
(
(∇φh)T∇φh

)
= κ

(
Id2 +hγ(∇v ⊗∇v + 2 sym∇w) + h2γ(∇w)T∇w

)

= −hγ

2
curl curl

(
∇v ⊗∇v + 2 sym∇w

)
+ o(hγ)

= hγ det∇2v + o(hγ),

κ
(
gh(·, 0)2×2

)
= κ

(
Id2 +2hγS2×2 + h2γ(S2)2×2

)
= −hγ curl curl S2×2 + o(hγ).

(6.4)

Recalling that the kernel of the operator curl curl consists precisely of sym∇w, we
further observe that (6.2) is equivalent to the possibility of choosing w such that
φh is an isometric immersion of (ω, gh(·, 0)2×2) at the leading-order terms,

(∇φh)T∇φh = Id2 +2hγ
(1
2
∇v ⊗∇v + sym∇w

)
+O(h2γ) = gh(·, 0)2×2 + o(hγ).

6The more general choices of exponents α/2, γ/2 were analyzed in [60,78,79].
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The above analysis suggests that we view the Monge–Ampère equation det∇2v =
f through its very weak form, well defined for all v ∈ W 1,2

loc (ω,R), in the sense of
distributions,

(6.5) Det∇2v
.
= −1

2
curl curl(∇v ⊗∇v) = f in ω.

Similarly to the results described in section 4.4, one can then apply techniques of
convex integration and show [18,32,87] that for any smooth f : ω̄ → R and α < 1

5 ,

the set of C1,α(ω̄) solutions to (6.5) is dense in C0(ω̄). That is, for every v0 ∈ C0(ω̄)
there exists a sequence vn ∈ C1,α(ω̄), converging uniformly to v0 and satisfying
Det∇2vn = f . One consequence of this result is that the operator Det∇2 is weakly
discontinuous everywhere in W 1,2(ω). By an explicit construction, there follows a
counterpart of Proposition 4.5:

Proposition 6.4 ([60]). Assume that ω ⊂ R
2 is simply connected with C1,1 bound-

ary. Then

inf Eh ≤ Chβ for all γ ∈
[2
7
, 2
]

and β <
5

3
γ +

2

3
,

inf Eh ≤ Chγ for all γ ∈
(
0,

2

7

)
.

Open Problem 6.5. Analyze the intermediate energy scaling regime inf Eh � hβ

for β ∈
[
5
3γ + 2

3 , γ + 2
)
, and find the Γ-limits of the scaled energies 1

hβ Eh.

Open Problem 6.6. Consider the generalization of (6.5) to problems posed on
higher-dimensional domains ω ⊂ R

N , in the context of dimension reduction and
isometry matching. As shown in [53], the set {sym∇w; W 1,2(ω,RN )} is the ker-
nel of the operator Curl2, where for A ∈ L2(ω,RN×N ) the 4-tensor, Curl2(A) =[
Curl2(A)ab,cd

]
a,b,c,d=1···N , is given as the application of two exterior derivatives in[

∂a∂cAbd+∂b∂dAac−∂a∂dAbc−∂b∂cAad

]
a,b,c,d

. Similarly to the calculation in (6.4),

there holds Rab,cd(IdN +ε2A) = − ε2

2 Curl2(A)ab,cd + o(ε2). Taking A = ∇v ⊗∇v,
one obtains that a scalar displacement field v can be matched by a higher-order
perturbation vector field w, so that defining φ̄h(x′) =

(
x′ + h2w(x′), hv(x′)

)
:

ω → R
N+1, the given weak prestrain metric is matched by the pull-back metric

in (∇φ̄)T∇φ̄ = IdN +h2A + O(h4), if and only if
[
det(∇2v)ab,cd

]
a,b,c,d=1···N =

−Curl2(A).

6.2. Dimension reduction with transversely oscillatory prestrain. We also
mention the “oscillatory setting” where gh = (Ah)2 satisfy the structure assump-
tion,

gh(x′, x3) = Gh(x′,
x3

h
) = Ḡ(x′) + hG1(x

′,
x3

h
) +

h2

2
G2(x

′,
x3

h
) + · · ·

for all x = (x′, x3) ∈ Ωh.

This setup includes the subcase gh = g of section 5 upon taking Ḡ1 = g(·, 0),
G1(x

′, t) = t∂3g(x
′, 0), G2(x

′, t) = t2∂33g(x
′, 0), etc. In [76] connections between

these two cases were exhibited, via projections of appropriate curvature forms on the
polynomial tensor spaces and reduction to the “effective nonoscillatory cases” in the
Kirchhoff-like (h2) and von Kármán-like (h4) regimes. Compactness statements as
in section 5.2 are then still valid, with the Γ-limits that consist of energies I2(n+1),ḡ
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written for effective metrics ḡ, plus the new “excess term” measuring the averaged
deviation of gh from ḡ.

Open Problem 6.7. Derive the hierarchy of all the limiting theories in the oscil-
latory setting.

7. Classical geometrically nonlinear elasticity without prestrain

When a thin plate or shell is constrained at the boundary, it can buckle, wrinkle,
or crumple depending on the nature and extent of the forcing. Similarly, when a
plate or shell is subject to body forces, such as those due to gravity in such contexts
as draping a complex body, the sheet again folds and wrinkles in complex ways.
Examples of the resulting patterns are shown in Figure 8, and they highlight the
occurrence of three constituent building blocks: extended zones of short wavelength
wrinkles, strongly localized conical structures, and the ridge-like structures that
can arise either together or separately from the wrinkles. What is the hierarchy of
limiting elastic theories in such situations?

7.1. The setup and the finite hierarchy of Γ-limits for plates. In this section
we parallel the discussion of the hierarchy of the non-Euclidean thin films presented
in sections 4–6. Let S ⊂ R

3 be a bounded, connected, oriented two-dimensional
surface with unit normal �n. Consider a family {Sh}h→0 of thin shells around the
midsurface S:

Sh = {x+ t�n(x); x ∈ S, −h/2 < t < h/2}.

The elastic energy (with density W that satisfies (3.2)) of a deformation uh : Sh →
R

3 and the total energy in presence of the applied force fh ∈ L2(Sh,R3) are given,
respectively, by

Eh(uh) =
1

h

ˆ
Sh

W (∇uh), Jh(uh) = Eh(uh)− 1

h

ˆ
Sh

fhuh ∀uh∈W 1,2(Sh,R3).

It has been shown [43] that if fh scale like hα, then Eh(uh) at approximate mini-
mizers uh of Jh scale like hβ, with β = α for 0 ≤ α ≤ 2 and β = 2α− 2 for α > 2.
The dimension reduction question in this context consists thus of identifying the
Γ-limits Iβ,S of the rescaled energies sequence { 1

hβ Eh}h→0. We stress that, contrary
to the curvature-driven shape formation described in section 5, there is no energy
quantization and any scaling exponent β > 0 is viable.

In case of S ⊂ R
2, i.e., when {Sh}h→0 is a family of thin plates, such Γ-

convergence was first established for β = 0 [74] and later [42, 43] for all β ≥ 2.
This last regime corresponds to a rigid behavior of the elastic material, since the
limiting deformations are isometries if β = 2 (in accordance with the general result
in Theorem 4.1) or infinitesimal isometries if β > 2 (see, for example, the com-
pactness analysis in section 5.2). One particular case is β = 4, where the derived
limiting theory turns out to be the von Kármán theory (5.3). Then β > 4 with the
Γ-limit as in (5.4), and β ∈ (2, 4) where the result is effectively included in Theorem
6.2. We gather these results in Table 2, which should be compared with Table 1 in
section 5.2.
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Figure 8. Wrinkles, drapes and crumples in thin sheets over a
range of scales arise due to boundary and bulk forces. (a) Wrin-
kles in the neighborhood of the eye are driven by the muscular
contractions. (b) The drape of a heavy piece of cloth on a knee is
due to the combination of gravity and the presence of obstacles (a
chiaroscuro by Leonardo). (c) The crumples in a sheet are reminis-
cent of the drape, but arise due to confinement, and are dominated
by the present. (d) The nearly uniform wrinkles on a fabric that
wraps the Reichstag in Berlin (an inspiration of the artist Christo)
are due to the presence of a series of horizontal ropes; otherwise
the wrinkles will coalesce into larger and larger ones. (e) The el-
ements of all drapes are a combination of the (in)ability to drape
a point (such as a tent pole), a line (such as a curve), and a curve
(such as a waist or a table) in the presence of gravity [22]. (f)
Complex wrinkles also arise when non-Euclidean surfaces are flat-
tened, as shown here for a patch of a surface that is either saddle-
shaped (κ < 0) or spherical (κ > 0) in its natural configuration.
(Top: simulations; bottom: experiments. The images in (a)–(e)
are available via Creative Commons Attribution–NonCommercial–
NoDerivatives 4.0 International license. The image in (f) appears
courtesy of Tobasco, Timounay, Todorova, Paulsen, and Katifori
[118].)
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7.2. The infinite hierarchy of shell theories and the matching properties.
The first result for the case when S is a surface of arbitrary geometry was given
in [74] as the membrane theory (β = 0) where the limit I0,S depends only on the
stretching and shearing produced by the deformation. Case β = 2 was analyzed in
[41] and proved to reduce to the flexural shell model, i.e., a geometrically nonlinear
pure bending, constrained to isometric immersions of S. The energy I2,S depends
then on the change of curvature produced by such deformation, in the same spirit
as Theorem 4.1.

For β = 4, the Γ-limit I4,S , as shown in [80–82], acts on the first-order isome-
tries V ∈ V1 ∩ W 2,2, i.e., displacements of S whose covariant derivative is skew-
symmetric, and finite strains B ∈ clL2{sym∇w; w ∈ W 1,2(S,R3)} (compare the
definitions of spaces Vy0

and Sy0
in section 5.2). The limiting energy consists of two

terms corresponding to the stretching (second-order change in metric) and bending

(first-order change in the second fundamental form II = ∇ �N on S) of a family of
deformations {φh = id+hV + h2wh}h→0 of S, which is induced by displacements
V ∈ V1 and wh satisfying limh→0 sym∇wh = B. The out-of-plane displacements
v present in (5.3) are therefore replaced by the vector fields in V1 that are neither
normal nor tangential to S, but which preserve the metric on S up to first order.
For β > 4, the limiting energy consists [80, 81] only of the bending term and it
coincides with the linearly elastic flexural shell model.

The form of Iβ,S for all β > 2 and arbitrary midsurface S has been conjectured
in [86]. Namely, Iβ,S acts on the space of kth order infinitesimal isometries Vk,
where k is such that

β ∈ [βk+1, βk) and βn = 2 + 2/n.

The space Vk consists of k-tuples (V1, . . . , Vk) of displacements Vi : S → R
3 (with

appropriate regularity), such that the deformations φε = id +
∑k

i=1 ε
iVi preserve

the metric on S up to order εk, i.e., (∇φε)T∇φε − Id2 = O(εk+1). Further, setting
ε = hβ/2−1, we have:

(i) When β = βk+1, then Iβ,S =
´
S
Q2 (x, δk+1IS) +

´
S
Q2 (x, δ1IIS), where

δk+1IS is the change of metric on S of the order εk+1, generated by the family
of deformations {φε}ε→0, and δ1IIS is the first-order (i.e., order ε) change in
the second fundamental form IIS of S.

(ii) When β ∈ (βk+1, βk), then Iβ,S =
´
S
Q2 (x, δ1IIS).

(iii) The constraint of kth order isometry Vk may be relaxed to that of Vm, m < k, if
S possesses the following m �→ k matching property. For every (V1, . . . , Vm) ∈
Vm there exist sequences of corrections V ε

m+1, . . . , V
ε
k , uniformly bounded in ε,

such that φ̃ε = id +
∑m

i=1 ε
iVi +

∑k
i=m+1 ε

iV ε
i preserve the metric on S up to

order εk.

The above finding is supported by all the rigorously derived models. In partic-
ular, since plates enjoy the 2 �→ ∞ matching property (i.e., as shown in [43], every
W 1,∞ ∩W 2,2 member of V2 may be matched to an exact isometry, in the sense of
(iii) above), all the plate theories for β ∈ (2, 4) indeed collapse to a single theory
(linearized Kirchhoff model, see Table 2).

Further, elliptic (i.e., strictly convex up to the boundary) surfaces enjoy [82] a
matching property of 1 �→ ∞, which is stronger than for the case of plates. Namely,
on S elliptic and C3,α, every V ∈ V1 ∩ C2,α(S̄), possesses a sequence {wε}ε→0,
equibounded in C2,α(S̄,R3), and such that φε = id + εV + ε2wε is an (exact)
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Table 2. The finite hierarchy of Γ-limits for plates for the energy
scaling β ≥ 2

scaling exponent β
asymptotic expansion
of minimizing uh

|ω

constraint
/ regularity Γ−limit Iβ,S

β = 2
Kirchhoff

y(x′){
3d : y(x′) + x3�n(x

′)
} y ∈ W 2,2(ω,R3)

(∇y)T∇y = Id2
c‖(∇y)T∇ �N‖2Q2

2 < β < 4
linearized Kirchhoff

x′ + hβ/2−1v(x′)x3
v ∈ W 2,2(ω,R)
det∇2v = 0

c‖∇2v‖2Q2

β = 4
von Kármán

x′ + hv(x′)x3

+h2w(x′)
v ∈ W 2,2(ω,R)
w ∈ W 1,2(ω,R2)

c1‖ 1
2∇v⊗2 + (∇w)sym‖2Q2

+c2‖∇2v‖2Q2

β > 4
linear elasticity

x′ + hβ/2−1v(x′)x3 v ∈ W 2,2(ω,R) c‖∇2v‖2Q2

isometry for all ε � 1. Regarding the assumed regularity of V (which is higher
than the expected regularity W 2,2 of a limiting displacement), we note that the
usual mollification techniques do not guarantee the density of smooth infinitesimal
isometries in V1 ∩ W 2,2, even for S ∈ C∞. However, a density result is valid for
elliptic S ∈ Cm+2,α; that is, for every V ∈ V1 ∩ W 2,2 there exists a sequence
{Vn ∈ V1 ∩Cm,α(S̄,R3)}n→∞ such that limn→∞ ‖Vn −V ‖W 2,2(S) = 0. The proof of
the quoted results adapts techniques used for showing immersability of all positive
curvature metrics on a sphere [52]. As a consequence, for elliptic surfaces with
sufficient regularity, the Γ-limit of the nonlinear elastic energies h−βEh for any
scaling regime β > 2 is given by the bending functional constrained to the first-
order isometries, as in the case β > 4.

In [56,57] matching and density properties of isometries on developable surfaces
without affine regions has been proved. Namely, on such S of regularity C2k,1, every
V ∈ V1 ∩ C2k−1,1 enjoys 1 �→ k matching property. Further, the space V1 ∩ C2k−1

is dense in V1. The implication for elasticity of thin shells with smooth devel-
opable midsurface is that, again, the only small slope theory is the linear theory—a
developable shell transitions directly from the linear regime to fully nonlinear bend-
ing if the applied forces are adequately increased. While the von Kármán theory
describes buckling of thin plates, the equivalent variationally correct theory for
developable shells is the purely nonlinear bending. It is worth noting that the
class of developable shells includes smooth cylinders which are ubiquitous in nature
and technology over a range of length scales. An example of a recently discovered
structure is carbon nanotubes, i.e., molecular-scale tubes of graphitic carbon with
outstanding rigidity properties—they are among the stiffest materials in terms of
the tensile strength and elastic modulus, but they easily buckle under compressive,
torsional, or bending stress.

Open Problem 7.1. Investigate the matching properties for other types of sur-
faces.

8. Future directions

Our review on the mathematical aspects of the morphogenesis and pattern for-
mation in thin sheets has focused on low-dimensional shapes that arise from inho-
mogeneous growth and/or boundary conditions and constraints. From a biological
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perspective, understanding how growth leads to shape is only half the problem. A
true understanding of morphogenesis also requires understanding how shape feeds
back to growth, to ultimately regulate shape and thus enable function. From a
technological perspective, an equally interesting problem is the inverse problem:
How should one prescribe the growth patterns in order to be able to convert a flat
sheet into a complex landscape, a flower, or even a face?

From an artistic perspective, a natural generalization of the questions on the
smoothness of and in pattern-forming elastic surfaces is that posed by the ancient
Sino-Japanese paper arts of origami and kirigami (from the japanese: oru = fold,
kiri = cut, kami = paper): What are the limits to the shapes that one can construct
with sharp folds and cuts that violate smoothness along cuts and creases (either
straight or curved)? Artists have long known how to fold a sheet into a crane,
a man, or a dragon, and how to use cuts to articulate a sheet so that it can be
made into a pop-up castle or a rose. How can one quantify these art forms as
inverse problems in discrete geometry and topology? We touch on each of these
three problems briefly to highlight recent progress and the many open problems
that remain.

8.1. Developmental feedback from shape to growth. In a biological context,
there is increasing evidence for a mechanical feedback loop linking shape back to
growth [59, 110]; i.e., the growth tensors associated with causing shape are them-
selves affected by shape. To quantify how growth patterns change in response to
shape in space and time with (unknown) kernels that characterize the nature of
this feedback, one must turn to experiments. Nevertheless, it might still be use-
ful to study simple feedback laws to understand their mathematical consequences
as has been recently attempted in the context of controlling bacterial shapes [2].
A minimal example of a local model, incorporating mechanical feedback in tissue
growth (in such instances as leaves and epithelial tissues), that closes the equations
(2.1), takes the form

αvΔ(tr ṡ) = −αΔ(tr s)− α

2
det(κ0 − κ)−Δ[tr(σ0 − σ)]− βvΔ(tr ḃ)

= −βΔ(trb)− βΔ[tr(κ0 − κ)] + tr[(σ0 − σ)(κ0 − κ)]
(8.1)

for the dynamics of in-plane growth and curvature tensors s,b, respectively. Here,
the terms σ0,κ0 denote the threshold homeostatic values of the stress tensor σ and
the curvature tensor κ that the tissue aims to achieve, and the various prefactors
are as defined in the introductory section, except for αv, βv which are the stretching
viscosity and bending viscosity, respectively, with αv/α = τS , βv/β = τB being the
time scale for the relaxation of in-plane and out-of-plane growth. We note that these
equations are linear in s,b and thus are likely to be valid only in the neighborhood
of homeostatic stress and curvature.

Open Problem 8.1. System (8.1) is geometrically nonlinear. What are the con-
ditions for its dynamic stability and control of the equilibrium states, which result
from inhomogeneous and anisotropic growth?

Other possible descriptions were suggested in [7,16,48,83,108]. In particular, the
paper [16] has recently introduced a free boundary problem for a system of PDEs
modeling growth. There, a morphogen controlling volume growth and produced
by specific cells was assumed to be diffused and absorbed throughout the domain,
whose geometric shape was in turn determined by the instantaneous minimization
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Figure 9. Examples of solutions of inverse problems in morpho-
genesis—to program the metric structure and thence create com-
plex shapes from flat sheets. On the left are shown experiments
with 3d printed gel structures that swell in a good solvent, along
with representative numerical solutions that are based on minimiz-
ing the energy (4.1). (This figure is from [47] by Gladman, Mat-
sumoto, Nuzzo, Mahadevan, and Lewis, Biomimetic 4D printing,
Nature–Materials, 15 (2016), 413–418; c© 2018, Springer Nature.)
On the right [120] we see results of the solution of inverse problems
to grow a flower from a bilayer cylindrical shell, and a face from a
circular bilayer disk.

of an elastic deformation energy, subject to a constraint on the volumetric growth.
For an initial domain with C2,α regular boundary, it establishes the local existence
and uniqueness of a classical solution, up to a rigid motion.

8.2. Inverse problems in morphogenesis. With the advent of additive manu-
facturing methods such as 3d and 4d printing (to account for variations in space
and time), it has now become possible to print planar patterns of responsive inks
that swell or shrink inhomogeneously when subject to light, pH, humidity, etc.,
thus causing them to bend and twist out of the plane [14, 47]. Understanding how
to design the ink materials and the geometric print paths to vary the density and
anisotropy of the print patterns in a monolayer or a bilayer is critical to enable
functional patterns. This inverse design problem requires the specification of the
first and second fundamental form which will not generally be compatible with a
strain-free final shape. Recent work in this area [120] shows that a way around
this is to use a bilayer with independent control over the two layers, and it leads
to results such as those shown in Figure 9. A related class of design problems in
solid mechanics, leading to a variation on the classical question of equidimensional
embeddability of Riemannian manifolds, has been addressed in [1].
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8.3. Discrete problems: Origami and kirigami. Origami is the art of folding
paper along sharp creases to create complex three-dimensional shapes, and thus it
is more amenable to the methods of discrete geometry. A natural question here
is that of designing the number, location, and orientation of folds on a flat sheet
of paper and prescribing the order of folding to achieve a given target shape. For
a prescribed fold topology (e.g., that of 4-coordinated vertices), geometric rules
that quantify the constraints of local length, angle, and area preservation allow one
to pose the inverse problem of fold design as a constrained optimization problem
[37, 38, 123]. Then, given reasonable initial states, one can determine the folding
patterns to achieve target shapes (see Figure 10) that are realized as spatially
modulated patterns of a simple periodic and uniform tiling, yielding approximations
to given surfaces of constant or varying curvature, and which are corroborated
using experiments with paper. The difficulty of realizing these geometric structures
may be assessed by quantifying the energetic barrier that separates the metastable
flat and folded states. The trade-off between the accuracy to which the pattern
conforms to the target surface and the effort associated with creating finer folds
can also be characterized [34]. However, there are a host of mathematical problems
that remain open. These include the presence (or absence) of impossibility theorems
on what shapes can or cannot be achieved using folds in a sheet of paper and the
consequences of fold topology on the resulting shapes.

Open Problem 8.2. How can one control the rigidity of a randomly origamized
sheet as the number of random creases is gradually increased, and the sheet is
subjected to the geometric rules that the creases must satisfy at every vertex (i.e.,
the sum of all angles must add up to 2πc, and that alternate angles must add up
to πc [38])?

Kirigami is the art of cutting paper to make it articulated and deployable. The
mechanical response of a kirigami sheet when it is pulled at its ends is enabled
and limited by the presence of cuts that serve to guide the possible nonplanar
deformations. Recently, this ability has become the inspiration for a new class of
mechanical metamaterials [11, 17]. The geometrical and topological properties of
the slender sheet-like structures, irrespective of their material constituents, were
exploited to discuss functional structures on scales ranging from the nanometric
[13] to centimetric and beyond [25, 26, 103].

A combination of physical and numerical experiments can be used to characterize
the geometric mechanics of kirigamized sheets as a function of the number, size,
and orientation of cuts [24]. Of particular interest is understanding how varying
the the shortest path between points at which forces are applied, influences the
shape of the deployment of the trajectory of a sheet as well as how to control its
compliance across orders of magnitude.

Mathematically, these questions are related to the nature and form of geodesics
in the Euclidean plane with linear obstructions (cuts) and to the nature and form
of isometric immersions of the sheet with cuts when it can be folded on itself. In
[54], a constructive proof has been provided that the geodesic connecting any two
points in the sheet is piecewise polygonal, and that the family of all such geodesics
can be simultaneously rectified into a straight line by flat-folding the sheet so that
its configuration is a (nonunique) piecewise affine isometric immersion.
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Figure 10. While this paper has focused on surfaces with vary-
ing degrees of smoothness, an interesting new avenue for explo-
ration is that of discrete surfaces [38] that have strongly creased
regions, seen for example in origami. (This figure appeared in [38],
Dudte, Bouga, Tachi, and Mahadevan, Programming curvature us-
ing origami tessellations, Nature–Materials, 15 (2016), no. 5, 583–
588; c© 2016, Springer Nature.)

Open Problem 8.3. Study the structure of geodesics in the kirigamized sheet as
the number of random cuts increases to infinity and under various assumptions on
the cuts’ distribution. What is the Hausdorff dimension of the limiting paths?
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[33] C. De Lellis and L. Székelyhidi Jr., High dimensionality and h-principle in PDE, Bull. Amer.

Math. Soc. (N.S.) 54 (2017), no. 2, 247–282, DOI 10.1090/bull/1549. MR3619726
[34] E. D. Demaine and J. O’Rourke, Geometric folding algorithms: Linkages, origami, poly-

hedra, Cambridge University Press, Cambridge, 2007, DOI 10.1017/CBO9780511735172.
MR2354878

[35] J. Dervaux and M. Ben Amar, Morphogenesis of growing soft tissues, Phys. Rev. Lett., 101
(2008), 068101.

[36] J. Dervaux, P. Ciarletta, and M. Ben Amar, Morphogenesis of thin hyperelastic plates: a
constitutive theory of biological growth in the Föppl–von Kármán limit, J. Mech. Phys. Solids
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