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1. Introduction to singularity theory

This book concerns the title topic of singularities. The terms singularities or
singular points have a number of different meanings depending on the context. A
singular point x0 of a mapping between manifolds f : N → P is one where the
derivative of f at x0, df(x0), has nonmaximum rank. So if (dimN, dimP ) = (n, p),
then if n ≥ p the singular points are also called critical points (i.e., rank(df(x0)) <
p). If instead n < p, then all points are critical points, while the singular points
form a subset of N . Then the role of singularities in the book concerns the structure
of mappings f between manifolds and also the structure of the solution sets f−1(y0)
for any point y0. The singular points of f

−1(y0) are those where it is not a manifold.
Here the rub is the rather vague notion of structure, which includes both local and
global structural properties, where the global properties result from the interaction
of the local properties.

Naively, when the case f is a smooth mapping with f(x0) = y0, one might hope
to find local coordinates with x0 and y0 corresponding to the origin so that f may
be written in local coordinates as a special polynomial mapping f : Rn, 0 → Rp, 0
which can be identified using properties of a finite number of higher derivatives of
f . This illustrates finite determinacy and the polynomial is a normal form. The
polynomial form then allows the local geometric and topological properties of f
near x0 to be analyzed. This representation of f is purely local, meaning that this
is only defined in a neighborhood of 0. If two local mappings agree in a smaller
neighborhood of 0, we say they define the same germ of a mapping, and the local
theory is developed using this terminology; but it does concern local properties in
sufficiently small neighborhoods.

Furthermore, if we slightly deform such a mapping, either it may retain the same
local representation, but possibly at a nearby neighboring point x′

0, or there may be
a fundamental change in structure. It would be desirable to give a simple criterion
when the first case occurs, in which case we say the germ is locally stable, and to
enumerate the local stable germs for given dimensions (n, p). In the second case,
we would like to describe in some sense the possible ways that a small deformation
can change the structural properties.

If we think globally, then there may be a set of points S = {x1, x2, . . . , xk} that
map under f to a common point y0. Then we would also like to understand how
the different local properties of f at each xi interact in the image at y0. This is the
multilocal problem of the form f : Rn, S → Rp, 0, and we would still like to have
comparable analysis. Taken together these questions constitute the basic ones for
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singularity theory. Furthermore, we could equally well consider holomorphic map-
pings between complex manifolds and ask the corresponding multilocal questions
for f : Cn, S → Cp, 0, where local holomorphic changes of coordinates are used.

The conceptual framework for attacking these questions for smooth mappings
originates with René Thom as explained in his 1958 Bonn Lectures written by
Harold Levine [LT]. This was motivated by earlier results of Marston Morse and
especially the invaluable insights from the work of Hassler Whitney.

Morse [Ms1] (see also [Ms2]) considered smooth mappings f : N → R having
only singular points x0 where the Hessian of f is nonsingular. For an appropriate
choice of local coordinates about such a singular point, he showed f can be written
c+x2

1+ · · ·+x2
n−k−x2

n−k+1−· · ·−x2
n. The number of negative terms k is the index

of the critical point, and the topology of a compact manifold N can be determined
by attaching a cell (disk) of dimension k for each critical point.

Whitney [Wh1], [Wh2] determined the generic singularities which arise when
trying to embed manifolds in Euclidean space and for mappings of surfaces to the
plane. He identifies the singularities that may occur for stable mappings, which
form an open dense set of the space of smooth mappings. For example, his work
shows that the simplest possible singularity which occurs when trying to smoothly
embed the (nonorientable) real projective plane in R3 has, in appropriate coordi-
nates, the form g(x, y) = (x2, xy, y), whose image is a crosscap in R3 (also called a
Whitney umbrella). We might expect that we could deform g to simplify the singu-
lar behavior. It turns out that under any small smooth deformation of g, this type
of singular point is stable by the work of Whitney, and so persists. For mappings
between surfaces, he shows the generic singularities are fold points and cusp points,
given by (1.1), and the images of the fold points are curves which may intersect
transversely but will miss the images of cusp points (multilocal behavior).

(1.1) (x1, x2) �→ (x2
1, x2) and (x1, x2) �→ (x3

1 + x2x1, x2).

This can be contrasted with the real polynomial f0(x, y) = y2 − x3. It has an
isolated singular point at 0, which defines the curve through 0, y2 = x3, with a
singular cusp point at the origin. If we deform f to F (x, y) = y2 − x3 + ax + b
for small a and b, then the singular point will either break into two singular points
(x, y) = (±

√
a
3 , 0) when a > 0 or no singular points when a < 0. In neither case

does the cusp singular point persist, hence f0 is not stable. We may ask what
other types of small deformations are possible in a neighborhood of 0 (potentially
an infinite number of possibilities) and how we may characterize them, given f0.

One point to be stressed regarding the work of Morse and Whitney is how their
analyses of the singularities which arise were carried out separately for each case.
The types of singular points were identified using specific criteria on lower-order
derivatives, and these criteria show that the (multi)local singularities are stable
under small perturbations. Also, for each case the local change of coordinates were
performed by hand, using the local derivative information, and then successively
applying the inverse function theorem multiple times. The polynomial forms they
obtained are examples of normal forms for the singularities.

Moreover, at the same time as Morse, Solomon Lefschetz [Lf] was studying the
topology of smooth complex projective varieties X ⊂ CPN using a pencil C (i.e., a
complex projective line) of hyperplanes {Hy : y ∈ C} in CPN containing a common
codimension 2 linear subspace W which meets X in general position. He extends
the projection X\W → C to a modification of X on X ∩W ; and for an appropriate
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choice of local coordinates the singularities of an associated projection mapping can
be put into standard form z21 + · · · + z2n, for n = dimC X. This is used to show
that X is obtained from X ∩ Hy for generic y, by attaching cells of dimension n.
Hence, they have the same homotopy type up through dimension n−2, yielding the
Lefschetz hyperplane theorem; see, e.g., [Lm]. This is the first instance of what is
now called complex Morse theory. Morse’s and Lefschetz’s results show that the real
and complex cases can have analogous results, taking into account the additional
cases arising over the reals involving signs.

2. Thom–Mather theory

The framework for obtaining analogous results for arbitrary dimensions was car-
ried out in a remarkable series of papers by John Mather [M-I]–[M-VI], by quite
different methods which build on the ideas of Thom, and which use and extend
the fundamental theorems of Thom concerning transversality and those of Bernard
Malgrange introducing the use of algebraic infinitesimal methods. This allows him
to avoid trying to repeat the hands-on methods for general dimensions (n, p).

Although this was carried out for smooth mappings, Mather rather offhandedly
mentioned in his papers that his (multi)local methods worked as well in the complex
case for holomorphic mappings. Quite “coincidently”, these results agree with and
considerably expand upon those obtained independently by algebraic geometers
for the class of complex analytic germs in the case n > p which define isolated
complete intersection singularities (ICIS). A number of the main results for local
Thom–Mather theory which are covered in the book will be explained below.

Furthermore, for (proper) global mappings, Thom showed that in certain di-
mensions the smooth stable mappings could not be dense in the space of smooth
mappings. Using the above results, Mather explicitly identified the pairs of dimen-
sions (n, p) where the stable mappings are dense. These he refers to as the nice
dimensions (see below). A more general approach, which includes all dimensions,
was proposed by Thom [Th1] and refined by Mather [M3], [M4], [M5], using instead
stratifications of mappings via Whitney stratifications [Wh3]; also see [GLDW].
This yields instead the density of topologically stable mappings in all dimensions
(i.e., under the weaker notion of topological equivalence using homeomorphisms).
These global results can only hold for smooth mappings (due to the more rigid
properties of global holomorphic mappings on compact complex manifolds).

This complete collection of both local and global results which address the above
questions constitute Thom–Mather theory. In the first part of the reviewed book,
the results for local Thom–Mather theory are presented, allowing both real and
complex cases to be considered together, with an explanation (without proofs)
of how the local theory provides an answer to the global theory in the case of
smooth mappings. In addition, it incorporates several refinements and extensions
for the theory by various people. Then, using these results, the second part of the
book develops results concerning the topology and geometry of complex analytic
mappings for the case n < p. Because of the ultimate use for second part, there is
more of an emphasis on the complex analytic results, even though historically the
smooth theory was developed first.

We should point out that beyond the expected differences when considering
smooth versus holomorphic mappings, the situation can take many additional dif-
ferent forms where singularity theory is applied. For example, around the same
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time as Thom and Mather’s work, Vladimir Arnold established the Moscow school
where methods were developed for analyzing structures in physical problems, such
as, e.g., the structure of caustics from light propagation and singularities occurring
in wave front evolution, among a number of other contributions; see, e.g., [AGV, vol.
I] and [A2]. These have close connections to the approach of Thom and Mather.

What features the applications of singularity theory share is that important
questions for them can be phrased in terms of properties of specific associated
mappings. However, these mappings may be of a restricted type. Then basic
Thom–Mather theory has been extended in many directions for a number of applied
areas. These further developments are not treated in the book, but a brief survey
can be found, e.g., in [D2].

2.1. Algebraic and geometric frameworks. Thom–Mather theory begins by
using the actions of certain (infinite-dimensional) groups of diffeomorphisms to
capture equivalence of mappings (which only works in the smooth case) or local
diffeomorphisms for local mappings, including deformations. The local theory is
also valid in the complex analytic category.

For the local case, we use the group of germs of (smooth, resp., holomor-
phic) diffeomorphisms Dn × Dp acting on f0 : Fn, 0 → Fp, 0, via composition
(ψ, ϕ) · f0 = ϕ ◦ f0 ◦ ψ−1, with f0 smooth if F = R and holomorphic if F = C.
This group is denoted by A and called the group of left-right equivalence. In the
special case when p = 1, we may only use Dn, which is denoted by R and called
right equivalence; and if n < p, we might only use Dp, denoted by L, called left-
equivalence. There is one additional local group K, the contact group, which Mather
introduced and which plays a crucial role for classification problems. It induces
an ambient diffeomorphism between the germs f−1

0 (0) for f0 in a common orbit.
For considering deformations there are corresponding groups acting on unfoldings
F : Fn+q, 0 → Fp+q, 0 of the form F (x, u) = (F̄ (x, u), u) of germs f0(x) = F̄ (x, 0)
with parameters u.

2.1.1. Local infinitesimal methods. Then infinitesimal methods can be used to ana-
lyze the actions of these diffeomorphism groups. The tangent spaces at the identity
for the groups and spaces of mappings or germs of mappings can be determined
by differentiating smoothly varying families of germs of the diffeomorphisms and
functions. In the local case, for example for Dn, we obtain the space of germs of
vector fields (in the appropriate category) on Fn, 0 vanishing at 0. Conversely, inte-
grating such a vector field yields a local one-parameter family in Dn. This tangent
space has a richer algebraic structure as a module over the ring of smooth germs
En (resp., holomorphic function germs On) on Fn, 0. In each case, these are local
rings with unique maximal ideals denoted mn consisting of germs vanishing at 0;
however, On has better algebraic properties. If θn denotes the module of all germs
of vector fields on Fn, 0, then TDn = mnθn.

For each of the above groups G, the derivative of the group action on a germ f0
then yields a tangent space TG · f0 ⊆ mnθ(f0), where θ(f0) denotes the En-module
(resp., On-module) of germs of vector fields ζ : Fn, 0 → TFp, 0 lying over f0. This
tangent space is then a sum of explicit modules over these rings. For deformations,
the local diffeomorphisms are allowed to move the origin, so the full modules of
germs of vector fields (e.g., θ(f0), θn, etc.) are used, and we obtain instead the
extended tangent space TGe · f0 ⊆ θ(f0). Then for any of the groups G listed above,
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the germ f0 is said to have finite G-codimension if dimF(mnθ(f0)/TG · f0) < ∞ (or
equivalently dimF(θ(f0)/TGe · f0) < ∞).

In the smooth case, the use of infinitesimal methods is made possible via the work
of Bernard Malgrange [Mg], which overcomes the weaker algebraic properties of the
ring En. An essential ingredient is the Malgrange preparation theorem for smooth
germs f0 : Rn, 0 → Rp, 0, which states that if M is a finitely generated En-module,
then it is finitely generated by {ϕ1, . . . , ϕk} as an Ep-module (via f∗

0 : Ep → En) iff
their images span M/f∗

0mp ·M as a real vector space. This is the smooth version
of the Weierstrass preparation theorem for the complex analytic case. This allows
for the use of methods of commutative algebra criteria involving the powers of
the maximal ideal mk

n, in place of local analytic estimates based on O(‖x‖k). It
provides the foundation for all of the algebraic infinitesimal methods used in local
Thom–Mather theory.

A first basic consequence is that the germ f0 has finite G-codimension iff there
is an integer � > 0 so that m�

nθ(f0) ⊂ TG · f0 (and hence for TGe · f0). Then
at least infinitesimally, the orbit contains all variations of order ≥ �. Then for
a one-parameter family (or unfolding) F (x, t) = (F̄ (x, t), t) with F̄ (x, 0) = f0(x),

conditions on ∂F̄
∂t |t=0

and the preparation theorem allow the infinitesimal conditions

for triviality of F to be solved and the solution vector field integrated to yield a
local trivialization of F , i.e., being G equivalent to f0 × id. The last step involves
locally solving differential equations and is the only direct use of analysis. Then
ingenious uses of this idea combined with the preparation theorem allow for the
proof of the finite determinacy theorem and the versal unfolding theorem stated
below.

First, “f0 is finitely G-determined” means there is a k so that if f1 has the same
k-order Taylor expansion as f0, then they are G-equivalent (for G one of the above
groups). Then the finite determinacy theorem asserts f0 is finitely determined iff
f0 has finite G-codimension. Also, for each G a specific k is given from the �
above. Tougeron [Tg] gives an alternative approach to K-equivalence. A number of
improvements for the order of determinacy and classification follow from the work
of Gaffney, Bruce, du Plessis, and Wall, as explained in the book.

There are also geometric characterizations of finite determinacy which play a
crucial role in the second part of the book. For holomorphic map germs, finite K-
determinacy of f is equivalent to the critical set of f only intersecting f−1(0) at 0. In
the case n ≥ p, this says that f defines an ICIS, which has been importantly studied
for its geometry and topology (see §3.1); and if n < p, then the critical set is Cn so
f−1(0) = {0}, and f defines a fat point, an isolated point with additional algebraic
structure. There is also the very useful Mather–Gaffney criterion characterizing
finite A-determined f which states that there is a neighborhood U of 0 so that
f |U\{0} is (infinitesimally) stable.

A second key result for finite G-codimension germs f0 is the characterization of all
small deformations of f0 under G-equivalence via G-versal unfoldings. The unfolding
F (x, u) = (F̄ (x, u), u) on q parameters u = (u1, . . . , uq) being G-versal means that
for any other unfolding G(x, v) = (g(x, v), v) : Fn+r, 0 → Fp+r, 0 of f0(x) factors
through F via a germ λ : Fr, 0 → Fq, 0 so that F (x, λ(v)) is G-equivalent to G as
an unfolding via an unfolding equivalence ϕ(x, v) = (ϕ1(x, v), v) with ϕ1(x, 0) = x.

Then the versal unfolding theorem asserts F is G-versal iff { ∂F̄
∂ui

|u = 0 : i = 1, . . . , q}
span θ(f0)/TGe · f0. In particular, if {gi(x) : i = 1, . . . , q} span θ(f0)/TGe · f0, then
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the linear unfolding (2.1) is G-versal,

(2.1) F (x, u) = (f0(x) +

q∑
j=1

ujgj , u1, . . . , uq) .

This result for R-equivalence is due to Mather in unpublished notes [M2], which
provided a rigorous foundation for Thom’s elementary catastrophe theory [Th2].
Later, Martinet gave an especially clear proof for A and K (see [Mt1]) which serves
as a model for a much more general form valid for many other groups; see [D1] and
references therein.

We contrast this with the approach of Kodaira–Spencer theory [KoS] as applied
to deformations of local singular spaces. Allowable deformations require flatness, by
which the deformations are not only of the defining equations given infinitesimally
by a module T 1, but also require that there be deformations of the relations between
the equations. These give obstructions to deformations that are given infinitesimally
by a module T 2. Consequently, the parameter space may not be smooth. However,
for ICIS singularities defined by a germ f , Tjurina [Tj] showed that the versal
deformation is unobstructed (i.e., T 2 = 0) so the parameter space is smooth, with
dimension now called the Tjurina number τ . Another very pleasant coincidence
is that in this case the versal deformation corresponds to the minimal K-versal
unfolding of the germ f .

By contrast, we remark that for n < p the Kodaira–Spencer theory is generally
obstructed, while the versal unfoldings in general Thom–Mather theory are always
unobstructed, including for many additional groups G (see more generally [D1], [D2]
and references therein).

2.2. Geometric transversality framework. Geometric properties of mappings
are obtained using a result of René Thom [LT], involving transversality to subman-
ifolds of jet space, which geometrically characterize Taylor expansion properties of
mappings. The k-jet space Jk(N,P ) provides a method for simultaneously consid-
ering all kth order Taylor expansions for all pairs of points in N × P . The most
relevant submanifolds in jet spaces are those invariant under the appropriate Lie
group actions on the jet spaces induced from the actions of the various groups of
diffeomorphisms. The resulting Lie group actions in both real and complex cases
are algebraic so the orbits are actually submanifolds, and these already capture
geometric properties.

A mapping f extends to a mapping jk(f) : N → Jk(N,P ) into k-jet space
sending a point x ∈ N to the kth order Taylor expansion of f at x. Then, for
example, for a compact manifold N , the Thom transversality theorem asserts that,
for a submanifold W ⊂ Jk(N,P ), the set of mappings f with jk(f) transverse to W
is a residual subset of C∞(N,P ) and hence dense (as C∞(N,P ) is a Baire space).
Then if jk(f) is transverse to W , it follows that jk(f)−1(W ) is a submanifold of N
of the same codimension as W in Jk(N,P ) or empty.

As a consequence, if f is globally stable and W ⊂ Jk(N,P ) is invariant under
the jet Lie group of A, then jk(f) is transverse to W . Thus, a globally stable
f must be transverse to all such manifolds. This provides considerable local geo-
metric structure for stable mappings. For the global geometric characterization of
stability, Mather extended the Thom transversality theorem to a multitransversal-
ity theorem [M-V], which captures multilocal geometric behavior at multiple points.
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He furthermore used this approach to characterize global stability in terms of multi-
transversality conditions [M-V, Thm 4.1]. A more precise geometric form he gave
is that a germ f0 : Fn, 0 → Fp, 0 is stable iff jp+1(f0) is transverse at 0 to its A-jet
orbit (resp., its K-jet orbit) in Jp+1(Fn,Fp) and then f0 is p + 1-determined (this
is the best possible general estimate as seen for the cusp singularity in (1.1).

The unexpected role here of K is further explained by its role in the classifica-
tion of stable germs. Besides K-equivalence inducing ambient diffeomorphisms of
f−1
0 (0), it also induces an automorphism of the algebra En (resp., On if F = C),
sending the ideal I(f0) = f∗

0 (mp)En, spanned by the coordinate functions of f0, to
the corresponding ideal of the K-equivalent germ. It follows that the local algebra
Q(f0) = En/I(f0) is an invariant of K-equivalence, as are the truncated algebras
Q�(f0) = Q(f0)/m

�+1
n Q(f0) (with corresponding version for multigerms). These

algebras for n ≤ p are finite dimensional and are isomorphic to quotients of formal
power series rings.

General germs can have isomorphic algebras without being A-equivalent as, for
example, the germ f(x, y) = (x3, y) has the same local algebra as the cusp map
germ in (1.1). Mather proved the very unexpected classification result that stable
germs f0 : Fn, 0 → Fp, 0 are classified up to A-equivalence by the isomorphism class
of their local algebras Qp+1(f0) (or Q(f0) if n ≤ p).

As a consequence, Mather further proves that if I(f0) ⊂ m2
n, so the coordinates

of f0 have no linear terms, and if {g1, . . . , gq} spans mnθ(f)/TKe ·f0, then the germ
F (x, u) : Fn+q, 0 → Fp+q, 0, given by

(2.2) F (x, u) = (f0(x) +

q∑
j=1

ujgj , u1, . . . , uq) ,

is a stable germ, a stable unfolding of f0, with local algebra Q(F ) 
 Q(f0). This
provides a method to construct normal forms for stable germs with a given local
algebra.

Then the combination of the multitransversality characterization of stability to-
gether with the classification of stable germs by local algebras and the explicit
method for constructing stable germs with a given local algebra by stable unfold-
ings allow Mather to precisely determine the range of dimensions (n, p) where the
set of globally stable mappings forms an open dense subset of the space of (proper)
smooth mappings. The failure of density results from the transversality character-
ization of stability, when there is a submanifold S of jet space Jk(N,P ) of codi-
mension ≤ n foliated by K-jet group orbits in S of constant positive codimension in
S. The orbits are captured by smooth moduli parameters. Mather shows there are
germs with jets transverse to S but which fail to be transverse to all of the orbits
in S.

He then uses invariant theory for the jet Lie group actions of K, to obtain for
each pair (n, p) the lowest codimension submanifold Π(n, p) in jet space where this
occurs. With σ(n, p) denoting its codimension, Mather then shows that n < σ(n, p)
exactly characterizes the nice dimensions, where stable mappings are dense, and
the above results allow to him to explicitly give for such an (n, p) the stable germs
with specific normal forms. The nice dimensions play an important role in Part II



460 BOOK REVIEWS

of the book, where n < p, and they are given by the inequalities

(2.3) n <

{
6
7p+

6
7 p− n > 3,

6
7p+

9
7 p− n ≤ 3 .

3. Geometry and topology of finitely determined map germs

With the foundation provided by the results of local Thom–Mather theory in
place, then the stage is set for analyzing the topological and geometric properties
of both stable germs and the germs of finite codimension. Although a few results
have been obtained in the real case, this has been principally carried out in the
holomorphic case taking advantage of the richness of complex structures.

3.1. Geometry and topology in the complex analytic case n > p. Previ-
ously, the study of singularities of complex algebraic varieties V had centered on
replacing the singularities by their resolutions, to give a nonsingular variety Ṽ map-
ping diffeomorphically to V off the singular set sing(V ) and using the properties of

Ṽ and the exceptional divisor, i.e., the inverse image of the singular set to under-
stand V . Two classes of singularities that have been carefully studied this way are
isolated curve and surface singularities.

The approach for the local geometric and topological structure of complex ana-
lytic singularities dramatically changed beginning in the early 1970s. This began
with the fibration theorem of Milnor [Mi] for hypersurface germs f : Cn+1, 0 → C, 0.
It is formed for sufficiently small 0 < η � ε, a ball about 0 of radius ε, Bε ⊂ Cn+1

and punctured disk B∗
η ⊂ C, so that f : f−1(B∗

η)∩Bε → B∗
η is a fibration. Moreover,

if V has an isolated singularity at 0, a fiber Fw = f−1(w) for w ∈ B∗
η is homotopy

equivalent to a bouquet of spheres of dimension n,
∨μ

i=1 S
n (i.e., a union of such

spheres sharing a common point). The number of such spheres μ is called the Mil-
nor number and is computed as the Re-codimension of f (i.e., dimC(On+1/ Jac(f)),

where Jac(f) is the ideal generated by the partials ∂f
∂xi

, i = 1, . . . , n + 1). Mil-
nor actually constructed his fibration in Sε, the boundary sphere of Bε, but it is
equivalent to the one given here. The closure of Fw is a manifold with boundary
diffeomorphic to the link L(V ) = f−1(0) ∩ Sε.

Example 3.1. As an illustration, we consider the germ of the complex polynomial
f0(x, y) = y2 − x3 at 0. It has an isolated singular point at 0 and in this case the
Milnor fiber is diffeomorphic to the global complex curve y2 − x3 = b for b �= 0,
that can be compactified with a point at infinity to yield an elliptic curve, which
is topologically a torus. Thus, the Milnor fiber is diffeomorphic to a torus with a
point removed. It has as a deformation retract the one point union of two S1’s (the
Milnor number is 2). An analysis also shows that the link consists of a knotted
curve in a torus which wraps three times in one direction while just twice in the
other, forming a 3 − 2 torus knot, which provides a boundary to the Milnor fiber.
This is the simplest example of the algebraic knots as links of complex plane curve
singularities.

This was extended by Hamm [Ha] to a Milnor fibration for ICIS, defined by a
germ f0 : Cn, 0 → Cp, 0. He shows that the Milnor fiber has the homotopy type
of a bouquet of spheres of dimension n − p. Here the number of spheres involves
a more subtle computation, except in the weighted homogeneous case where by
Greuel (see, e.g., [L1]) it is given by the Tjurina number τ , i.e., Ke-codimension of
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f0. Furthermore, Lê [Lê1] extended this to germs f : X, 0 → C, 0 on a complete
intersection X, when f has an isolated singularity in an appropriate sense.

An immense body of work by a long list of distinguished researchers, beginning
with Brieskorn and Arnold, have investigated structures built upon the Milnor
fibration. This includes an intersection pairing defined on the Milnor fiber; prop-
erties of the monodromy of the Milnor fibration about the origin; a relative de
Rham complex to compute the complex cohomology of the Milnor fiber; an inte-
gral lattice defined by the integral homology; a distinguished basis of vanishing
cycles obtained from the Morse singularities arising from a stabilization of f0 (also
called a Morsification), a resulting action of the full monodromy group on the in-
tegral lattice via Picard–Lefschetz theory; a mixed Hodge structure by Steenbrink
(adapting the theory introduced by Deligne); a local Gauss–Manin connection on
the complex cohomology of the Milnor fiber as a vector bundle, and the related
theory of D-modules (modules over the ring of holomorphic differential operators);
etc.

These were further applied in view of the important classification results discov-
ered by Arnold extending the germs appearing in the nice dimensions and revealing
rich geometric characterizations of these singularities [A1]. For the simple singu-
larities, their properties relate to the simple Lie groups Ak, Dk, and E6, E7, E8,
and for surface singularities they arise as quotients by Kleinian groups acting on
C2. These further extend to quotients by Schwarz triangle groups, yielding classes
of singularities involving moduli, which are ignored in the nice dimensions. All of
these developments highlight the importance of the case n > p, and are explained
in the papers of Brieskorn [Br1]–[Br3], the books [L1], [AGV, Vol II], and [PeSt],
and the many references therein.

3.2. Topology of finite map germs and discriminants. For the second part of
the book, the above would provide a virtual wish list of types of results one might
hope to obtain for the topology and geometry for local complex analytic mappings
with n < p. The results which can be obtained build in fundamental ways upon
the results from Thom–Mather theory from the first part. However, the approach
to the topology for the case n > p has to be modified in a number of significant
ways.

First, finitely K-determined map germs f0 : Cn, 0 → Cp, 0, with n < p, are finite-
to-one mappings. There is no immediate analogue of a Milnor fibration because
the image of f0 is a (germ of a) complex analytic subspace of dimension n < p.
Thus, for almost all y ∈ Cp in any neighborhood of 0, f−1

0 (y) = ∅, while for y in
the image of f0, f

−1
0 (y) is a finite set which will vary in cardinality depending on

y. This raises a number of questions:

(1) Is there a substitute for the Milnor fibration?
(2) How does the difference p− n affect the approach to the topology?
(3) How does the variability of card(f−1

0 (y)) enter into the topological analysis?
(4) Is there a substitute for de Rham cohomology of fibers?
(5) What computational methods are available for (4)?

The goal of the second part of the book is to begin to answer a number of these
questions and identify parts for which additional future work is needed. By compar-
ison with the algebraic results needed in the first part of the book for Thom–Mather
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theory, now deeper algebraic and geometric properties of the various complex an-
alytic sets are needed, bringing into play additional results from local analytic
geometry, sheaf theory, and commutative and homological algebra.

3.3. Stabilization of finitely (A-) determined map germs. The answers to
these questions began with an important idea introduced by David Mond when
he considered finitely determined germs f0 : C2, 0 → C3, 0 [Mo]. He restricts to
germs which are finitely A-determined. By the Mather–Gaffney criterion there is
then a neighborhood U of 0 so that f0|U\{0} is stable. As these germs are in the
nice dimensions, there is a one-parameter perturbation ft of f0 which is stable on
a neighborhood Bε ⊂ U when 0 < t < δ for some δ > 0.

We should note there is an analogous statement for isolated hypersurface singu-
larities f0 : Cn+1, 0 → C, 0. Such germs are finitely A-determined, and they have
a stabilization ft : Bε → C which yields for t �= 0 a mapping with only complex
Morse singularities. The number of such singularities equals the Re-codimension of
f0 which leads to a proof, using complex Morse theory, for the number of spheres
μ(f0) in the homotopy type of the Milnor fiber. Then Re-codimension ≥ Ke-
codimension, which is the Tjurina number τ , with equality if f0 is weighted ho-
mogeneous. Thus, μ(f0) ≥ τ , with equality if f0 is weighted homogeneous. By a
result of Greuel, the analogue also holds for ICIS. Rather surprisingly there is an
analogous result discovered by Mond for the germs f0 : C2, 0 → C3, 0.

3.3.1. The Mond conjecture. First, the work of Mond with Marer, and with de Jong
and van Straten showed that if f0 : C2, 0 → C3, 0 is weighted homogeneous, the
Ae-codimension equals the vanishing Euler characteristic of the deformed image
ft(Bε). Later it was recognized by Mond that ft(Bε) is homotopy equivalent to a
bouquet of two-dimensional spheres. The deformed image is referred to as a disen-
tanglement of the image and the number of S2’s is called the image Milnor number
and denoted μI(f0) (this equals the vanishing Euler characteristic). However, now
for this case, we let instead τ = Ae-codimension. Then the full statement becomes
μI(f0) ≥ τ with equality if f0 is weighted homogeneous. A crucial condition for
the result is that the image is a hypersurface.

This led to the Mond conjecture that the corresponding statement is true for all
n with (n, n+1) in the nice dimensions. The proof of this requires understanding at
a deeper level the algebraic structure of the normal space θ(f0)/TAe · f0 to control
the properties under deformation. As tempting as this result is, at this point it has
resisted a general proof, although there are many partial results mentioned in the
book. What this result points to is the importance of how we should understand
the algebraic and geometric properties of the image as a highly singular complex
analytic germ and the relation with its topology.

3.4. Vanishing topology of discriminants. There is another important case of
a highly singular hypersurface, namely the discriminant D(f0) for a finitely A-
determined germ f0 : Cn, 0 → Cp, 0 for n ≥ p. If (n, p) lies in the nice dimensions,
then as above we can deform f0 to a stable mapping ft : Bε → Cp for t �= 0 and
consider instead the discriminant of D(ft). The theorem of [Lê1] mentioned earlier
can be shown to apply in this very different situation so that D(ft) is homotopy
equivalent to a bouquet of spheres of dimension p − 1; see, e.g., Figure 1. This
is now referred to., as the discriminant Milnor fiber and the number of spheres
μΔ(f0) as the discriminant Milnor number. However, unlike the case of the image
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Figure 1. Illustrations for (a) the discriminant of a germ of
Ae-codimension 6 (fR,0(xy, y) = (x, xy+y6)) and (b) the resulting
stabilized discriminant (fR,t of fR,0), which even in the real case is
homotopy equivalent to a bouquet of six S1’s.

for n = p − 1 first considered by Mond, it is possible to explicitly compute the
number of such spheres in the weighted homogeneous case in the nice dimensions.

This results from algebraic properties of the discriminant D(F ) for F a stable
unfolding of f0, due to the combined work of Teissier [Te1] (using the 0th Fitting
ideal), K. Saito [Sa], and Looijenga [L1] leading to the resulting freeness of the
module of germs of ambient vector fields tangent to D(F ) (then D(F ) is a free di-
visor). Then θ(f0)/TAe · f0 can be isomorphically identified with another module
for capturing how Cp intersects D(F ). The corresponding module for the stabi-
lization is Cohen–Macaulay. This allows counting the number of critical points of
the restriction Gt of the defining equation G for D(F ) to the image of Cp under
the deformation by t, yielding the the Ae-codimension of f0. Then the number of
spheres is given by complex Morse theory using a result of Siersma [Si]. Then with
τ = Ae-codimension of f0, μΔ(f0) ≥ τ with equality if f0 is weighted homogeneous.
Thus, the form of the original μ ≥ τ conjecture is true in this case but with a dif-
ferent meaning for τ . In this form, these topological results closely align with the
topological properties for ICIS.

3.4.1. The Mond conjecture revisited. In the cases f0 : Cn, 0 → Cn+1, 0 for n = 1, 2
for the Mond conjecture, a similar approach is used except now the discriminant is
replaced by the image, denotedD(f0). Now for the stable unfolding F , the structure
of D(F ) is more complicated. Instead, θ(f0)/TAe · f0 is isomorphic to an algebraic
structure which now captures additional properties of the multiple point sets in the
image (where multiple xi map to a common y). This time Fitting ideals (for On

as an On+1-module via f∗
0 ) are used, but principally to algebraically capture the

double point set in Cn+1. Its properties result from the special form obtained by
work of Mond and Pellikaan. For example, in the case n = 2, this yields an algebraic
structure whose dimension differs from Ae-codim(f0) by the number of Whitney
umbrella points in the stabilization ft. On the other hand, this structure counts the
number of critical points of gt but includes critical points on the image D(ft). The
singular points on D(ft) include curves of double points, isolated triple points, and
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Whitney umbrella points, but only the latter are counted via the algebra, so the
corrections cancel, and the result follows. Parts of the method extend to a more
general situation and higher n, except complications arise from higher multiple
point sets and increased singularity types in ft. For this reason only partial results
exist at this time for higher dimensions, a number of which are referred to in the
book.

3.5. Geometry and topology of multiple point spaces. If we consider the
cases n < p − 1, the images are no longer even hypersurfaces. Their algebraic
structure is more complicated, so the structure of the deformed image now requires
a careful analysis of the multiple point spaces for varying cardinality.

The machinery for capturing the structure of the k-multiple point spaces is ini-
tially introduced for a local finite complex analytic mapping f : X → Y as an
analytic subset Dk

cl ⊂ Xk consisting of distinct x1, x2, . . . , xk with all f(xi) = y0,
but removing closed analytic components where some xi are equal. In the case
of a finitely A-determined germ f0 : Cn, 0 → Cp, 0 with n < p, this is refined by
considering Dk

cl for a stable unfolding F of f0 and then restricting to (Cn)k. This
version has better algebraic properties and is denoted by Dk(f0), and for a finitely
A-determined f0 these may differ by the addition of {0}. There are analogous
Dk(ft) for a stabilization of f0.

There is a natural action of the symmetric group Sk on Dk(f0) by permuting the
points, so the approach is to study these sets with this group action. The image
under f0 collapses Dk(f0) to the image of points y with f−1

0 (y) consisting of k or
more points. There is also a projection εk+1 : Dk+1(f0) → Dk(f0) by forgetting
the (k + 1)-st point. The image contains the subset which is the closure of the set
where there are more then k points mapping to the same point. Then the symmetric
group Sk acts freely on Dk(f0)\εk+1(Dk+1(f0)), and its image under f0 consists of
the set of y ∈ Cp with f−1

0 (y) consisting of exactly k points.
The image is made up of the disjoint union of the images of these differences. The

goal in analyzing the image is to understand the algebraic and geometric structure
of each Dk(f0) and to introduce methods for deducing properties of the image from
these analytic sets and their relations. All of this is likewise true for the deformed
image using the Dk(ft).

The algebraic structure is obtained from divided difference equations. For exam-
ple, the set of (x, x′) such that f(x) = f(x′) is the zero set of f(x)− f(x′), which
includes the points where x = x′ so we may factor f(x)− f(x′) = (x− x′) · g(x, x′)
with g = 0 capturing the real double points. This is combined with a consequence
for the complex analytic case of a result proven with Andre Galligo that states:
for a class of local algebras that include those for the stable germs in the nice
dimension, the maximum k such that Dk(f0) �= ∅ equals dimC Q(f). This to-
gether with multitransversality provides a handle on basic geometric properties of
the Dk(f0) for finitely A-determined germs f0. Specifically, the double point space
D2(f0), is shown to be Cohen–Macaulay. In the case of stable corank-1 germs
(i.e., rank(df0(0)) = n − 1), the Dk(f0) are smooth. Then, by multitransversal-
ity, for finitely A-determined germs, the Dk(f0) have the appropriate dimension
n− (k−1)(p−n) = p−k(p−n) and are shown to be isolated complete intersection
singularities. Also, for a stabilization ft, the Dk(ft) are the Milnor fibers, so the
earlier described results for n > p can be applied.
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For germs of corank ≥ 2, the methods no longer directly apply and the divided
difference scheme becomes considerably more complicated. Already for stable germs
f0, D2(f0) is not smooth, and the divided difference scheme is more complicated. A
beginning approach to understanding this case is by constructing specific resolutions
of the Dk(f0) using a method of iterated blowing ups from algebraic geometry. In
the case of the double point space, this joins with earlier work for the global case
by Kleinman and by Ronga to provide a resolution for D2(f0). This extends to the
triple point space. However, for the general case, the complete understanding of
the structure of the Dk(f0) is still a work in progress, and the book points to much
work still to be done.

3.6. Topology of the image via alternating homology. The insights gained
from the local analysis of the Dk(f0) for finitely A-determined f0 do provide the
foundations for understanding the topology of the image. For a stabilization ft :
Bε → Cp, the restriction ft|Dk(ft), for t = 0 or t �= 0, is a type of branched
covering with a natural action of the symmetry group Sk. This leads to an approach
developed by Victor Goryunov and David Mond for computing the topology of the
image for a finite-to-one surjective algebraic map f : X → Y between compact
semialgebraic sets using alternating homology, which we can think of as a partial
replacement in the case n < p for de Rham cohomology used when n > p. This
homology theory restricts to the homology chains c which are alternating, i.e.,
σ · c = sgn(σ)c for σ ∈ Sk.

For a coefficient ring this gives a chain complex CAlt
• = {CAlt

n (Dk(f), R)} with
induced homology groups denoted AHn(Dk(f);R) (in fact, this works for any topo-
logical space with Sk action). Here principally R = Z or Q. In the case of R = Q,
AHn(Dk(f);Q) 
 HAlt

n (Dk(f);Q), the subspace of ordinary homology on which
σ ∈ Sk acts by multiplication by sgn(σ).

These groups were initially modeled by Goryunov based on Vassiliev’s work
on knot invariants. Now, they can be understood either via using a complex of
equivariant sheaves or as presented in the book using simplicial complexes via a
triangulation of the maps, using a result of Hardt. Several very instructive examples
in the book illustrating this homology are explained in depth.

The map εk+1 : Dk+1(f) → Dk(f) induces a homomorphism

εk+1
� : CAlt

n (Dk+1(f), R) −→ CAlt
n (Dk(f), R)

by viewing Sk as the subgroup of Sk+1 fixing the (k + 1)-st element. This yields a
double complex {CAlt

p (Dq(f), R)} with standard horizontal homology boundary op-

erators and vertical operators εk� . In a standard manner this yields a total complex,
and a standard method can be applied to obtain a spectral sequence converging to
the homology of the total complex. In another direction, each vertical simplicial
complex, when extended by f� : C�(X,R) → C�(Y,R) is shown to be acyclic. It
follows that the total complex has homology groups H�(Y ;R).

3.7. Image computing spectral sequence. This leads to the imaging computing
spectral sequence (ICSS) developed by Goryunov and Mond and further by Kevin
Houston. This spectral sequence applies generally for a finite-to-one surjective
algebraic maps f : X → Y between compact semialgebraic sets. We might think
of this as the dual of the Serre spectral sequence for fibrations, now for the images
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of finite mappings. Here, E1
p,q = AHq(Dp+1(f);R) converging to Hp+q(Y ;R), with

differential d1q,p = εp+1
∗ on AHq(Dp+1(f);R).

In the case of a A-finitely determined corank-1 germ f0 : Cn, 0 → Cn+�, 0
with stabilization ft, the preceding geometric properties imply, for R = Q, that
AHq(D�(ft);Q) is zero except in one nonzero dimension n − (k − 1)(� − 1). The
spectral sequence for ft then collapses at the E1 term, allowing us to compute the
alternating homology for the deformed image Yt = ft(Bε). First, for � ≥ 2, if
q = n− (k − 1)(�− 1) (for some k) and q �= 0, then

Hq(Yt;Q) 
 HAlt
n−(k−1)�(Dk(ft);Q) ,

and it is Q if q = 0. While if � = 1 (which involves the Mond conjecture)

Hn(Yt;Q) 

n+1⊕
k=2

HAlt
n−k+1(Dk(ft);Q)

and Hq(Yt;Q) = 0 if q �= 0, n. Here the ranks of HAlt
n−k+1(Dk(ft);Q) are called

the alternating Milnor numbers and can in principle be computed using the specific
ideals defining them.

There are two extensions. For a multigerm, Houston shows that instead the
spectral sequence collapses at E2. In addition for germs f0 of corank ≥ 2, although
the Dk(f0) do not have isolated singularities and can have homology in multiple
dimensions, Houston shows the alternating homology is concentrated in the one
appropriate dimension, and analogous formulas still hold. There are also results
using instead cohomology.

Concerning the Mond conjecture, an ongoing challenge now would be to use
the alternating homology of multiple point spaces to compute the topology of the
deformed image of ft and relate it to the Ae-codimension of f0. When corank(f0) =
1, the preceding gives a formula for the image Milnor number in terms of the
alternating Milnor numbers. However, as of now, they do not yield an algebraic
formula that would equal the Ae-codimension. Also, the conjecture includes f0
which have higher corank and at present involve greater complications. Nonetheless,
these results supply important steps in understanding the topology of the images
as an important class of highly nonisolated singularities, identifying where future
advances still need to be made.

4. Placing this book among standard references and textbooks

There are a number of reference and text books which concern various aspects
of either smooth or holomorphic singularity theory. Several principal ones include
Golubitsky and Guillemin [GG], Jean Martinet [Mt2], Bruce and Giblin [BG1], and
Arnold, Gusein-Zade, and Varchenko [AGV, vol I, Part I] for smooth singularity
theory, and Looijenga [L1] and Arnold, Gusein-Zade, and Varchenko [AGV, vol II]
for the complex case.

The material treated in this book largely complements the results in these books,
so we briefly contrast their approaches. The books [GG], [Mt2], [BG1], and [AGV,
vol I, Part I] consider only the smooth theory and do not attempt to fully develop the
local theory, although Martinet comes closest devoting more attention to the local
theory, versal unfoldings and the beginning of the classification. The book [BG1]
gives a gentle introduction, concentrating on smooth functions and applications to
elementary differential geometry. The first part of [AGV, vol I] gives an exposition
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of the results in Thom–Mather theory, often without full proofs (moving on in
later parts to classification methods for functions and to Lagrange and Legendre
singularities). Both [GG] and [Mt2] cover the Thom transversality theorem and
Malgrange’s theorem. Golubitsky and Guillemin give a full-throated treatment of
global smooth stability, including proving the Thom transversality theorem (and its
multitransversality version), the Malgrange (and Weierstrass) preparation theorem,
and the division theorem from which it follows, and giving their own proof of
Mather’s theorem, infinitesimal stability implies stability. This reviewed book then
benefits from the above treatments for the transversality theorem and Malgrange’s
theorem by referring to, e.g., [GG] for complete proofs, and allowing more attention
to the local Thom–Mather theory.

For the complex analytic case, Looijenga [L1] and Arnold, Gusein-Zade, and
Varchenko [AGV, vol II] concentrate on the geometry and topology of isolated
hypersurface and complete intersection singularities, covering many of the topics
listed earlier, but which is complementary to the results in the complex case for
n < p.

The authors of the reviewed book give a thorough development of local Thom–
Mather theory, beginning with the simplest examples for R-equivalence of both
smooth and holomorphic functions. Then they gradually extend the results to
the more complicated work for A-equivalence, where the algebra becomes more
demanding. They have done so with many carefully explained examples and many
exercises, making frequent use of computer algebra, based on the software Macaulay
2 (an alternative would be for a reader to use the software Singular). They have
leaned somewhat more in the direction of the holomorphic case, with the second part
of the book in mind. As a result, the level of treatment demands somewhat more
of the reader’s algebraic and geometric sophistication beyond what is found in the
other books on smooth equivalence. They have compensated by providing a useful
collection of five detailed appendices covering jet bundles and the transversality
theorem, stratifications, commutative algebra, local analytic geometry, and sheaves.
For the second part of the book, the higher level of presentation is roughly that of
[L1] and [AGV, vol II].

A reader who does learn the theory from the first part of the book will be well
rewarded with a complete treatment of the local theory. Then as a textbook, the
first part would be a good choice for an upper level graduate course for students
with good backgrounds in algebra (especially commutative algebra) and the funda-
mentals of algebraic geometry. Continuing on to the second part will open to the
reader an area on complex analytic maps rich in explanations of interesting existing
results, new methods, and pointing to many remaining problems of interest.
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[AGV] V. I. Arnold, S. M. Gusĕın-Zade, and A. N. Varchenko, Singularities of differentiable
maps. Vol. I: The classification of critical points, caustics and wave fronts, Mono-
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