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LOCAL WELL-POSEDNESS FOR QUASI-LINEAR PROBLEMS:

A PRIMER

MIHAELA IFRIM AND DANIEL TATARU

Abstract. Proving local well-posedness for quasi-linear problems in partial
differential equations presents a number of difficulties, some of which are uni-
versal and others of which are more problem specific. On one hand, a common
standard for what well-posedness should mean has existed for a long time,
going back to Hadamard. On the other hand, in terms of getting there, there

are by now both many variations—and also many misconceptions.
The aim of these expository notes is to collect a number of both classical

and more recent ideas in this direction, and to assemble them into a cohesive

roadmap that can be then adapted to the reader’s problem of choice.
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1. Introduction

Local well-posedness is the first question to ask for any evolution problem in
partial differential equations (PDEs). These notes, prepared by the authors for
a summer graduate school seminar at MSRI [13] in 2020, aim to discuss ideas
and strategies for local well-posedness in quasi-linear and fully nonlinear evolution
equations, primarily of hyperbolic type. We hope to persuade the reader that the
structure presented here should be adopted as the standard for proving these results.
Of course, there are many possible variations, and we try to point out some of them
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in our many remarks. While a few of the ideas here can be found in several of the
classical books (see, e.g., [30], [10], [3], [24]), some of the others have appeared only
in articles devoted to specific problems and have never been collected together, to
the best of our knowledge.

1.1. Nonlinear evolutions. For our exposition we will adopt a two-track struc-
ture, where we will broadly discuss ideas for a general problem and, in parallel,
implement these ideas on a simple, classical, concrete example.

Our general problem will be a nonlinear PDE of the form

(1.1) ut = N(u), u(0) = u0,

i.e., a first-order system in time, where we think of u as a scalar- or a vector-valued
function belonging to a scale of either real or complex Sobolev spaces. This scale
will be chosen to be Hs := Hs(Rn) for the purpose of this discussion, though in
practice it often has to be adapted to the class of problems to be considered. The
nonlinearity N represents a nonlinear function of u and its derivatives,

N(u) = N({∂αu}|α|≤k),

where we will refer to k as the order of the evolution. Here typical examples
include k = 1 (hyperbolic equations), k = 2 (Schrödinger-type evolutions) and
k = 3 (Korteweg–de Vries-type evolutions). But many other situations arise in
models which are nonlocal, e.g., in water waves one encounters k = 1

2 for gravity

waves (resp., k = 3
2 for capillary waves).

Some problems are most naturally formulated as second-order evolutions in time,
for instance nonlinear wave equations. While some such problems admit also good
first-order in time formulations (e.g., the compressible Euler flow), it is sometimes
better to treat them as second order. Regardless, our roadmap still applies, with
obvious adjustments.

Our model problem will be a classical first-order symmetric hyperbolic system
in R× R

n, of the form

(1.2) ∂tu = Aj(u)∂ju, u(0) = u0,

where u takes values in R
m and the m×m matrices Aj are symmetric and smooth

as functions of u. Here the order of the nonlinearity N is k = 1, and the scale of
Sobolev spaces to be used is indeed the Sobolev scale.

1.2. What is well-posedness? To set the expectations for our problems, we re-
call the classical Hadamard standard for well-posedness, formulated relative to our
chosen scale of spaces.

Definition 1.1. The problem (1.1) is locally well-posed in a Sobolev space Hs(Rn)
if the following properties are satisfied:

(i) Existence: For each u0 ∈ Hs there exists some time T > 0 and a solution
u ∈ C([0, T ];Hs).

(ii) Uniqueness : The above solution is unique in C([0, T ];Hs).
(iii) Continuous dependence: The data to solution map is continuous from u0 ∈

Hs to u ∈ C([0, T ];Hs).

As a historical remark, we note that Hadamard primarily discussed the question
of well-posedness in the context of linear PDEs, specifically for the Laplace and
wave equations, beginning with an incipient form in [8] and a more developed form
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in [9]. It is in the latter reference where the continuous dependence is discussed,
seemingly inspired by Cauchy’s theorem for ordinary differential equations.

The above definition should not be taken as universal, but rather as a good
starting point, which may need to be adjusted depending on the problem. Consider
for instance the uniqueness statement, which, as given in Definition 1.1(ii), is in
the strongest form, which is often referred to as unconditional uniqueness. Often
this may need to be relaxed somewhat, particularly when low regularity solutions
are concerned. Some common variations concerning uniqueness are as follows:

(a) The solutions u in Definition 1.1(i) are shown to belong to a smaller space,
Xs

T ⊂ C([0, T ];Hs(Rn)), and then the uniqueness in Definition 1.1(ii) holds
in the same class.

(b) Unconditional uniqueness holds a priori only in a more regular class HN

with N > s, but the data to solution map extends continuously as a map
from Hs to C([0, T ];Hs).

Since we are discussing nonlinear equations here, the lifespan of the solutions
need not be infinite, i.e., there is always the possibility that solutions may blow
up in finite time. In particular, in the context of well-posed problems it is natural
to consider the notion of maximal lifespan, which is the largest T for which the
solution exists in C([0, T );Hs); here the limit of u(t) as t approaches T cannot
exist, or else the solution u may be continued further.

In this context, the last property in Definition 1.1 should be interpreted to mean
in particular that, for a solution u ∈ C([0, T ];Hs), small perturbations of the initial
data u0 yield solutions which are also defined in [0, T ]. This in turn implies that the
maximal lifespan T = T (u0) is lower semicontinuous as a function of u0 ∈ Hs(Rn).

In view of the above discussion, it is always interesting to provide more precise
assertions about the lifespan of solutions, or, equivalently, continuation (or blow-up)
criteria for the solutions. Some interesting examples are as follows:

(a) The lifespan T (u0) is bounded from below uniformly for data in a bounded
set,

T (u0) ≥ C(‖u0‖Hs) > 0.

This implies a blow-up criteria as follows:

lim
t→T (u0)

‖u(t)‖Hs = ∞.

(b) The blowup may be characterized in terms of weaker bounds,

lim
t→T (u0)

‖u(t)‖Y = ∞,

relative to a Banach topology Y ⊃ Hs, or perhaps a time integrated version
thereof ˆ T (u0)

0

‖u(t)‖Y dt = ∞.

To conclude our discussion of the above definition, we note that many well-
posedness statements also provide additional properties for the flow:

Higher regularity: If the initial data has more regularity u0 ∈ Hσ with σ > s,
then this regularity carries over to the solution, u ∈ C[(0, T );Hσ], with
bounds and lifespan bounds depending only on the Hs size of the data.

Weak Lipschitz bounds: On bounded sets in Hs, the flow is Lipschitz in a
weaker topology (e.g., up to Hs−1 in our model problem).
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Both of these properties are often an integral part of a complete theory and fre-
quently also serve as intermediate steps in establishing the main well-posedness
result.

In all of the above discussion, a common denominator remains the fact that the
solution to data map is locally continuous but not uniformly continuous. It is very
natural indeed to redefine (expand) the notion of quasi-linear evolution equations
to include all flows that share this property.

In many problems of this type, one is interested not only in local well-posedness
in some Sobolev space Hs, but also in lowering the exponent s as much as possible.
We will refer to such solutions as rough solutions. Then, a natural question is what
kind of regularity thresholds should one expect or aim for in such problems? One
clue in this direction comes from the scaling symmetry, whenever available. As an
example, our model problem exhibits the scaling symmetry

u(t, x) → u(λt, λx), λ > 0.

The scale-invariant initial-data Sobolev space corresponding to this symmetry is the
homogeneous space Ḣsc , where sc = n/2. This space is called the critical Sobolev
space, and it should heuristically be thought of as an absolute lower bound for any
reasonable well-posedness result. Whereas in some semilinear dispersive evolutions
one can actually reach this threshold, in nonlinear flows it seems to be out of reach
in general.

1.3. A set of results for the model problem. In order to state the results,
we begin with a discussion of control parameters. We will use two such control
parameters. The first one is

A = ‖u‖L∞ .

This is a scale-invariant quantity, which appears in the implicit constants in all of
our bounds. Our second control parameter is

B = ‖∇u‖L∞ ,

which instead will be shown to control the energy growth in all the energy estimates.
Precisely, the norm B plays the role of the norm Y mentioned in the discussion
above.

The primary well-posedness result for the model problem is as follows:

Theorem 1. The equation (1.2) is locally well-posed in Hs in the Hadamard sense
for s > d

2 + 1.

The reader will notice that this result is one derivative above scaling. It is also
optimal in some cases, including the scalar case (where the problem can be solved
locally using the method of characteristics), but it is not optimal in many other
cases where the system is dispersive.

For the uniqueness result we have in effect a stronger statement that only requires
Lipschitz bounds for u. This however does not improve the scaling comparison
relative to the critical spaces:

Theorem 2. Uniqueness holds in the Lipschitz class, and we have the L2 difference
bound

(1.3) ‖(u1 − u2)(t)‖L2 � eC(A)
´ t
0
B(s) ds‖(u1 − u2)(0)‖L2 .
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This is exactly the kind of weak Lipschitz bound discussed earlier. With a bit
of additional effort, for the Hs solutions in Theorem 1 this may be extended to a
larger range of Sobolev spaces,

(1.4) ‖(u1 − u2)‖L∞([0,T ];Hσ) � ‖(u1 − u2)(0)‖Hσ , |σ| ≤ s− 1.

The small price to pay here is that now the implicit constant in the estimate depends
not only on A and B but also on the norms of u1 and u2 in C([0, T ];Hs).

A key role in the proof of the well-posedness result is played by the energy
estimates, which are also of independent interest:

Theorem 3. The following bounds hold for for solutions to (1.2) for all s ≥ 0 :

(1.5) ‖u(t)‖Hs � eC(A)
´ t
0
B(s) ds‖u(0)‖Hs .

Finally, as a corollary of the last result, we obtain a continuation criteria for
solutions:

Theorem 4. Solutions can be continued in Hs for as long as
´
B remains finite.

Theorem 1 has been first proved by Kato [16], borrowing ideas from nonlinear
semigroup theory; see, e.g., Barbu’s book [4]. The existence and uniqueness part,
as well as the energy estimates, can also be found in standard references; e.g., in
the books of Taylor [30], Hörmander [10], and Sogge [24] (in the last two the wave
equation is considered, but the idea is similar). However, interestingly enough,
the continuous dependence part is missing in all these references. We did find
presentations of continuous dependence arguments inspired from Kato’s work in
Chemin’s book [3], and also on Tao’s blog [26].

Our objective for the remainder of the paper will be to provide complete proofs
for Theorems 1, 2, 3, and 4, which readers may take as a guide for their problem
of choice. While these results are not new in the model case we consider, to the
best of our knowledge this is the first time when the proofs of these results are
presented in this manner. Along the way, we will also provide extensive comments
and pointers to alternative methods developed along the years.

In particular, we would emphasize the frequency envelope approach for the reg-
ularization and continuous dependence parts, as well as the time discretization
approach for the existence proof. The frequency envelope approach has been re-
peatedly used by the authors, jointly with different collaborators, in a number of
papers (see, e.g., [23], [29], [18], [12], [15]), with some of the ideas crystalizing along
the way. The version of the existence proof based on time discretization is in some
sense very classical, going back to ideas which have originally appeared in the con-
text of semigroup theory; however, its implementation is inspired from the authors’
recent work [15], though the situation considered here is considerably simpler.

1.4. An outline of these notes. Our strategy will be, in each section, to provide
some ideas and a broader discussion in the context of the general equation (1.1)
and then show how this works in detail in the context of our chosen example (1.2).

In Section 2 we introduce the paradifferential form of our equations, both the
main equation and its linearization. This is an idea that goes back to work of
Bony [6] and helps clarify the roles played by different frequency interaction modes
in the equation. Another very useful reference here is Metivier’s more recent book
[21].
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Section 3 is devoted to the energy estimates in multiple contexts. These are
presented both for the full equation, for its linearization, for its associated linear
paradifferential flow, and for differences of solutions. The latter, in turn, yields the
uniqueness part of the well-posedness theorem. A common misconception here has
been that for well-posedness it suffices to prove energy estimates for the full equa-
tion. Instead, in our presentation we regard the bound for the linearized problem
as fundamental, though, at the implementation level, it is the paradifferential flow
bound that can be found at the core.

Section 4 provides two approaches for the existence part of the well-posedness
theorem. The first one, more classical, is based on an iteration scheme, which
works well on our model problem but may run into implementation issues in more
complex problems. The second approach, which we regard as more robust, relies on
time discretization, and is somewhat related to nonlinear semigroup theory, which
also inspired Kato’s work. Two other possible strategies, which have played a role
historically, are briefly outlined.

Section 5 introduces Tao’s notion of frequency envelopes (see for example [27]),
which is very well suited to track the flow of energy as time progresses. This is
then used to show how rough solutions can be obtained as uniform limits of smooth
solutions. This is a key step in many well-posedness arguments, and helps decouple
the regularity for the initial existence result from the rough data results.

Finally, Section 6 is devoted to the continuous dependence result, where we
provide the modern frequency-envelope-based approach. At the same time, for a
clean, elegant reinterpretation of Kato’s original strategy, we refer the reader to
Tao’s blog [26].

2. A menagerie of related equations

While ultimately one would want all the results stated in terms of the full nonlin-
ear equation, any successful approach to quasi-linear problems needs to also consider
a succession of closely related linear equations as well as associated reformulations
of the nonlinear flow. Here we aim to motivate and describe these related flows,
stripping away technicalities.

2.1. The linearized equation. This plays a key role in comparing different solu-
tions; we will write it in the form

(2.1) vt = DN(u)v, v(0) = v0,

where DN stands for the differential of N , which in our setting is a partial differ-
ential operator of order k. One may also reinterpret the equation for the difference
of two solutions as a perturbed linearized equation with a quadratic source term.
Some caution is required here, because often some structure is lost in doing this,
and the question is whether or not that is too much.

In the particular case of (1.2), the linearized equation takes the form

(2.2) ∂tv = Aj(u)∂jv +DAj(u)v ∂ju, v(0) = v0.

2.2. The linear paradifferential equation. One distinguishing feature of quasi-
linear evolutions is that the nonlinearity cannot be interpreted as perturbative.
Nevertheless, one may seek to separate parts of the nonlinearity which can be seen
as perturbative, at least at high regularity, in order to better isolate and understand
the nonperturbative part.
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To narrow things down, consider a nonlinear term which is quadratic, say of the
form ∂αu1∂

βu2, and consider the three modes of interaction between these terms,
according to the Littlewood–Paley trichotomy or paraproduct decomposition,

∂αu1∂
βu2 = T∂αu1

∂βu2 + T∂βu2
∂αu1 +Π(∂αu1, ∂

βu2),

where the three terms represent the low-high, high-low, and the high-high fre-
quency interactions, respectively. The high-high interactions in the last term are
always perturbative at high regularity, so they are placed into the perturbative box.
But one cannot do the same with the low-high or high-low interactions, which are
kept on the nonperturbative side. This is closely related to the linearization and, in-
deed, at the end of the day, we are left with a paradifferential style nonperturbative
part of our evolution, which we can formally write as

(2.3) wt = TDN(u)w, w(0) = w0.

Here, one can naively use Bony’s notion of a paraproduct [6] to define the linear
operator TDN(u) as

TDN(u)w =
∑
|α|≤k

T∂pαN(u)∂
αw,

where pα is a placeholder for the ∂αu argument of the nonlinearity N . However,
there are also other related choices one can make; see for instance the discussion at
the end of this subsection. For a discussion on the use of paradifferential calculus in
nonlinear PDEs (though not the above notation), we refer the reader to Metivier’s
book [21].

One can think of the above evolution as a linear evolution of high frequency waves
on a low frequency background. Then one can interpret solving the nonperturbative
part of our evolution as an infinite-dimensional triangular system, where each dyadic
frequency of the solution is obtained at some step by solving a linear system with
coefficients depending only on the lower components, and in turn it affects the
coefficients of the equations for the higher frequency components. Of course, this
should only be understood in a philosophical sense, because a variable coefficient
flow in general does not preserve frequency localizations. This can sometimes be
achieved with careful choices of the paraproduct quantizations, but it never seems
worthwhile to implement, as the perturbative terms will mix frequencies anyway
and add tails.

Turning to our model problem, in a direct interpretation the associated paradif-
ferential equation will have the form

(2.4) ∂tw = TAj(u)∂jw + TDAj(u)∂juw , w(0) = w0.

However, upon closer examination one may see several choices that could be made.
Considering for instance the first paraproduct, which of the following expressions
would make the better choice at frequency 2k ?

Aj(u)<k−8∂jwk, Aj(u<k−8)∂jwk, [Aj(u<k−8)]<k−4∂jwk.

The last one may seem the most complicated, but it is also the most accurate. In
many cases, including our model problem, it makes no difference in practice. How-
ever, one should be aware that often a simpler choice, which is made for convenience
in one problem, might not work in a more complex setting.



174 MIHAELA IFRIM AND DANIEL TATARU

Remark 2.1. Here the frequency gap, which was set to be equal to 8 in the above
formulas, is chosen rather arbitrarily; its role is simply to enforce the frequency
separation between the coefficients and the leading term. On occasion, particularly
in large data problems, it is also useful to work instead with a large frequency gap
as a proxy for smallness; see, e.g., [25].

2.3. The paradifferential formulation of the main equations. Consider first
our general equation (1.1), which we can write in the form

(2.5) ut = TDN(u)u+ F (u), u(0) = u0.

Here one would hope that the paradifferential source term can be seen as pertur-
bative, in the sense that

F : Hs → Hs, Lipschitz.

Similarly, we can write the linearized equation (2.1) in the same format,

(2.6) vt = TDN(u)v + F lin(u)v, v(0) = v0,

with the appropriate nonlinearity F lin. This is still based on the paradifferential
equation (2.5) but can no longer be interpreted as the direct paralinearization of
the linearized equation. This is because the expression F lin(u)v also contains some
low-high interactions, precisely those where v is the low frequency factor.

3. Energy estimates

Energy estimates are a critical part of any well-posedness result, even if they
do not tell the entire story. In this section we begin with a heuristic discussion
of several ideas in the general case and then continue with some more concrete
analysis in the model case.

3.1. The general case. Consider first the energy estimates for the general problem
(1.1), where it is simpler to think of this in the paradifferential formulation (2.3).
An energy estimate for this problem is an estimate that allows us to control the
time evolution of the Sobolev norms of the solution. In the simplest formulation,
the idea would be to prove that

d

dt
‖u‖2Hσ � C‖u‖2Hσ ,

with a constant C that at the very least depends on the Hs norm of u.
There are two points that one should take into account when considering such

estimates. The first is that it is often useful to strenghten such bounds by relaxing
the dependence of the constant C on u. Heuristically, the idea is that this constant
measures the effect of nonlinear interactions, which are strongest when our functions
are pointwise large, not only large in an L2 sense. Thus, it is often possible to
replace the constant C with an analogue of the uniform control norm B in the
model case, perhaps with some additional implicit dependence on another scale
invariant uniform control parameter A. See however the discussion in Remark 3.2.

A second point is that, although it is tempting to try to work directly with the
Hs norm, it is often the case that the straight Hs norm is not well adapted to the
structure of the problem; see, e.g., what happens in water waves [2], [12]. Then it
is useful to construct energy functionals Eσ adapted to the problem at hand. For
these energies we should aim for the following properties.
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(i) Energy equivalence:

(3.1) Eσ(u) ≈ ‖u‖2Hσ .

(ii) Energy propagation:

(3.2)
d

dt
Eσ(u) �A B‖u‖2Hσ ,

where the control parameter B satisfies

(3.3) B � ‖u‖Hs .

Now consider our main equation written in the form (2.3). For the perturbative
part of the nonlinearity F we hope to have some boundedness,

(3.4) ‖F (u)‖Hσ �A B‖u‖Hσ .

This in turn allows us to reduce nonlinear energy bounds of the form (3.2) to similar
bounds for the linear paradifferential equation (2.5). One may legitimately worry
here that some structure is lost when we decouple the paradifferential coefficients
from the evolution variable; however, the point is that these two objects are indeed
separate, as they represent different frequencies of the solution.

Remark 3.1. In our discussion here we took the simplified view that bounds for F
begin at σ = 0. But this is not always the case in practice, and often one needs
to identify the lower range for σ where this works; see, e.g., the nonlinear wave
equation [23], the wave map equation [29], or the water wave problem considered
in [1].

Now consider the paradifferential evolution (2.5), and begin with the L2 case by
setting σ = 0. Then we need to produce a linearized type energy E0,lin

u so that the
solutions satisfy

(3.5)
d

dt
E0,lin

u (w) �A B‖w‖2L2 .

Then the associated nonlinear energy at σ = 0 would be

E0(u) = E0,lin
u (u).

If E0,lin
u (w) = ‖w‖2L2 , then the bound (3.5) would simply require that the para-

differential operator TDN(u) is essentially antisymmetric in L2. If that is not true,

then the backup plan is to find an equivalent Hilbert norm on L2 so that the
antisymmetry holds. Some care is needed however; if this norm depends on u, then
this dependence needs to be mild.

The next step is to consider a larger σ. By interpolation it suffices to work with
integer σ, in which case one might simply differentiate (2.3),

(∂σw)t = TDN(u)(∂
σw) + [∂σ, TDN(u)]w.

Here we would be done if the last commutator is bounded from Hσ into L2. In
principle that would be the case almost automatically, at least when the order k
of N is at most one. One can heuristically associate this with the finite speed of
propagation in the high frequency limit.

Remark 3.2. The case k > 1, which corresponds to an infinite speed of propagation,
is often more delicate; see, e.g., [17], [18], [19] for quasi-linear Schrödinger flows or
[14] for capillary waves. There one needs to further develop the function space
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structure based on either dispersive properties of solutions or on normal forms
analysis.

3.2. Coifman-Meyer and Moser type estimates. Before considering our model
problem, we briefly review some standard bilinear and nonlinear estimates that play
a role later on. In the context of bilinear estimates, a standard tool is to consider the
Littlewood–Paley paraproduct type decomposition of the product of two functions,
which leads to Coifman–Meyer type estimates; see [7], [22]:

Proposition 3.3. Using the standard paraproduct notations, one has the following
estimates,

(3.6)

‖Tfg‖L2 � ‖f‖L∞‖g‖L2 ,

‖Tfg‖L2 � ‖g‖BMO‖f‖L2 ,

‖Π(f, g)‖L2 � ‖f‖BMO‖g‖L2 ,

as well as the commutator bound

(3.7) ‖[Pk, f ]g‖L2 � 2−k‖∂xf‖L∞‖g‖L2 .

Here Pk is the Littlewood–Paley projection onto frequencies ≈ 2k.

These results are standard in the harmonic/microlocal analysis community. For
nonlinear expressions we use Moser type estimates instead:

Proposition 3.4. The following Moser estimate holds for a smooth function F ,
with F (0) = 0, and s ≥ 0 :

‖F (u)‖Hs �‖u‖L∞ ‖u‖Hs .

Of course many more extensions of both the bilinear and the nonlinear estimates
above are available.

3.3. The model case. We now turn our attention to our model problem, where,
if we adopt the expression (2.4) for the paradifferential flow, the source term F (u)
is given by

(3.8) F (u) = Aj∂ju− TAj(u)∂ju− TDAj(u)∂juu.

We can rewrite this in the form

(3.9) F (u) = Π(Aj(u), ∂ju) + T∂juAj(u)− TDAj(u)∂juu.

For this expression we can show that it always plays a perturbative role:

Proposition 3.5. The above nonlinearity F satisfies the following bounds:

(i) Sobolev bounds:

(3.10) ‖F (u)‖Hσ �A B‖u‖Hσ , σ ≥ 0.

(ii) Difference bounds:
(3.11)
‖F (u)− F (v)‖Hσ �A B [‖u− v‖Hσ + ‖u− v‖L∞(‖u‖Hσ + ‖v‖Hσ )] , σ ≥ 0,

as well as

(3.12) ‖F (u)− F (v)‖L2 �A B‖u− v‖L2 .

The next-to-last bound shows in particular that F is Lipschitz in Hs for s > d/2.
The simplification in the case σ = 0 is also useful in order to bound differences of
solutions in the L2 topology.
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Proof. (i) We use the expression (3.9) for F . The first term can be estimated using
a version of the Coifman–Meyer estimates and Moser estimates by

‖Π(Aj(u), ∂ju)‖Hσ � ‖Aj(u)‖Hσ‖∂ju‖BMO �A B‖u‖Hσ .

For the second term we use again paraproduct bounds and Moser estimates to get

‖T∂juAj(u)‖Hσ � ‖∂ju‖L∞‖Aj(u)‖Hσ �A ‖∂ju‖L∞‖u‖Hσ .

The third term is similar to the second.
(ii) First, we note the representation

A(u)−A(v) =: G(u, v)(u− v),

which we use to separate u− v factors. Here G(u, v) is a smooth function of u and
v. Then taking differences in the first term of F , we need two estimates

‖Π(Aj(u), ∂j(u− v))‖Hσ � ‖∂Aj(u)‖L∞‖u− v‖Hσ �A B‖u− v‖Hσ

and

‖Π(G(u, v)(u− v), ∂jv)‖Hσ � ‖G(u, v)(u− v)‖Hσ‖∂v‖L∞

�A B(‖u− v‖Hσ + ‖u− v‖L∞(‖u‖Hσ + ‖v‖Hσ )),

noting that for σ = 0 the last term can be avoided.
Similarly, we have two estimates corresponding to the second term in F , namely

‖T∂juAj(u)− T∂jvAj(v)‖Hσ = ‖T∂ju[G(u, v)(u− v)]− T[∂ju−∂jv]Aj(v)‖Hσ

� ‖T∂ju[G(u, v)(u− v)]‖Hσ + ‖T[∂ju−∂jv]Aj(v)‖Hσ ,

where

‖T[∂ju−∂jv]Aj(v)‖Hσ � ‖u− v‖L∞‖∂jAj(v)‖Hσ �A B‖u− v‖L∞‖v‖Hσ

and

‖T∂ju[G(u, v)(u− v)]‖Hσ �A ‖∂ju‖L∞(‖u− v‖Hσ + ‖u− v‖L∞(‖u‖Hσ + ‖v‖Hσ )),

both with obvious simplifications if σ = 0. Finally, the bounds for the third term
in F are similar to the ones for the second. �

Remark 3.6. For Proposition 3.5 one can further relax B to a BMO norm,

B = ‖∇u‖BMO.

On the other hand we can also simplify the paradifferential equation (2.4) to a
simpler version,

wt = TAj(u)∂jw,

but in this case we can no longer relax B to a BMO norm.

Next we consider the paradifferential equation:

Proposition 3.7. Assume that u ∈ L∞
t,x and ∇u ∈ L1

tL
∞
x (i.e., B ∈ L1

t ). Then the
paradifferential equation (2.4) is well-posed in all Hσ spaces, σ ∈ R, and

(3.13)
d

dt
‖w‖2Hσ �A B‖w‖2Hσ .
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Proof. We first consider the energy estimate, where we work with the corresponding
inhomogeneous equation,

(3.14) ∂tw = TAj(u)∂jw + TDAj(u)∂juw + f , w(0) = w0.

The L2 bound is easiest; we have

1

2

d

dt
‖w‖2L2 =

ˆ
w · TAj(u)∂jw + w · TDAj(u)∂juw + w · f dx.

In the second term we simply estimate the paracoefficient in L∞. In the first term
we commute and integrate by parts to arrive at

1

2

ˆ
−w · T∂jAj(u)w + w · (TAj(u) − (TAj(u))

∗)∂jw dx,

where due to the symmetry of the matrices Aj we have the bound

(3.15) ‖(TAj(u) − (TAj(u))
∗)∂jw‖L2 �A B‖w‖L2 ,

which shows that the corresponding paraproduct operators are self-adjoint at lead-
ing order. Here we use the ∗ notation to denote the adjoint of an operator. Hence
we obtain ∣∣∣∣

d

dt
‖w‖2L2

∣∣∣∣ �A B‖w‖2L2 + ‖w‖L2‖f‖L2 ,

which further by Gronwall’s inequality yields

(3.16) ‖w‖L∞
t ([0,T ];L2

x)
�A e

´ T
0

B dt(‖w(0)‖L2
x
+ ‖f‖L1

tL
2
x
).

This by itself does not prove well-posedness in L2, it only proves uniqueness.
However, a similar bound will hold for the backward adjoint system in the same
spaces. This is because the adjoint system coincides with the direct system mod-
ulo L2 bounded terms. Together, these two pieces of information yield L2 well-
posedness for the paradifferential system in L2. This is a standard linear duality
argument, where the solutions are constructed by a direct application of the Hahn–
Banach theorem. In a nutsell, one has the following equivalencies (see for instance
[11]):

Energy estimates for the direct forward problem

⇐⇒ Existence for the adjoint backward problem,

Energy estimates for the adjoint backward problem

⇐⇒ Existence for the direct forward problem.

Exactly the same argument applies in Hσ, with the small change that now the
the adjoint system should be considered in H−σ. There the bound (3.15) is replaced
by

(3.17) ‖(〈D〉σTAj(u) − (TAj(u))
∗〈D〉σ)∂jw‖L2 � ‖∇A(u)‖L∞‖w‖Hσ �A B‖w‖Hσ .

�

Combining the last two propositions, Proposition 3.5 and Proposition 3.7, we
obtain the Hσ bound in Theorem 3.
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3.4. The linearized equation. Next, we turn our attention to the linearized equa-
tion, which we also write in a paradifferential form,

(3.18) ∂tv = TAj(u)∂jv + TDAj(u)∂juv + F lin(u)v, v(0) = v0,

where

F lin(u)v := Π(Aj(u), ∂jv) + Π(DAj(u)∂ju, v) + T∂jvAj(u) + Tv(DAj(u)∂ju)

:= F lin
Π (u)v + F lin

T (u)v.

We note here that equation (3.18) is not exactly a true paralinearization of the
linearized equation, as F lin

T (u)v does contain low-high interactions. This difference
is observed in the estimates satisfied by the two terms.

On one hand, the term F lin
Π (u)v satisfies good bounds in all Sobolev spaces,

(3.19) ‖F lin
Π (u)v‖Hσ �A B‖v‖Hσ , σ ≥ 0,

so it can be seen as a true perturbative term. This is a simple Coifman–Meyer type
estimate which is left for the reader.

On the other hand, assuming we know that u ∈ Hs, the term F lin
T (u)v can at

best be estimated in Hs−1. There of course we could not use the control norms;
instead we would have to use the full Hs norm of u. However, we can use the
control norms for L2 bounds to directly estimate

(3.20) ‖F lin
T (u)v‖L2 �A B‖v‖L2 .

Combining the last two estimates with Proposition 3.7 we perturbatively obtain
the following:

Proposition 3.8. Assume that A ∈ L∞ and that B ∈ L1. Then the linearized
equation (2.2) is well-posed in L2, with bounds

(3.21)
d

dt
‖v‖2L2 �A B‖v‖2L2 .

We observe the obvious fact that one does not need paradifferential calculus in
order to prove this proposition; a simple integration by parts suffices. However, it
is instructive to dissect the terms in the equation and understand their respective
roles. Also, it is interesting to observe that in appropriate settings, the linearized
equation can be thought of as a perturbation of the associated paradifferential
equation.

Remark 3.9. Well-posedness and bounds for the linearized equation can be also
obtained in all Hσ spaces for |σ| ≤ s − 1. However, this can no longer be done
in terms of our control parameters; for instance if σ = s − 1, then we need to use
the full Hs norm of the solutions. While interesting, this observation will not be
needed for the rest of the paper.

3.5. Difference bounds and uniqueness. The easiest way to compare two so-
lutions u1 and u2 for (1.1) is to subtract their respective equations to obtain an
equation for v = u1 − u2. In the general case, using the form (2.5) of the equation,
we obtain

vt = TDN(u1)v + TDN(u1)−DN(u2)u2 + F (u1)− F (u2).

Here we identify this equation as the paradifferential equation associated to u1, but
with two source terms, which we would like to interpret as perturbative in a low
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regularity Sobolev space, say L2. That would yield a bound of the form

(3.22) ‖v(t)‖L2 � eC(A)
´ t
0
B(s)ds‖v(0)‖L2 ,

where A = A1 + A2, B = B1 + B2, with Ai = ‖ui‖L∞ , and Bi = ‖∇ui‖L∞ , for
i = 1, 2.

Let us see how this works out in our model problem. We will show the following:

Proposition 3.10. Let u1 and u2 be two Lipschitz solutions to (1.2) with associated
control parameters A1, B1 (resp., A2, B2). Then their difference v = u1−u2 satisfies
the bound (3.22).

Proof. We have already seen in Proposition 3.7 that the paradifferential evolution
is well-posed in L2, and in Proposition 3.5 that we have a good Lipschitz bound
for F . It remains to bound the remaining difference,

‖TDN(u1)−DN(u2)u2‖L2 �A B‖u1 − u2‖L2 .

For this we write

TDN(u1)−DN(u2)u2 = TAj(u1)−Aj(u2)∂ju2 + TDAj(u1)∂ju1−DAj(u2)∂ju2
u2

= TAj(u1)−Aj(u2)∂ju2 + T(DAj(u1)−DAj(u2))∂ju1
u2

− T∂jDAj(u2)(u1−u2)u2 + T∂j(DAj(u2)(u1−u2))u2.

For the first term we have a Coifman–Meyer type bound

‖TA(u1)−A(u2)∇u2‖L2 � ‖u1 − u2‖L2‖∇u2‖BMO � B‖u1 − u2‖L2 .

The second term is even easier,

‖T(DAj(u1)−DAj(u2))∂ju1
u2‖L2 � ‖(DAj(u1)−DAj(u2))∂ju1‖L2‖u2‖L∞

�A B‖u1 − u2‖L2 ,

and the third term is similar. Finally, in the fourth term we can use a Coifman–
Meyer type bound to rebalance again the derivatives and obtain

‖T∂j(DAj(u2)(u1−u2)u2‖L2 � ‖DAj(u2)(u1 − u2)‖L2‖∇u2‖BMO,

concluding as before. �

Remark 3.11. The observant reader may have noticed that for our model problem
the difference bound can be directly proved using a simple integration by parts,
without any need for paradifferential calculus, and may wonder why we are doing
it this way. There are three reasons for this: (i) to show that it works, (ii) to show
how both the bound for the full equation and the bound for the difference equation
can be seen as two sides of the same coin, and (iii) to provide a guide for the reader
for situations where a simpler approach does not work.

Remark 3.12. In the same vein as Remark 3.9, bounds for the difference equation
can be also obtained in all Hσ spaces for |σ| ≤ s− 1.

Remark 3.13. In our particular example it was easy to cast the difference equation
in a form which is very much like the linearized equation. However, this is not
always the case. For this reason, we point out that there is another way one can
think of difference bounds, namely by viewing the two initial data u01 and u02 as
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being connected via a one parameter family of data u0h where h ∈ [1, 2]. Then we
can interpret the difference u2 − u1 as

u2 − u1 =

ˆ 2

1

d

dh
uh dh,

where uh are the solutions with data u0h. Here the integrand represents a solution
to the linearized equation around uh. Hence difference bounds for u2 − u1 can be
obtained by integrating bounds for the linearized equation. The only downside to
such an argument is that such bounds will require the control parameters for the
entire family of solutions, rather than just the endpoints.

4. Existence of solutions

Here we consider the question of existence of solutions for the evolution (1.1)
with initial data in Hs, where s will be taken sufficiently large. The idea here is
to construct a good sequence of approximate solutions un, which will eventually
be shown to converge in a weaker topology. The tricky bit is to choose the correct
iteration scheme.

Naively, one might think of trying to base such a scheme on the linearized flow,
setting

∂t(u
n+1 − un)−DN(un)(un+1 − un) = −(∂tu

n −N(un)), (un+1 − un)(0) = 0,

where the expression on the right represents the error at step n. Here one can
eliminate the time derivative of un and rewrite this as

∂tu
n+1 −DN(un)un+1 = N(un)−DN(un)un, un+1(0) = u0.

This would be akin to a Nash–Moser scheme, which, even when it works, loses
derivatives. That may be reasonable in a small divisor situation, but not so much if
our goal is to obtain a Hadamard style well-posedness result. Nevertheless, Nash–
Moser schemes have been used on occasion to produce solutions for quasi-linear
evolutions, though often they prove to be unnecessary.

Remark 4.1. We observe that for the existence of solutions one does not need
to work from the start at low regularity. As we will see, rough solutions can be
constructed later on as limits of smooth solutions. This is, strictly speaking, not
necessary in our model problem, but for more nonlinear, geometric problems it does
seem to make a difference. This is because in such situations it is often easier to
compare exact solutions via the linearized equation, which is a geometric object,
instead of working with approximate solutions where the geometric character might
be lost.

We will present two strategies to prove existence, and at the end we point out
several other methods which have been successfully used in existence proofs.

4.1. Take 1: An iterative/fixed point construction. In order not to lose
derivatives in the approximation scheme, the idea here is to carefully choose how to
distribute un+1 and un in the iteration. A key observation is that, whereas solving
the linearized equation would cause a loss of derivatives, solving the paradifferential
equation does not in general. Then, a good starting point would be the formulation
(2.3) of the equations, which would suggest the following iteration scheme:

(4.1) ∂tu
n+1 − TDN(un)u

n+1 = F (un), un+1(0) = u0.
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We will apply this scheme on a time interval [0, T ], with T = T (M) sufficiently
small depending on the initial data size

M := ‖u0‖Hs .

For the above sequence un the aim would be to inductively prove two uniform
bounds in [0, T ],

(4.2) ‖un‖L∞
t Hs

x
≤ CM,

and

(4.3) ‖un+1 − un‖L∞
t L2

x
≤ C(M)T‖un − un−1‖L∞

t L2
x
,

where C is a fixed large constant. In the last bound, the time interval size T is
used in order to gain smallness for the constant, which is needed in order to obtain
convergence. Together, these two bounds imply convergence in L∞

t L2
x to some

function u, as well as L∞
t Hs

x regularity for the limit. This in general suffices in
order to show that the limit solves the equation.

To obtain uniform bounds for this evolution one would need two pieces of infor-
mation:

(1) Well-posedness of the paradifferential equation (2.3) in L2 and more gen-
erally in all Hs spaces. Heuristically, the two should be equivalent, as the
operator TDN(un) does not change the dyadic frequency localization. In
practice though it might not be as easy, as leakage to other frequencies
may occur, and in particular even the associated Hamilton flow might not
preserve the dyadic localization on a unit time scale.

(2) Lipschitz property of F in Sobolev spaces. More generally, a bound of the
form

(4.4) ‖F (u)− F (v)‖Hσ ≤ C(‖u‖Hs , ‖v‖Hs)‖u− v‖Hσ , σ ≥ 0,

which should be thought of as a Moser type inequality.

In addition to uniform bounds in a strong norm Hs, one would also like to have
convergence in a weaker topology, say L2 for the purpose of this presentation. The
difference equation reads

(4.5) (∂t − TDN(un))(u
n+1 − un) = F (un)−F (un−1) + (TDN(un−1) − TDN(un))u

n.

Here energy estimates in L2 would follow from (1) and (2) above, provided that the
last difference has a good bound

‖(TDN(un−1) − TDN(un))u
n‖L2 � C(‖un−1‖Hs , ‖un‖Hs)‖un − un−1‖L2 .

This is in general relatively straightforward if s is large enough.

Remark 4.2. The argument above yields solutions which are apriori only in L∞
t Hs

x

as opposed to C(Hs), as desired. Getting continuity in Hσ for σ < s is relatively
straightforward by interpolation, but proving continuity inHs requires considerable
extra work1 if one wants a direct argument. The easy way out is to rely on the
arguments in the next section, where we show that all Hs solutions can be seen as
uniform limits of smooth solutions.

1E.g., by showing continuity in time of solutions to the linear paradifferential equation.
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Remark 4.3. The above iterative argument can be rephrased as a fixed point argu-
ment as follows. For u ∈ C[0, T ;Hs] we define Lu(t) := v as the solution to

∂tv − TDN(u)v = F (u), v(0) = u0

Then the desired solution u has to be a fixed point for L. Solutions to this fixed point
problem may often be obtained using the contraction principle in the right topology.
Precisely, the strategy is to choose the domain of L to be the ball B(0, CM) in
L∞[0, T ;Hs], but endow this ball with a weaker topology, e.g., C[0, T ;L2]. Then
both the mapping properties of L and the small Lipschitz constant can be achieved
by choosing the time T sufficiently small. Here for the domain we have to choose
L∞ rather than continuity in order to guarantee completeness.

We now implement this scheme for our model problem. Denoting M = ‖u0‖Hs ,
we will prove inductively that for fixed large enough T and small enough T , we
have the bound

‖un‖C(0,T ;Hs) ≤ CM.

Taking this as an induction hypothesis, we have the following bounds for the control
parameters An and Bn associated to un:

An, Bn � CM.

Then we can estimate un+1 in Hs by combining Propositions 3.7 and 3.5 to obtain

d

dt
‖un+1‖2Hs � C(M)(1 + ‖un+1‖2Hs),

and by Gronwall’s inequality we arrive at

‖un‖C(0,T ;Hs) � MeC(M)T ,

with a universal implicit constant. This completes the induction if we first choose
C large enough (to dominate the implicit constant) and then T small enough (de-
pending on C and M).

On the other hand, in order to prove the convergence in L2, we use the equation
(4.5) for the difference un+1 − un and claim that the following L2 estimate holds:

(4.6)
d

dt
‖un+1 − un‖2L2 � C(M)‖un+1 − un‖2L2 + C(M)‖un − un−1‖2L2 .

Assuming this is true, by Gronwall’s inequality we obtain

‖un+1 − un‖C(0,T ;L2) � C(M)TeC(M)T ‖un − un−1‖C(0,T ;L2),

which gives us the small Lipschitz constant if T is sufficiently small, depending only
on M .

It remains to prove (4.6). For the paradifferential equation we can use Propo-
sition 3.7 and for the F difference we can use Proposition 3.5, so it remains to
examine the last term in (4.5), and show that

‖(TDN(un−1) − TDN(un))u
n‖L2 � C(M)‖un−1 − un‖L2 .

In the case of the model problem the difference on the left reads

TAj(un−1)−Aj(un)∂ju
n + TDAj(un−1)∂jun−1−DAj(un)∂junun.

For the first term we have the obvious bound

‖TAj(un−1)−Aj(un)∂ju
n‖L2 � ‖Aj(un−1)−Aj(un)‖L2‖∂jun‖L∞

� C(M)‖un−1 − un‖L2 .
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The second term is split into three parts,

T(DAj(un−1)−DAj(un))∂junun−T∂jDAj(un−1)(un−1−un)u
n+T∂j [DAj(un−1)(un−1−un)]u

n,

where the first two parts are easy to estimate. A similar bound follows for the third
term after we move the derivative onto the high frequency factor, using an estimate
of the form

‖T∂fg‖L2 � ‖f‖L2‖∂g‖BMO,

which is a corollary of the second bound in (3.6).

4.2. Take 2: A time discretization method. Here the idea is to discretize time
at a small scale ε, and to construct approximate discrete solutions uε(jε) with the
following properties:

(i) Uniform bounds :

(4.7) ‖uε(jε)‖Hs ≤ CM, j �M ε−1.

(ii) Approximate solution:

(4.8) ‖uε((j + 1)ε)− uε(jε)− εN(uε(jε))‖L2 � ε2.

Once this is done, if s is large enough,2 then it is a relatively straightforward matter
to show that a uniform limit u exists3 on a subsequence as ε → 0 by applying the
Arzelà–Ascoli theorem. This works in a time interval [0, T ] with T �M 1. By
passing to the limit in the above bounds in a weak topology, it follows that the
limit u solves the equation and has regularity

u ∈ L∞(0, T ;Hs) ∩ Lip(0, T ;L2).

The nice feature of this method is that one really only needs to carry out one
single step. Precisely, given u0 ∈ Hs with size M , and 0 < ε � 1, one needs to find
u1 (which corresponds to uε(ε) above) with the following properties:

(i)′ Uniform bounds :

(4.9) ‖u1‖Hs ≤ (1 + C(M)ε)‖u0‖Hs .

(ii)′ Approximate solution:

(4.10) ‖u1 − u0 − εN(u0)‖L2 � ε2.

Reiterating this, the bound (4.7) follows by applying a discrete form of Gronwall’s
inequality.

Remark 4.4. The ε2 bound in (ii)′ can be harmlessly replaced by ε1+δ with a small
constant δ > 0.

Remark 4.5. Sometimes the square Hs norm of u is not the correct quantity to
propagate in time, and one needs to replace it with appropriate equivalent energies
Es in property (ii)′.

Remark 4.6. The choice of the L2 in (ii)′ above was in order to keep the exposition
simple. However, sometimes a different topology may be required by the problem;
see, e.g., [29], [1].

2For instance, in our model case case s > n/2 + 1 suffices.
3Here one may extend uε to all times by linear interpolation.
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The remaining question is how to construct the single iterate satisfying properties
(i)′ and (ii)′ above. The obvious choice would be Euler’s method, which is to set

u1 = u0 + εN(u0),

but this does not work because it loses derivatives.
Inspired by the nonlinear semigroup theory [4], one may choose instead to solve

u1 − εN(u1) = u0.

This idea has potential at least when this is an elliptic equation. Alternatively, one
may opt for a paradifferential version

u1 − εTDN(u0)u1 = u0 + εF (u0),

which has the advantage that one only needs to solve a linear elliptic equation.
However, ellipticity is not guaranteed.

Instead, here we will adopt a two-step approach, which has the advantage that no
partial differential equation needs to be solved. Precisely, our steps are as follows:

Step 1 (Regularization). Here we take the initial data u0, and we regularize it on an
ε dependent scale. Precisely, if k is the order of the nonlinearity N , then it is natural
to choose the spatial truncation frequency scale to be ε−

1
2k , which corresponds to

an order 2k parabolic regularization; this regularization scale is needed in order to
be able to bound the error in the Euler step. Then our regularization ũ would have
the following properties:

(a) Regularization:

(4.11) ‖ũ‖Hs+k � ε−
1
2 ‖u0‖Hs .

(b) Energy bound :

(4.12) Es(ũ) ≤ (1 + C(M)ε)Es(u0).

(c) Approximate solution:

(4.13) ‖ũ− u0‖L2 � ε2.

Step 2 (Euler iteration). Here we simply set

(4.14) u1 = ũ+ εN(ũ),

so that the approximate solution bound (4.10) becomes relatively straightforward,
and the energy bound (4.9) becomes akin to proving the energy estimate; see the
example below.

We now implement the above strategy on our chosen model problem. Here our
chosen energy is simply the Sobolev norm,

EN (u) = ‖u‖2HN .

Our equation has order k = 1, so the proper regularization scale is δx = ε
1
2 . Hence,

we use a Littlewood–Paley projector to simply define

ũ = P
<ε−

1
2
u,

and the three properties (a), (b), and (c) above are trivially satisfied.
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Next we turn our attention to the Euler iteration (4.14) for which we need to
establish the properties (i)′ and (ii)′. We begin with (i)′, where it suffices to compare
the energies of u1 and ũ. For |α| ≤ N we have

∂αu1 = ∂αũ+ ε∂α(Aj(ũ)∂jũ).

If |α| < N , then in the second term on the right we have at most N derivatives, so
this term has size O(ε) in the L2 norm

‖∂α(Aj(ũ)∂jũ)‖L2 �A ‖ũ‖HN ,

and we can neglect it.
It remains to consider |α| = N . Then we can separate the terms with no more

than N derivatives and estimate them as above, using appropriate interpolation
inequalities,

∂α(Aj(ũ)∂j ũ) = Aj(ũ)∂α∂j ũ+OL2(B‖ũ‖HN ).

Hence we have

∂αu1 = ∂αũ+ εAj(ũ)∂α∂j ũ+OL2(ε),

and, neglecting O(ε) terms, we compute L2 norms,

‖∂αu1‖2L2 = ‖∂αũ‖2L2 + 2ε

ˆ
∂αũ · Aj(ũ)∂α∂j ũ dx+ ε2‖Aj(ũ)∂α∂j ũ‖2L2 .

The last L2 norm has size O(ε) in view of property (a) above. On the other hand,
in the integral we use the symmetry of A to integrate by parts,

2

ˆ
∂αũ · Aj(ũ)∂α∂j ũ dx = −

ˆ
∂αũ · ∂jAj(ũ)∂αũ dx,

which can again be estimated by �A B‖ũ‖2HN . Thus we obtain

‖u1‖2HN �A (1 + εB)‖ũ‖2HN ,

as desired, as B can be estimated by the Sobolev norm of u0 by Sobolev embeddings.
It remains to consider (ii)′, where, by (c) above, it suffices to show that

‖Aj(u)∂ju−Aj(ũ)∂jũ‖L2 �M ε.

This is a soft argument, where we simply write

‖Aj(u)∂ju−Aj(ũ)∂jũ‖L2 �M ‖A(u)−A(ũ)‖L2 + ‖∂ju− ∂j ũ‖L2 �M ‖u− ũ‖H1 ,

where the H1 norm on the right is bounded by interpolating (c) above with the
uniform HN bound provided by (b). This requires N ≥ 2.

4.3. Other strategies. Most of the other strategies to prove existence of solutions
are based on constructing approximate flows, and solutions are obtained as limits
of solutions to the approximate flows. There are two such methods which are more
widely used.

(a) Parabolic regularization. Here one uses a parabolic regularization of the
original flow (1.1), defining the approximate solutions uε by

uε
t = N(uε)− ε(−Δ)kuε, u(0) = u0,

where the correct choice for the parabolic term seems to be to double the order of
the original equation. These problems can often be solved for a short ε-dependent
time, as semilinear problems, with a direct fixed-point argument. However, in doing
this, the main challenge is to prove uniform in ε bounds for these approximate flows.
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This sometimes requires more careful choices of the regularization term, to make it
fit better with the geometry of the problem.

(b) Galerkin approximation. Here the idea is to work with a low frequency
projector in the equation, e.g., of the type

ut = P<hN(P<hu)

with h → ∞; see, e.g., the example in [30]. The local solvability for this evolution
becomes trivial as this evolution is an ordinary differential equation in a Hilbert
space, but the challenge is again to prove uniform in ε bounds for these approximate
flows. The double use of the projector above is a choice that usually facilitates
achieving this objective. Depending on the problem, this may require careful choices
for the frequency projectors, adapted to the problem.

5. Rough solutions as limits of smooth solutions

Here we explore the idea of constructing rough solutions as limits of smooth
solutions. There are at least two good reasons to do this, which we discuss in order:

(1) In quasi-linear problems one does not expect any sort of uniformly contin-
uous dependence of solutions on the initial data, so the continuity of the
flow map becomes a purely qualitative assertion. However, one can still
ask for a quantitative way of comparing solutions, and such a quantitative
venue is found by using the regular approximations as a convenient proxy.
This is discussed in the last section.

(2) It is also often the case that more regular solutions are sometimes easier to
produce, and in such situations, obtaining the rough solutions as limits of
smooth solutions might be the only option. This is particularly the case in
problems where the state space is not a linear space, such as Schrödinger
maps [20], Yang–Mills, or other problems with a nontrivial gauge structure.
See also [15] for an implementation of this idea in a free boundary problem.
This is because in such problems it is always easier to obtain estimates for
the linearized equations, or at least to compare exact solutions, rather than
to cook up a constructive scheme which is consistent with the geometry.

To make this analysis quantitative, it is very useful to track the flow of energy
between different frequencies. Whereas energy cascades (energy migration to higher
frequencies) have long been associated with blow-up phenomena, well-posedness
should correspond to a lack thereof. To quantify this, we will use Tao’s notion of
frequency envelopes.

5.1. Frequency envelopes. Frequency envelopes, introduced by Tao (see for ex-
ample [27]), are a very useful device in order to track the evolution of the energy of
solutions between dyadic energy shells. As there is always nearby leakage between
the dyadic shells in nonlinear flows, one needs to do this in a more stable way,
rather than look directly at the exact amount of energy in every shell.

This is realized via the following definition:

Definition 5.1. We say that {ck}k≥0 ∈ �2 is a frequency envelope for a function
u in Hs if we have the following two properties:

(a) Energy bound :

(5.1) ‖Pku‖Hs ≤ ck.
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Figure 1. Construction of sharp frequency envelopes

(b) Slowly varying :

(5.2)
ck
cj

� 2δ|j−k|, j, k ∈ N.

Here Pk represent the standard Littlewood–Paley projectors, and δ is a positive
constant, which is taken small enough in order to account for the energy leakage
between nearby frequencies.

One can also try to limit from above the size of a frequency envelope, for instance
by requiring that

‖u‖2Hs ≈
∑

c2k.

We call such envelopes sharp. Such frequency envelopes always exist; for instance,
one can take

ck = sup
j

2−δ|j−k|cj .

For a better understanding see Figure 1, where the actual dyadic norms, indicated
by bullets on a logarithmic scale, are lifted (based on the above formula) to a slowly
varying frequency envelope, indicated by the circles.

We will use frequency envelopes in order to track the evolution of energy in time
as follows: we start with a sharp frequency envelope for the initial data, and then
seek to show that we can propagate this frequency envelope to the solutions to our
quasi-linear flow, at least for a short time.

Remark 5.2. One alternative here is to unbalance the choice of δ in (5.2), asking for
a small δ if k < j, but replacing δ with a large constant for k > j. This heuristically
corresponds to a better control of leakage to higher frequencies, and it is useful in
order to deal with higher regularity properties also within the frequency envelope
setup.

5.2. Regularized data. Consider an initial data u0 ∈ Hs with size M , and let
{ck}k≥0 be a sharp frequency envelope for u0 in Hs. For u0 we consider a family

of regularizations uh
0 ∈ H∞ :=

⋂∞
s=0 H

s at frequencies � 2h where h is a dyadic
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frequency parameter. This parameter can be taken either discrete or continuous,
depending on whether we have access to difference bounds or only to the linearized
equation. Suppose we work with differences. Then the family uh

0 can be taken to
have similar properties to Littlewood–Paley truncations as follows.

(i) Uniform bounds :

(5.3) ‖Pku
h
0‖Hs � ck.

(ii) High frequency bounds :

(5.4) ‖uh
0‖Hs+j � 2jhch, j > 0.

(iii) Difference bounds :

(5.5) ‖uh+1
0 − uh

0‖L2 � 2−shch.

(iv) Limit as h → ∞:

(5.6) u0 = lim
h→∞

uh
0 in Hs.

Correspondingly, we obtain a family of smooth solutions uh.
Here, in the simplest setting where the phase space is linear, one may simply

choose uh
0 = P<hu0, which would have all the above properties. However, in geo-

metric settings where the phase space is nonlinear, a more complex regularization
method may be needed—for instance, using a corresponding geometric heat flow,
see [28], or a variable scale regularization, as in [15].

5.3. Uniform bounds. Corresponding to the above family of regularized data, we
obtain a family of smooth solutions uh. For this we can use the energy estimates
as in Theorem 3 to propagate Sobolev regularity for solutions as well as difference
bounds as in Proposition 3.10. This yields a time interval [0, T ] where all these
solutions exist, and whose size T depends only on M = ‖u0‖Hs , where we have the
following properties:

(i) High frequency bounds :

(5.7) ‖uh‖C(0,T ;Hs+j) � 2jhch, j > 0.

(ii) Difference bounds :

(5.8) ‖uh+1 − uh‖C(0,T ;L2) � 2−shch.

From (5.7) one may obtain a similar bound for the difference uh+1 − uh. Inter-
polating this with (5.8), we also have

(5.9) ‖uh+1 − uh‖C(0,T ;Hm) � 2−(s−m)hch, m ≥ 0.

One may use these bounds to establish uniform frequency envelope bounds for
uh,

(5.10) ‖Pku
h‖C(0,T ;Hs) � ck2

−N(k−h)+ ,

on the same time interval which depends only on the initial data Hs size. This is
a direct consequence of (5.7) for k ≥ h, while if k < h, we can use the telescopic
expansion

uh = uk +

h−1∑
l=k

(
ul+1 − ul

)
,

and use (5.7) for the first term and (5.8) for the differences.
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5.4. The limiting solution. Consider now the convergence of uh as h → ∞. From
the difference bounds (5.8) we obtain convergence in L2 to a limit u ∈ C(0, T ;L2),
with

‖u− uh‖C(0,T ;L2) � 2−sh.

On the other hand, expanding the difference as a telescopic sum, we get

u− uh =

∞∑
m=h

um+1 − um,

where, in view of the above bounds (5.7) and (5.8), each summand is essentially
concentrated at frequency 2m, with Hs size cm and exponentially decreasing tails.
This leads to

(5.11) ‖u− uh‖C(0,T ;Hs) � c≥h :=

⎛
⎝∑

m≥h

c2m

⎞
⎠

1
2

,

so we also have convergence in C(0, T ;Hs).
This type of argument plays multiple roles:

(1) It produces rough solutions as smooth solutions, justifying the earlier as-
sertion that it often suffices to carry out the initial construction of solutions
only in a smooth setting.

(2) It establishes the continuity of solutions as Hs valued flows, which is some-
times missing from the constructive proof of existence.

(3) It provides the quantitative bound (5.11) for the difference between the
rough and the smooth solutions, which plays a key role in the continuous
dependence proof in the next section.

6. Continuous dependence

Here we use frequency envelopes in order to prove continuous dependence of the
solution u ∈ C(0, T ;Hs) as a function of the initial data u0 ∈ Hs, and also to
discuss some historical alternatives.

6.1. The continuous dependence proof. Consider a sequence of initial data

u0j → u0 in Hs, s >
d

2
+ 1,

and the corresponding solutions uj , u which exist with a uniform lifespan [0, T ],
where T depends only on the initial data size ‖u0‖Hs . We will prove that uj → u
in C(0, T ;Hs). Once we have this property, it automatically extends to any larger
time interval [0, T1], where the solution u is defined and satisfies u ∈ C(0, T1;H

s).
This should be understood in the sense that for all large enough j, the solutions uj

are defined in [0, T1], with similar regularity, and the convergence holds as j → ∞.
The difference bounds in Proposition 3.10 guarantee that uj → u in C(0, T ;L2).

Since uj are uniformly bounded in C(0, T ;Hs), this also implies convergence in
C(0, T ;Hσ) for every 0 ≤ σ < s, but not for σ = s.

It remains to consider the convergence in the strong topology, i.e., in Hs. Rather
than trying to compare the solutions uj and u directly, we will use as a proxy the
approximate solutions uh

j (resp., uh). For these, we will take advantage of the fact
that their initial data converge in all Sobolev norms,

uh
0j → uh

0 in Hσ, 0 ≤ σ < ∞.
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Hence, according to the preceding discussion, we have convergence of the regular
solutions in all Sobolev norms,

uh
j → uh in C(0, T ;Hσ), 0 ≤ σ < ∞.

To compare the solutions u and uj themselves, we use the triangle inequality,
(6.1)

‖uj − u‖C(0,T ;Hs) � ‖uh
j − uh‖C(0,T ;Hs) + ‖uh − u‖C(0,T ;Hs) + ‖uh

j − uj‖C(0,T ;Hs).

The first term goes to zero as j → ∞ for fixed h, while the second goes to zero as
h → ∞, but does not depend on j. It is the third term which is the problem, and
for which we need to gain some smallness uniformly in j.

However, in the previous section we have learned to estimate such differences
using frequency envelopes. Precisely, let

{
ck
}
k≥0

(resp.,
{
cjk
}
k≥0

) be frequency

envelopes for the initial data u0 (resp., uj
0) in Hs. Then, as we saw in the previous

section, we can estimate the last two terms above in terms of frequency envelopes
and obtain

(6.2) ‖uj − u‖C(0,T ;Hs) � ‖uh
j − uh‖C(0,T ;Hs) + c≥h + cj≥h.

The important observation is that the convergence u0j → u0 in Hs allows us to
choose the frequency envelopes c (resp., cj) so that

cj → c in �2.

This implies that

lim
j→∞

cj≥h = c≥h.

Hence, passing to the limit j → ∞ in the relation (6.1), we obtain

(6.3) lim sup
j→∞

‖uj − u‖C(0,T ;Hs) � c≥h,

and finally letting h → ∞, we obtain

lim
j→∞

‖uj − u‖C(0,T ;Hs) = 0,

as desired.

6.2. Comparison with Kato, and Bona and Smith. The more classical ap-
proach for continuous dependence goes back to Kato [16] as well as a variation due
to Bona and Smith [5]. We will briefly describe this approach using our notations
and setup. We caution the reader that the original arguments in these papers are
not self-contained and are instead mixed with the other parts of well-posedness
proofs, so it is not exactly easy to correlate the papers with the description below.
In effect our discussion below is more closely based on the interpretations of Kato’s
work provided by Chemin [3] and, even closer, by Tao [26].

This also relies on the use of some sort of approximate solutions uh. However,
in this approach one aims to directly estimate the difference uh − u in Hs in terms
of the corresponding initial data. One might at first hope to directly track the
difference ‖uh − u‖C(0,T ;Hs), but this cannot work without knowledge that the low

frequencies of the difference (i.e., below 2h) are better controlled. So the better
object to track turns out to be a norm of the form

(6.4) ‖uh − u‖Hs + 2kh‖uh − u‖Hs−k ,
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where we recall that k is the order of our nolinearity. Here the second part can be
estimated directly for any two Hs solutions (see Remark 3.12), so one can think of
this as decoupled as a two-step process. To better understand why this works, it is
useful to write the equation for the difference w = uh−u in a paradifferential form,

(6.5) ∂tw + TDN(u)w = [F (u)− F (uh)] + TDN(u)−DN(uh)u
h,

which should essentially be thought of as a perturbation of the linear paradifferential
flow, which can be estimated in all Sobolev spaces. The F difference is tame because
F admits Lipschitz bounds in all Sobolev spaces, so the issue is the last term.

There there is seemingly a loss of k derivatives, but these derivatives are applied
to uh, which has higher regularity bounds, so they yield losses of at most a 2kh

factor. But this factor can be absorbed by the lower frequency paradifferential
coefficients given by DN(u) −DN(uh), in view of the 2kh factor in (6.4). Here it
is important that we write the equation using TDN(u) rather TDN(uh) on the left,

which allows us to use uh as the argument in the last term on the right.
In Kato’s argument the same principle is used to get Hs bounds not only for

the difference uh − u but also for uh − v for an arbitrary solution v. On the
other hand, in the Bona–Smith version one estimates only uh − u, but the proof is
more roundabout in that uh is not only assumed to have regularized data but also
to solve a regularized equation, thus combining the existence and the continuous
dependence arguments.

In our opinion, working with frequency envelopes has definite advantages:

• It provides more accurate information on the solutions.
• It does not require any direct difference bounds in the strong Hs topology.
• By working with a continuous, rather than a discrete family of regulariza-
tions, one can fully replace difference estimates by bounds for the linearized
equation, which is to be preferred in many cases, in particular in geometric
contexts where the state space is an infinite-dimensional manifold.
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