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ERGODICITY OF CONFORMAL MEASURES FOR UNIMODAL

POLYNOMIALS

EDUARDO A. PRADO

Abstract. Let f be a polynomial and µ a conformal measure for f , i.e., a
Borel probability measure µ with Jacobian equal to |Df(z)|δ. We show that
if f is a real unimodal polynomial (a polynomial with just one critical point),
then µ is ergodic. We also show that µ is ergodic if f is a complex unimodal
polynomial with one parabolic periodic point or a quadratic polynomial in the
SL class with a priori bounds (as defined in Lyubich (1997)).

1. Introduction

Let f : C → C be a polynomial. Sullivan showed in [Sul80] that it is possible to
construct a conformal measure for f with support on J(f), the Julia set of f , for
at least one positive exponent δ. By a conformal measure (or δ-conformal measure,
to be more precise) we understand a Borel probability measure µ satisfying the
following condition:

µ(f(A)) =

∫
A

|Df(z)|δdµ(z),

whenever f restricted to the set A is one to one.
Conformal measures are natural geometric measures. For example, if J(f) is

a one-dimensional manifold, then the one-dimensional Lebesgue measure is a con-
formal measure for f . If J(f) has positive (two-dimensional) Lebesgue measure,
then the Lebesgue measure of J(f) is a conformal measure for f (with δ = 2). If
f : J(f) → J(f) is a hyperbolic system, then J(f) has zero Lebesgue measure.
In that case, the Hausdorff measure of J(f) is finite and non-zero and equivalent
to a δ-conformal measure, where δ = HD(J(f)) = Hausdorff Dimension of J(f)
(see [Bow75], [Sul80] and [Wal78]). In more general cases, conformal measures still
reflect geometric properties of J(f) (see for example [DU91a], [DU91b], [Pra95],
[Prz] and [U]).

We say that µ is ergodic if µ(X) = 0 or µ(X) = 1 whenever we haveX = f−1(X).
Notice that usually when one talks about ergodicity of a measure it is assumed that
the measure is invariant. In our case, due to the definition of conformal measure
we are not dealing with an invariant measure but rather a quasi-invariant measure.
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One way to study chaotic dynamical systems is to find a natural ergodic measure
with respect to this system. Our goal in this work is to study ergodic properties of
polynomial dynamical systems using conformal measures.

We will show that a conformal measure is ergodic if f is a polynomial with
certain properties. Let us introduce some definitions in order to state our main
result.

Let f be a quadratic polynomial with only repelling periodic points. Following
[Lyu97], we will say that f satisfies the secondary limb condition if there is a finite
family of truncated secondary limbs Li of the Mandelbrot set such that the hybrid
classes of all renormalizations Rm(f) belong to

⋃
Li. Let SL stand for the class of

quadratic polynomials satisfying the secondary limb condition.
Some examples of polynomials of class SL are: Yoccoz and Lyubich polynomials,

and also infinitely many times renormalizable real polynomials of degree two. A
quadratic polynomial is a Yoccoz polynomial if it is at most finitely many times
renormalizable, with only repelling periodic points. A Lyubich polynomial is an
infinitely many times renormalizable quadratic polynomial in SL with a priori
bounds as described in [Lyu97] (see the definition of a priori bounds below).

If f : U → V is a polynomial-like map, then we say that mod(f) is equal to the
modulus of the topological annulus A = V \ U . There exists a conformal mapping
between the annulus A = V \ U and a standard annulus {z : 1 < |z| < r} for some
r > 1. The modulus of A is defined as 1

π log r.
We say that an infinitely renormalizable polynomial f has a priori bounds if

there exists an ε > 0 such that mod(Rm(f)) > ε, where Rm(f) is the mth renor-
malization of f , for infinitely many m. According to [GS], [LvS95] and [LyuY95],
all infinitely renormalizable real unimodal polynomials have a priori bounds. By
unimodal polynomial, we mean an even degree polynomial with just one critical
point.

We will show the following:

Theorem 1. Let f be a polynomial with just one critical point and J(f) connected.
Let µ be a conformal measure for f . Suppose that f is either:

1. of class SL, finitely many times renormalizable, or infinitely many times
renormalizable with a priori bounds, or

2. a polynomial with a parabolic periodic point, or
3. any unimodal polynomial with real coefficients.

Then µ is ergodic.

Ergodicity of conformal measures is known if f is expanding on J(f) (see [Bow75],
[Sul80] and [Wal78]). Suppose that f has just one critical point and an attracting
cycle. Then f is expanding on J(f). If J(f) is disconnected (and f has just one
critical point), then f is again expanding when restricted to J(f). From this fact
and Theorem 1 we conclude the following:

Corollary 2. If f is any unimodal polynomial with real coefficients and µ a con-
formal measure for f , then µ is ergodic.

Suppose that the Lebesgue measure of J(f) is positive (as we mentioned before,
in this case the Lebesgue measure is a conformal measure for f). In [McM95],
McMullen asked how many ergodic components would f : J(f) → J(f) have with
respect to the Lebesgue measure. The previous Corollary gives an answer for this
question in the real unimodal case.
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If f : J(f) → J(f) is hyperbolic, then there is only one number δ, namely
the Hausdorff dimension of J(f), for which there exists a δ-conformal measure for
f . Moreover there is only one conformal measure with such exponent. For more
general examples, it is not true that there is only one δ for which there exists a δ-
conformal measure for f (see [DU91b]). In general we can ask whether there exists
an exponent δ such that there is more than one δ-conformal measure for f . The
following is an immediate consequence of the ergodicity of conformal measures:

Corollary 3. Let f be as in Theorem 1. Then for any δ > 0, there exists at most
one δ-conformal measure for f .

The situation studied in this paper is the complex counterpart for the ergodicity
result in [BL91] where the Lebesgue measure is shown to be ergodic under S-
unimodal maps.

2. Renormalization and combinatorics

2.1. Non-renormalizable polynomials. We will briefly describe how to con-
struct the Yoccoz puzzle pieces for a quadratic polynomial. See [Hub] and [Mil91]
for a complete exposition of such construction. See [Mil90] for background material
concerning one-dimensional complex dynamics.

In this section we will consider quadratic polynomials f with repelling periodic
points. We shall keep in mind though that the construction of Yoccoz puzzles that
will be described in this section can be repeated for polynomials with degree greater
than two.

We say that g : U → U ′ is a quadratic-like map if it is a double branched
covering; U and U ′ are open topological disks with U compactly contained in U ′.
The filled Julia set of g is the set {z ∈ U : gn(z) is defined for all natural numbers
n}. There are two fixed points of g inside its filled Julia set. If the filled Julia set
is connected and both fixed points are repelling, one of them, the dividing fixed
point, disconnects the filled Julia set of g in more than one connected component.
The other does not. Usually the dividing fixed point is denoted by α and the other
is denoted by β. Quadratic-like maps were first introduced and studied in [DH85].

Remember that a polynomial or a polynomial-like map f with connected filled
Julia set is renormalizable if there exist open topological disks U ⊂ U ′ with 0 ∈ U
and R(f) : U → U ′ being a quadratic-like map with connected filled Julia set. We
define R(f) = fk|U , with k the smallest natural number larger than 1 satisfying the
previous conditions. We call k the period of renormalization. Here R(f) stands for
the renormalization of f . We also require as part of the definition of renormalization
that the sets f i(J(R(f))), i = 0, 1, . . . , k − 1 (called little Julia sets) are pairwise
disjoint, except perhaps when they touch at their β fixed points.

We can ask whether R(f) is renormalizable or not and then define renormal-
izations of f of higher orders. So, each renormalization of f defines a quadratic
polynomial-like map. We refer the reader to [McM94] for more details concerning
renormalization.

Let f be a degree two non-renormalizable polynomial with both fixed points
repelling and let G be the Green function of the filled Julia set of f . There are q
external rays landing at the dividing fixed point of f , where q ≥ 2. The q Yoccoz
puzzle pieces of depth zero are the components of the topological disk defined by
G(z) < G0, where G0 is any fixed positive constant, cut along the q external rays
landing at the dividing fixed points. We denote Y 0(x) the puzzle piece of depth
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zero containing x. We define the puzzle pieces of depth n as being the connected
components of the pre-images of any puzzle piece of depth zero under fn. Again,
if x is an element of a given puzzle piece of depth n, then we denote such a puzzle
piece by Y n(x).

Suppose now that f is at most finitely renormalizable with only repelling periodic
points. Let α be the dividing fixed point of the last renormalization of f . Let G
be the Green function of the filled Julia set of f . In that case we define the puzzle
pieces of depth zero as being the components of the topological disk G(z) < G0,
G0 a positive constant, cut along the rays landing at all points of the f -periodic
orbit of α. As before we define the puzzle pieces of depth n as being the connected
components of the pre-images under fn of the puzzle pieces of depth zero. The
puzzle piece at depth n containing x is denoted by Y n(x).

We will consider the Yoccoz puzzle pieces as open topological disks. Under this
consideration the Yoccoz partition will be well defined over the Julia set of the
polynomial f minus the set of pre-images of the dividing fixed point of the last
renormalization of f (which is f itself in the non-renormalizable case).

A quadratic polynomial is a Yoccoz polynomial if it is at most finitely renormal-
izable with only repelling periodic points. We will need the following result:

Theorem 2.1 (Yoccoz). If f is a Yoccoz polynomial, then
⋂
n≥0 Y

n(x) = {x} for
any x where the Yoccoz partition is defined.

The following is an analogous Theorem for higher degree real unimodal polyno-
mials:

Theorem 2.2 ([LvS95]). Let f(z) = zl+c, l even, c real and f finitely many times
renormalizable with only repelling periodic points. Then for any x where the Yoccoz
partition is defined we have:

⋂
n≥0 Y

n(x) = {x}.
2.2. The SL class and the principal nest. Here we will describe the secondary
limb class of quadratic polynomials. See [Lyu97] for a detailed exposition on this
matter. We will need some technical definitions.

Let us start with a quadratic polynomial f with only repelling periodic points.
Given a Yoccoz puzzle piece Y n

i of f and a point x such that f j(x) belongs to
Y n
i , we define the pull back of Y n

i along the orbit of x as being the only connected
component of f−j(Y n

i ) containing x. If moreover x belongs to Y n
i and j is the

minimal positive moment with the above property, then we say that j is the first
return time of x to Y n

i . A puzzle piece is said to be a critical puzzle piece if it
contains the critical point. Notice that if we pull back a critical puzzle piece Y n(0)
along the first return of the critical point to Y n(0) we get a new critical puzzle
piece.

Suppose that f is not Douady-Hubbard immediately renormalizable (see
[Lyu97]). Then it is possible to find a critical puzzle piece (that will be denoted by
V 0,0) satisfying the following: if the pull back of V 0,0 along the first return of the
critical point to V 0,0 is denoted by V 0,1, then the closure of V 0,1 is properly con-
tained in V 0,0. We keep repeating this procedure: define V 0,t+1, the puzzle piece
of level t + 1, as being the pull back of V 0,t, the puzzle piece of level t, along the
first return of the critical point to V 0,t. This procedure stops if the critical point
does not return to a certain critical puzzle piece. If we assume that the critical
point is combinatorially recurrent, then we can repeat this procedure forever. So
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let us assume this is the case. The collection V 0,t for t being a natural number is
the principal nest on the first renormalization level.

Now we have a sequence of first return maps f l(t) : V 0,t+1 → V 0,t. By definition
V 0,0 properly contains V 0,1. This implies that each V 0,t properly contains V 0,t+1.
It is also easy to see that each f l(t) : V 0,t+1 → V 0,t is a quadratic-like map.

We say that f l(t) : V 0,t+1 → V 0,t is a central return or that t is a central return
level if f l(t)(0) belongs to V 0,t+1. A cascade of central returns is a set of consecutive
central return levels. More precisely, a cascade of central returns is a collection of
central return levels t = t0, . . . , t0 +(N−1) followed by a non-central return at level
t0 + N . In this case we say that the above cascade of central returns has length
N . We could also have an infinite cascade of central returns. Notice that with the
above terminology a non-central return level is a cascade of central return of length
zero.

It is possible to show that the principal nest on the first renormalization level
ends with an infinite cascade of central returns if and only if f is renormalizable (see
[Lyu97]). In that case, denote the first level of this infinite cascade of central returns
by t(0). Then we define the first renormalization R(f) of f as being the quadratic-
like map f l(t(0)) : V 0,t(0)+1 → V 0,t(0). The filled Julia set of R(f) is connected. It
is also possible to show that

⋂
V 0,n = J(R(f)). Again we can find the dividing

fixed point of the Julia set of R(f), some external rays landing at it and define
new puzzle pieces over the Julia set of R(f). The rays landing at the new dividing
fixed point are not canonically defined (remember that R(f) is a polynomial-like
map). We are not taking the external rays of the original polynomial. Instead
we need to make a proper selection of those rays (see [Lyu97]). As before we can
construct the principal nest for R(f), provided that R(f) is not Douady-Hubbard
immediately renormalizable. The elements of this new principal nest are denoted
by V 1,0, V 1,1, . . . , V 1,t, . . . and the nest is called the principal nest on the second
renormalization level. If this new principal nest also ends in an infinite cascade
of central returns, we repeat the procedure just described and construct a third
principal nest. We repeat this process as many times as we can.

Now we define the principal nest of the polynomial f as being the set of critical
puzzle pieces

V 0,0 ⊃ V 0,1 ⊃ · · · ⊃ V 0,t(0) ⊃ V 0,t(0)+1 ⊃ V 1,0 ⊃ V 1,1 ⊃ · · · ⊃ V 1,t(1)

⊃ V 1,t(1)+1 ⊃ · · · ⊃ Vm,0 ⊃ V m,1 ⊃ · · · ⊃ V m,t(m) ⊃ V m,t(m)+1 ⊃ · · · .
(2.1)

In order to go ahead with the definition of the class of polynomials we are
interested in, we need the notion of a truncated secondary limb. A limb in the
Mandelbrot set M is the connected component of M \{c0} not containing 0, where
c0 is a bifurcation point on the main cardioid. If we remove from the limb a
neighborhood of its root c0, we get a truncated limb. A similar object corresponding
to the second bifurcation from the main cardioid is a truncated secondary limb.

We say that a quadratic polynomial with only repelling periodic points satisfies
the secondary limb condition if there is a finite family of truncated secondary limbs
Li of the Mandelbrot set such that the hybrid class of all renormalizations Rm(f)
belongs to

⋃
Li. Let SL stand for the class of quadratic polynomials satisfying the

secondary limb condition.
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2.3. Complex bounds. We say that f has a priori bounds or complex bounds if
there exists an ε > 0 such that mod(Rm(f)) > ε, for infinitely many renormaliza-
tions of f . A priori bounds is, as we shall see, one of the main properties that we
will be using in this paper. In [Lyu97] it was conjectured that the secondary limb
condition described above implies a priori bounds. Also, a large class of infinitely
many times renormalizable quadratic polynomials satisfying the secondary limb
condition with a priori bounds was constructed (see [Lyu97]). The next Theorem
follows from Theorem II in [Lyu97].

Theorem 2.3 (Lyubich). Let f be a Yoccoz polynomial. There exists a constant
c > 0 such that mod(V 0,t \ V 0,t+1) > c, for all t.

Complex bounds were proved first by Sullivan (see [MvS93]) for real infinitely
renormalizable quadratic maps with bounded combinatorics. Later in [GS], [LvS95]
and [LyuY95] the restriction on the combinatorics was removed. Also [LvS95]
provides complex bounds for infinitely renormalizable polynomials of the form
f(z) = zl + c, where l is even and c is real.

Theorem 2.4. Let f(z) = zl + c be an infinitely renormalizable real polynomial of
even degree l. If an is the period of the nth renormalization of f , then there exist
topological disks V n,0 and V n,1 such that:

1. 0 ∈ V n,1;
2. cl(V n,1) ⊂ V n,0;
3. mod(V n,0 \ V n,1) ≥ c > 0;
4. fan : V n,1 → V n,0 is a polynomial-like map of degree l with connected filled

Julia set;
5. diam(V n,0) → 0 as n→∞.

2.4. Unbranched maps. The unbranched condition is, as we shall see, a property
that should go along with complex bounds so that we can have control of certain
pull-backs. Before going into the definition of the unbranched condition let us define
generalized polynomial-like maps:

Definition 2.5 ([Lyu91]). Let U and Ui be open topological disks, i = 0, 1, . . . , n.
Suppose that cl(Ui) ⊂ U and Ui ∩ Uj = ∅ if i is different from j. A generalized
polynomial-like map is a map f :

⋃
Ui → U such that the restriction f |Ui is a

branched covering of degree di, di ≥ 1.

We will not use the above Definition in full generality. From now on, all general-
ized polynomial-like maps in this work will have just one critical point. We will fix
our notation as follows: f |U0 is a branched covering of degree d onto U (with zero
being the only critical point) and f |Ui is an isomorphism onto U , if i = 1, . . . , n.

For the next definition we will consider a polynomial f with just one critical point
and g :

⋃
Vi → V a generalized polynomial-like map. Assume that g is defined in

each Vi as the first return map to V under f . In particular we assume that V0 is
the pull back of V along the first return of the critical point of f to V .

Definition 2.6 ([LvS95] and [McM94]). We say that g is unbranched if whenever
f i(0) belongs to V , then f i(0) is an iterate of 0 under g.

Let g be as in the above definition. If we assume that the critical point is
recurrent, then the intersection of the critical set of f with V is contained in the
domain of g. Notice that if f is renormalizable and if g is a renormalization of f ,
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then the above definition coincides with the unbranched renormalization definition
from [McM94].

Lemma 2.7. Suppose that g :
⋃
Vi → V is unbranched. Let z be a point in C such

that its f -orbit hits V0. Let k be the smallest non-negative number such that fk(z)
belongs to V0. Then we can pull V back univalently along the orbit z, f(z), . . . , fk(z).

Proof. Suppose this is not the case. Then for some positive r smaller than k,
f−r(V ) hits the critical value f(0). By f−r(V ) we understand the pull back of
V along the orbit fk−r(z), . . . , fk(z). In that case, f i+1(0) ∈ f i(f−r(V )), for
i = 0, . . . , r. Suppose that there exists 0 ≤ imax < r maximal such that f imax+1(0)
belongs to V . In that case, by the unbranched property there exists a component
Vj of the domain of g containing f imax+1(0). As Vj is the pull back of V under
the first return of f imax+1(0) to V , we conclude that f imax(f−r(V )) ⊂ Vj . Now,
as the pull back of Vj under f along 0, . . . , f imax+1(0) is contained in V0, it follows
that fk−r−1(z) ∈ f−r−1(V ) ⊂ V0, contradicting the minimality of k. Suppose
now that there is no imax, i.e., if the first return time of 0 to V is r + 1. Then
f r+1 : f−r−1(V ) → V coincides with the first return map g : V0 → V . This also
contradicts the minimality of k.

Lemma 2.8. Let f be an SL polynomial with a priori bounds. Then for infinitely
many n we can find Un and Vn such that the nth-renormalization of f is given
by Rn(f) : Un → Vn and both the unbranched condition and the a priori bound
condition are verified for Un and Vn.

Proof. See Lemma 9.3 in [Lyu97] for the proof.

Let fan : V n,1 → V n,0 be the polynomial-like maps introduced on Theorem 2.4
(the nth renormalization of f(z) = zl + c). We have the following:

Lemma 2.9. Let f(z) = zl+ c be infinitely many times renormalizable with l even
and c real. Then the polynomial-like maps fan : V n,1 → V n,0 are unbranched, for
infinitely many n.

Proof. This is due to the construction of the set V n,1 and V n,0 in [LvS95].

For the next Lemma, let f be either a Yoccoz polynomial or any finitely many
times renormalizable real polynomial with only repelling periodic points and just
one critical point. Suppose that this critical point is recurrent. Let Y n(0) be a
critical Yoccoz piece and Y n+k(0) be the pull back of Y n(0) corresponding to the
first return of the critical point to Y n(0).

Lemma 2.10. Let z be a point in C such that its f -orbit hits Y n+k(0). Let m be the
smallest non-negative time such that fm(z) = Y n+k(0). Then we can univalently
pull Y n(0) back along the orbit z, . . . , fm(z).

Proof. If not, f−t(Y n(0)) would contain the critical point, for some t less than m
(here f−t means the branch of f−t along the orbit of x). That would mean that
t is greater or equal to the first return time of 0 to Y n(0). That would imply
f−t(Y n(0)) ⊂ Y n+k(0) by the Markov property of puzzle pieces. In other words,
z would hit Y n+k(0) on a time strictly less than m, contradicting the definition of
m.
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Lemma 2.11. Let f be either a Yoccoz polynomial or any finitely many times
renormalizable real polynomial with only repelling periodic points. Then for infin-
itely many critical puzzles Y j(0), we can find a topological disk Dj such that:

1. Y j(0) ⊂ Dj;
2. mod(Dj \ Y j(0)) > c(f) > 0;
3. If z is a point in C such that its f -orbit hits Y j(0) and m is the smallest

non-negative time such that fm(z) ∈ Y j(0), then we can univalently pull Dj

back along the orbit z, . . . , fm(z).

Proof. For a Yoccoz polynomial this follows from Lemma 2.10 and Theorem 2.3. If
f is real but not of degree two, then the Lemma follows from [LvS95].

3. Density estimates

From now on f will be a polynomial of even degree with just one critical point
and µ will denote a δ-conformal measure concentrated on the Julia set of f .

The analytic tool that we will use is the well known Koebe distortion Theorem:

Theorem 3.1 (Koebe). Let A ⊂ B be two topological disks contained in the com-
plex plane. Suppose that f is univalent when restricted to B. Also suppose that
B \A is a topological annulus with positive modulus m. Then

1

K
≤ |Df(z1)|
|Df(z2)| ≤ K

for all z1 and z2 in A, where the constant K depends only on the number m.

The constant K that appears in the Lemma is called the Koebe constant. Under
the conditions of the above Lemma we say that f has bounded distortion inside the
set A.

Let f be either a Yoccoz polynomial or a finitely many times renormalizable real
polynomial with only repelling periodic points. Notice that if a periodic point of
f in J(f) is expanding, then the set of all its pre-images has zero µ-measure. As
we used just expanding periodic points to construct puzzle pieces, given any closed
subset X of J(f), we can create a cover Ki of X (up to a set of zero measure) built
up by puzzles pieces and with limµ(Ki) = µ(X). This follows from Theorem 2.1
and Theorem 2.2.

Definition 3.2. The density of a set X inside a set Y is defined as the following

ratio: dens(X |Y ) = µ(X∩Y )
µ(Y ) .

Lemma 3.3. Let f be either a Yoccoz polynomial or a finitely many times renor-
malizable real polynomial of even degree with only repelling periodic points. Let
X ⊂ J(f) be any measurable subset. If µ(X) > 0, there is x in X such that
lim sup(dens(X |Y n(x))) = 1.

Proof. Assume µ(X) > 0. If X is not closed, take W ⊂ X compact with µ(X \W )
small. Notice that dens(X |Y n(x)) ≥ dens(W |Y n(x)) for any Y n(x). For all ε > 0,

there exists i(ε), such that 1− ε ≤ µ(W∩Ki)
µ(Ki)

≤ 1 if i > i(ε) (remember that Ki are

the covers of X made out of puzzle pieces). So we have for i big dens(W |Ki) =
µ(W∩Ki)
µ(Ki)

≥ 1− ε. As Ki is the union of puzzle pieces we can certainly find a puzzle

piece in Ki, say Y n(i)(xi) such that dens(W |Y n(i)(xi)) ≥ 1 − ε. Now replacing
X by X ∩ Y n(i)(xi) and repeating this argument we will end up with the desired
result.
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Definition 3.4. The point x ∈ X obtained in the previous Lemma is called a weak
density point of X .

Proposition 3.5. Let A ⊂ B be two µ-measurable subsets of the complex plane.
Suppose that f restricted to an open neighborhood of B is one to one. Also suppose
that there exists a positive constant K such that

1

K
≤ |Df(z1)|
|Df(z2)| ≤ K

for all z1 and z2 in B, then

1

Kδ
dens(A|B) ≤ dens(f(A)|f(B)) ≤ Kδ dens(A|B).

Proof. Follows from the definitions of conformal measure and dens(A|B).

If U is a subset of the complex plane, we will denote by U c the complement of
U inside the complex plane.

Lemma 3.6. Let f be either a Yoccoz polynomial or a finitely many times renor-
malizable real polynomial of even degree with only repelling periodic points. Let µ be
a conformal measure for f . Let U be any neighborhood of the critical point. Then
the set

{x ∈ C : fn(x) ∈ U c, for all positive n}
has zero µ-measure.

Proof. It is enough to show this Lemma for U = Y i(0) because by Theorem 2.1
and Theorem 2.2 any neighborhood of the critical point contains some Y i(0), for
i sufficiently big. Suppose that the set A = {x ∈ C : fn(x) ∈ Y i(0)c, for all n
positive} has positive measure, for some i fixed. Then this set has a point of weak
density x, according to Lemma 3.3. So we can find some sequence n(j) →∞ such
that dens(A|Y n(j)(x)) → 1.

Notice that fn(j)−i(Y n(j)(x)) is a puzzle piece of depth i and none of the puz-
zle pieces Y n(j)(x), f(Y n(j)(x)), . . . , fn(j)−i(Y n(j)(x)) contains the critical point.
That is because of the Markov property of puzzle pieces and the fact that Y n(j)(x)
contains elements of the set A. So for all Y n(j)(x), fn(j)−i(Y n(j)(x)) is a puz-
zle piece of depth i distinct from Y i(0) and the restriction fn(j)−i : Y n(j)(x) →
Y i(fn(j)−i(x)) is an isomorphism. As there exist just finitely many puzzle pieces
of depth i, then there is a fixed puzzle piece Y i(y) (distinct from the one con-
taining the critical point) such that fn(j)−i(Y n(j)(x)) = Y i(y) for infinitely many
n(j). Passing to a subsequence and keeping the same notation we will assume that
fn(j)−i : Y n(j)(x) → Y i(y) is an isomorphism for all n(j).

We will construct a neighborhood of Y i(y) where the inverse branch f−(n(j)−i)

along the orbit x, f(x), . . . , fn(j)−i(x) is defined as an isomorphism.
Let i1 > i such that mod(Y i(0) \ Y i1(0)) is positive. This is possible by Theo-

rem 2.1 and Theorem 2.2.
The boundary of Y i(y) is composed of pairs of external rays landing at points

in the Julia set and equipotentials. The intersection of this boundary with the
Julia set is finite. Let z be a point in this finite intersection. Consider all puzzle
pieces of depth i1 containing z in its boundary. The closure of the union of those
puzzle pieces is a neighborhood of z in the plane. Let us call such neighborhood
Vz. Notice that each equipotential and the pieces of external rays landing at z
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outside Vz are at some definite distance from the Julia set. Take a small tubular
neighborhood (not intersecting the Julia set) of each one of the equipotentials and
pieces of external rays contained in the boundary of Y i(y), but outside Vz . Now
we define the neighborhood N of Y i(y) as being the union of each Vz with all
tubular neighborhoods described above and Y i(y) itself (see Figure 1). Notice that
we can make N into a topological disk if i1 is big and the tubular neighborhoods
small. Also notice that since the distance between the boundaries of Y i(y) and N
is strictly positive, we get that mod(N \ Y i(y)) is strictly positive.

Now let us prove that for any n(j) we can pull N back isomorphically along the
orbit x, . . . , fn(j)−i(x).

The pull back of Y i(y) along x, . . . , fn(j)−i(x) cannot hit the critical point (this
follows from the way we chose the puzzle pieces Y i(y)). None of the pull backs of
the tubular neighborhoods can hit the critical point because those neighborhoods
are outside the Julia set. The pull back of Vz along x, . . . , fn(j)−i(x) can not touch
the critical point. If the pull back of Vz would hit the critical point, then it would
be inside Y i1(0) (because Vz is made out of puzzle pieces of depth i1). By the
choice of i1 (mod(Y i(0) \ Y i1(0)) > 0) and because all the puzzle pieces of Vz have
a common boundary point with Y i(y) we would conclude that some pre-image of
Y i(y) along x, . . . , fn(j)−i(x) would intersect Y i(0). Contradiction!

So we can pull N back isomorphically along the orbit x, . . . , fn(j)−i(x) for any
n(j). By the construction of N we have: mod(N \Y i(y)) > 0. So we conclude that
fn(j)−i : Y n(j)(x) → Y i(y) has bounded distortion with the Koebe constant not
depending on n(j).

Using this bounded distortion property, Proposition 3.5 and the fact that x is a
density point for A, we conclude that dens(A|Y i(y)) is arbitrarily close to one. On
the other hand there exists some pre-image of Y i(0) inside Y i(y), so dens(A|Y i(y))
is bounded away from 1. Contradiction!

Let us prove a similar result for the classes of infinitely renormalizable polyno-
mials that we are dealing with:

Lemma 3.7. Let f be any SL quadratic polynomial with a priori bounds and let
µ be a conformal measure for f . Let U be any neighborhood of the critical point.
Then the set

{x ∈ C : fn(x) ∈ U c, for all positive n}
has zero µ-measure.

Proof. Let us denote the set in the statement of this Lemma by A. We have
A = J(f) \ ⋃k f

−k(U). So A is a nowhere dense forward invariant set. Notice

that A ∩ O is empty (because of the definition of A and because O is minimal
if f is infinitely many times renormalizable with a priori bounds). In view of the
Lebesgue density Theorem (see Theorem 2.9.11 in [Fed69]), the set of density points
of A has full measure inside A. Here by density points we mean x ∈ A such that
limr→0 dens(A|B(x, r)) = 1, where B(x, r) is the Euclidean disk with center at x
and radius r. Suppose that µ(A) is positive. Then we conclude that there exists a
density point x in A. There also exists y inside A and a sequence of natural numbers
kj →∞ such that fkj (x) → y. We can univalently pull back a disk of definite size
centered in y along x, f(x), . . . , fkj (x) (to be more precise, the size of this disk is
dist(y,O)). That implies that we can fix a positive number η and univalently pull
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Figure 1. Construction of the neighborhood N of Y i(y)

back the disk B(fkj (x), η), along x, f(x), . . . , fkj (x). Since A is nowhere dense and
µ is positive on non-empty open subsets of the Julia set, for large kj we have:

µ(B(fkj (x),
η

2
) \A) ≥ µ(B(y,

η

4
) \A) > 0.

As a consequence of Koebe’s Theorem, the definition of conformal measure and
the invariance of A we have:

|Dfkj (x)|−δµ(B(fkj (x),
η

2
) \A) ≤ Kµ(B(x,K

η

2
|Dfkj (x)|−1) \A).

Let us denote r = K η
2 |Dfkj (x)|−1. From the above and from the definition of

conformal measure we get:

µ(B(x, r) \A)

µ(B(x, r))
≥ K−1|Dfkj (x)|δ
µ(fkj (B(x, r)))

|Dfkj (x)|−δK−1µ(B(fkj (x),
η

2
) \A)

≥ K−2µ(B(fkj (x), η2 ) \A)

µ(fkj (B(x, r)))
≥ K−2µ(B(y,

η

4
) \A) ≥ c > 0.

As limkj→∞ |Dfkj (x)| = ∞ (because of bounded distortion and lack of normality

inside J(f)) we get: lim supr→0
µ(B(x,r)\A)
µ(B(x,r)) > 0, which contradicts the choice of x

as a density point of A.

Lemma 3.8. Let f(z) = zl + c, with l even and c real, be an infinitely renormal-
izable polynomial and µ a conformal measure for f . Let U be any neighborhood of
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the critical point. Then the set

{x ∈ C : fn(x) ∈ U c, for all positive n}
has zero µ-measure.

Proof. The proof of this Lemma is identical to the proof of the previous Lemma.
The essential information we used in the proof of Lemma 3.7 was the complex
bounds. The complex bounds property in the present case is guaranteed by Theo-
rem 2.4.

Note that in Lemma 3.7 and Lemma 3.8 we used the fact that f restricted to O
is minimal which is not necessarily true for polynomials which are at most finitely
many times renormalizable. On the other hand, in Lemma 3.6 we used the fact that
we have a partition for the entire Julia set by puzzle pieces whose pre-images shrink
to points. We do not have that for the polynomials in Lemma 3.7 and Lemma 3.8.

From the previous lemmas we conclude that the set

W = {z ∈ J(f) : 0 ∈ w(z)}
has full measure, i.e., µ(W) = 1. Here w(z) denotes the w-limit set of z.

Remember that in the case of a finitely many times renormalizable polynomial
(with only repelling periodic points), we constructed the puzzle pieces using the α
fixed point of the Julia set of the last renormalization of the polynomial. Because
of that we think the principal nest of such polynomials as having just one renor-
malization level. So the first index of the principal nest is always 0: V 0,n. This is
convenient in order to keep our notation simpler.

Let X ⊂ W be any compact set. If f is a finitely many times renormalizable
polynomial (real, if the degree is greater than 2) with only repelling periodic points
we can create a cover of X by puzzle pieces as follows. Fix V 0,n. For every x ∈ X
there exists a first time m such that fm(x) ∈ V 0,n. So we can pull V 0,n along the
orbit of x back to a puzzle piece containing x. Changing x ∈ X we will obtain
the desired cover. Let us call this cover On. We can make a similar construction
for any SL polynomial with a priori bounds using the sets V m,t(m) constructed in
Subsection 2.2 (we will just consider the renormalization levels where we have the a
priori bounds). For any real unimodal infinitely renormalizable polynomial we can
also repeat the same construction using the sets V n,1 introduced on Theorem 2.4.
We have the following properties:

1. On is an open cover;
2. On ⊂ On−1;
3.
⋂On = X ;

4. µ(On) → µ(X) as n→∞.

The first and the second properties are trivial. The third one is a consequence
of Theorem 2.1 and Theorem 2.2, if f is a finitely many times renormalizable
polynomial (real or degree two) with only repelling periodic points. The same fact
follows for SL polynomials with a priori bounds, if we use Lemma 2.8 and the
lack of normality inside J(f). If f is an infinitely many times renormalizable real
polynomial, the same argument holds if we use Lemma 2.9. The last one follows
from the fact that if

⋂On = X then
∑

µ(On \ On+1) < ∞, hence µ(On \ X) =∑
k≥n(Ok+1 \ Ok) → 0, so that µ(On) → µ(X).

To simplify the notation, elements of On will be denoted by the letter U (indexed
in some convenient fashion).
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Lemma 3.9. For all i, there exists U i in Oi such that dens(X |U i) → 1, as i→∞.

Proof. Similar to Lemma 3.3.

We will now finish this section with a Lemma for polynomials with parabolic
periodic points:

Lemma 3.10. Let f(z) = zl + c, with l ≥ 2 an integer and c complex, be a poly-
nomial with a parabolic periodic point and µ a conformal measure for f . Let U be
any neighborhood of the parabolic periodic point. Then the set

{x ∈ C : fn(x) ∈ U c, for all positive n}
has zero µ-measure.

Proof. We can assume that f has a fixed point w. If this is not the case, we change
f by a convenient power fn in order to get a fixed point.

The orbit of the critical point of f converges to w. That is because the critical
point of f (or fn) is contained in the union of the attracting petals of w. In that
case, if U is any neighborhood of w, there exists an ε > 0 such that all the inverse
branches of fm, for any natural m, are defined in B(z, ε), for any z outside U . If
we denote by A the set in the statement of this Lemma, then the distance from A
to the orbit of the critical point is positive. Now we can repeat step by step the
proof of Lemma 3.7.

4. Proof of Theorem 1

4.1. The non-parabolic cases. Let Y ⊂ W = {z ∈ J(f) : 0 ∈ w(z)} ⊂ J(f) be
an f -invariant set (remember that W has full measure). Suppose that µ(Y ) > 0.

If f is a Yoccoz polynomial, by Lemma 3.9 we can find Un in On such that
dens(Y |Un) → 1. Let f j(n) : Un → V 0,n be an isomorphism (given by the definition
of On). Then by Lemma 2.11 and Koebe’s Theorem we conclude that f j(n) has
bounded distortion, i.e.:

1

K
≤ |D(f j(n))(z1)|
|D(f j(n))(z2)| ≤ K

for all z1 and z2 in Un, where K depends just on c(f), the constant that appears
in the statement of Lemma 2.11.

Now let us apply Proposition 3.5 to the sets Y c∩Un and Un with respect to the
map f j(n). Due to the fact that the set Y is f -invariant and that f j(n)(Un) = V 0,n

we get 1
Kδ dens(Y c|Un) ≤ dens(Y c|V 0,n) ≤ Kδ dens(Y c|Un).

We know that dens(Y |Un) → 1. Passing to the complement of Y we get
dens(Y c|Un) → 0. From this observation and the above inequalities we conclude
that dens(Y c|V 0,n) → 0 and dens(Y |V 0,n) → 1.

Notice that if µ(Y c) > 0, then we can repeat the argument changing Y by Y c.
Doing this we get dens(Y c|V 0,n) → 1 and that contradicts the previous statement
because dens(Y |V 0,n) + dens(Y c|V 0,n) = 1.

So we conclude that µ(Y c) =0, or equivalently, µ(Y ) = 1. This finishes the
proof of the Theorem if f is a Yoccoz polynomial. For any other finitely many
times renormalizable real polynomial of even degree with only repelling periodic
points, the proof is identical.

If f is an SL polynomial with a priori bounds, the proof of Theorem 1 is basically
the same. The only difference is that we use Lemma 2.8 instead of Lemma 2.11.
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If f(z) = zl + c is infinitely many times renormalizable, l even and c real, then
we need Theorem 2.4 and Lemma 2.9 to carry out the above argument. Again the
proof is the same.

4.2. The parabolic case. Now, assume that f(z) = zl + c, l even and c complex
with a fixed parabolic point w. We know by Lemma 3.10 that if U is a neighborhood
of w, then the set

⋃∞
n=0 f

−n(U) has full measure. Let us assume that U has a small
diameter. Then the set f−1(U) has l connected components: one containing w and
the others containing wi, the pre-images of w, other than w itself. The connected
component of f−1(U) containing wi will be denoted by U ′i . We will denote the
union of all the U ′i ’s by U ′. If U is small, then U ∩ J(f) is contained in the union
of the repelling petals of the parabolic point w. So, f−1(U) ⊂ U ∪ U ′, up to a set
of zero measure (remember that µ is supported on J(f)).

Taking into account all the previous observations, we conclude that up to a set
of zero measure we have:

∞⋃
n=0

f−n(U) =

∞⋃
n=0

f−n(U ′) ∪ U.

1st case. Let us assume that µ(w) = 0. Then by the regularity of µ and by the
last equality the following is true: for any ε > 0, there exists a sufficiently small
neighborhood U of w such that µ(

⋃∞
n=0 f

−n(U ′)) > 1 − ε (just take U such that
µ(U) < ε).

If U2 ⊂ U1, then
⋃∞
n=0 f

−n(U ′2) ⊂
⋃∞
n=0 f

−n(U ′1). So there is an ε2 depending
on U2 such that µ(

⋃∞
n=0 f

−n(U ′1)) ≥ µ(
⋃∞
n=0 f

−n(U ′2)) > 1 − ε2. If diam(U2) is
taken arbitrarily small, then ε2 will be arbitrarily close to zero. This implies that
µ(
⋃∞
n=0 f

−n(U ′1)) = 1.
As fn(0) → w, the points wi are at a positive distance from the critical orbit.

This implies that there exists a positive number α such that all the inverse branches
of fn are defined on the disk B(wi, α).

Let us show that µ is an ergodic measure. Let Y ⊂ J(f) be an f -invariant set
such that µ(Y ) > 0. In view of the Lebesgue density Theorem the set of density
points of Y has full measure inside Y .

By the previous paragraphs we conclude that there exist x ∈ Y and a sequence
{kj} of numbers such that limr→0 dens(Y |B(x, r)) = 1 and that limkj→∞ fkj (x) =
wi0 , for some fixed i0.

We will show that wi0 is a density point of Y . If this is not the case, then
limri→0 dens(Y |B(−w, ri)) < 1, for some sequence of positive numbers ri tending
to zero. So there exists η < α such that µ(B(wi0 ,

η
4 )\Y ) > 0. Now we can mimic the

proof of Lemma 3.7 to conclude that x is not a density point of Y . Contradiction!
As the restriction of f to a small neighborhood of wi0 is an isomorphism onto a

neighborhood of w and Y is f -invariant, we conclude that w is a density point of
Y .

If the measure of the complement of Y is positive, then for the same reason w
is a density point of the complement of Y . So we must have µ(Y ) = 1, and µ is
ergodic.

2nd case. If µ(w) > 0, then Lemma 11 and Theorem 13 from [DU91b] show that
µ is supported on the grand-orbit of w, and then it is ergodic.
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If f has a parabolic periodic point w of period p, then fp has a fixed parabolic
point. We can prove the Theorem in exactly the same way we did before. So
Theorem 1 is proven.
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