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CONVERGENCE IN DISCRETE CAUCHY PROBLEMS
AND APPLICATIONS TO CIRCLE PATTERNS

D. MATTHES

Abstract. A lattice-discretization of analytic Cauchy problems in two di-
mensions is presented. It is proven that the discrete solutions converge to a
smooth solution of the original problem as the mesh size ε tends to zero. The
convergence is in C∞ and the approximation error for arbitrary derivatives
is quadratic in ε. In application, C∞-approximation of conformal maps by
Schramm’s orthogonal circle patterns and lattices of cross-ratio minus one is
shown.

1. Introduction

In the flourishing field of discrete differential geometry, classical geometrical ob-
jects are matched by discrete counterparts which inherit many qualitative features
of the smooth originals. Discretizations have been proposed for a large variety of
surfaces, coordinate systems and maps; see [BP2] for an overview.

Special attention has been devoted to circle packings in the plane and their
relation to conformal mappings. The fundamental question of quantitative approx-
imation has been intensively studied. As a key result in this context, Thurston’s
conjecture on the convergence of hexagonal circle packings to the Riemann map
was proven by Rodin and Sullivan [RS] in 1987. Their result has been improved in
many ways. For instance, hexagonal packings were shown to converge in C∞ [HS],
and the error for the approximation and its derivatives was estimated [DHR].

An alternative approach to a discrete theory of conformal maps is provided
by circle patterns. Generally, a circle pattern with square-grid combinatorics is a
correspondence that assigns to any vertex of the Z2-lattice a circle in the complex
plane. As the collection of image circles inherits the square-grid combinatorics,
there is a natural notion of neighbors and elementary quadruples (circles assigned to
the corners of a Z

2-square). One requires that the circles of an elementary quadruple
intersect in one point. Thus, each circle has four points of intersection with its
neighbors. The intersection points form a lattice with square-grid combinatorics on
their own.

Additional conditions are imposed to single out subclasses of more rigid patterns.
The most prominent subclass is provided by “orthogonal circle patterns” introduced
by Schramm [Sch], also called Schramm-patterns in the following. The additional
constraint is that neighboring circles intersect orthogonally.
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As a second possibility, one requires that the four points of intersection on each
circle have cross ratio minus one. In this situation, it is preferred to consider the
lattice of intersection points rather than the circles themselves. One obtains cross-
ratio-lattices or CR-mappings, which were first investigated by Nijhoff et al [NQC].
Generalizing CR-mappings to immersions in three-space, a definition of discrete
isothermic surfaces was obtained by Bobenko and Pinkall [BP1].

In comparison to (especially hexagonal) packings, much less in known about the
approximation properties of circle patterns. The C0-convergence theorem in [Sch]
seems to be the only result in this direction so far. In this article, it is proven that
an arbitrary planar conformal map u : Ω ⊂ C → C can be locally approximated
by a sequence of Schramm-patterns and CR-mappings. More precisely: intersect
the domain Ω with a square grid of mesh size ε > 0, obtaining a discrete set
Ωε. A suitable circle pattern from the respective class can be defined on each Ωε,
so that the circle centers (Schramm-pattern) or intersection points (CR-mapping)
approximate the values of u at corresponding sites with an error O(ε2). Moreover,
the convergence is in C∞. This means that arbitrary partial derivatives of u are
uniformly approximated by the respective difference quotients calculated from the
circle pattern, also with an error of order O(ε2).

The analytic background for the geometric convergence result is of interest on its
own. A discrete approximation theory for analytic Cauchy problems is developed
in this article. Its applications are not limited to geometrical questions. More-
over, a new proof of the Cauchy-Kovalevskaya theorem – based on purely discrete
constructions – is obtained as a by-product.

Consequently, the presented approach to circle patterns differs in nature from
Schramm’s where a boundary value problem was considered and techniques from
(discrete) elliptic theory played an important role. Instead, our proof combines the
following two ingredients; the first are methods which were developed for Cauchy
problems associated with discrete hyperbolic equations. These have already been
used to show C∞-convergence of discrete orthogonal coordinate systems [BMS].
The other ingredient is an adaptation of fundamental ideas from the proof of the
(abstract) Cauchy-Kovalevskaya theorem [Nag],[Nir]. In particular, a discrete coun-
terpart of the scale of spaces of analytic functions is defined.

For definiteness, let us consider the Cauchy problem

∂tu(t, x) = M∂xu(t, x) + f(u(t, x)),(1.1)
u(0, x) = u0(x).

The continuous solution u : Ω → Cd is sought on Ω ⊂ R2, where M is a constant
d× d-matrix, and f is an analytic function. For x-analytic data u0, there exists a
local solution to (1.1) by the Cauchy-Kovalevskaya theorem.

A variety of elliptic equations – e.g., the nonlinear Poisson equation (∂2
x +∂2

t )u =
f(u) – can be brought into the standard form (1.1). In the case of most interest
here, u is a conformal map. Identifying the (t, x)-plane with the complex numbers,
u(t, x) : Ω → C is holomorphic in z = x+it, and hence solves the Cauchy-Riemann-
equations, which is (1.1) with M = i and f ≡ 0.

Circle patterns are constructed which approximate u. These are characterized
by discrete functions vε on two-dimensional grids Ωε ⊂ Ω of mesh-size ε > 0.
The crucial observation is that the vε solve a discrete equation similar to (1.1),
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where derivatives are replaced by difference quotients. The content of the devel-
oped approximation theory is that the discrete solutions vε converge to u in C∞.
Eventually, this leads to convergence of the corresponding circle patterns.

The article is organized as follows: In section 2, the theorem about discrete
approximation of the Cauchy problem (1.1) is formulated. The theorem is proven
in section 3. Its numerical applicability is discussed in section 4. Convergence
theorems for CR-mappings and Schramm-patterns are proven in sections 5 and 6,
respectively.

Acknowledgments. The author would like to thank Alexander Bobenko and Yuri
Suris for many discussions and helpful advice. Further, the author is grateful to
Walter Craig for an entertaining introduction to the topic of abstract Cauchy-
Kovalevskaya theorems.

2. Discrete approximation of the Cauchy problem

As usual, a function f : D ⊂ C
p → C

d is called analytic, if it is complex
differentiable in its p arguments. Moreover, a function u : Iξ → Cd defined on the
real interval Iξ = [−ξ,+ξ] is called analytic if it extends to a complex differentiable
function on Bρ(Iξ) = {x ∈ C | dist(x, Iξ) ≤ ρ} for an appropriate choice of ρ > 0. By
abuse of notation, there will be no distinction between u and its uniquely determined
complex extension.

Consider problem (1.1) under the following assumptions: The d×d-matrix M is
constant, f is an analytic function near u0(0), and the initial datum u0 is analytic
on an interval Iξ. Solutions u = (u(1), . . . , u(d)) : Ω → C

d are sought on diamond-
shaped domains

Ω = Ω(r) = {(t, x) ∈ R
2 : |x| + |t| ≤ r}.

The Cauchy-Kovalevskaya theorem implies:

Theorem 2.1. Problem (1.1) has a classical solution u on Ω = Ω(r) for a suitable
r < ξ. This solution is x-analytic and t-smooth, i.e., of class C∞.

Replace u by a function vε = (vε
(1), . . . , v

ε
(d)) defined on the discrete set

Ωε(r) = {(t, x) ∈ Ω(r) : x+ t ∈ εZ},
which is the intersection of Ω(r) with the 45-degree rotated standard lattice (λZ)2

of mesh size λ = ε/
√

2. For vε : Ωε(r) → Cd, difference quotients

(δxvε)(t, x) = 1
ε

(
vε(t, x+ ε

2 ) − vε(t, x− ε
2 )
)
,

(δtvε)(t, x) = 1
ε

(
vε(t+ ε

2 , x) − vε(t− ε
2 , x)

)
,

are given on the dual lattice

Ωε
∗(r) = {(t, x) ∈ Ω(r − ε

2 ) : ε
2 + x+ t ∈ εZ}.

Higher difference quotients δm
x δ

n
t v

ε are defined on

Ωε
m+n(r) =

{
Ωε(r − (m+ n) ε

2 ) if m+ n is even,
Ωε

∗(r − (m+ n) ε
2 ) if m+ n is odd.

Replace the Cauchy problem (1.1) by the discrete problem

(2.1)
δtv

ε(t, x) = Mδxv
ε(t, x) + fε(vε)(t, x) ((t, x) ∈ Ωε∗) ,

vε(0, x) = vε
0(x) ((0, x) ∈ Ωε),

vε( ε
2 , x) = vε

+(x) (( ε
2 , x) ∈ Ωε∗).
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Figure 1. A CR-mapping. Points of Ωε(r) and Ωε
∗ are marked •

and ◦, respectively. Initial data for vε are prescribed at the bold
marked sites.

For t ≷ 0, the nonlinearity fε(vε)(t, x) is of the form

fε(vε)(t, x) = F ε(vε(t, x± ε
2 ), vε(t, x∓ ε

2 ), vε(t∓ ε
2 , x)).

Theorem 2.2. Assume that u0 is analytic on Iξ, that f is analytic on a neighbor-
hood D ⊂ Cd of u0(0) and F ε is analytic on D × D × D ⊂ C3d for each ε > 0.
Furthermore, assume that

(2.2) |F ε(u+, u−, u∗) − f(u++u−
2 )| ≤ K(ε+ |u+−u−|)2

holds for all u+, u−, u∗ ∈ D with K > 0 independent of ε.
Then there is some r < ξ such that the solutions vε to problem (2.1) with

(2.3)
vε
0(x) = u0(x) ((0, x) ∈ Ωε(r)),

vε
+(x) = u0(x) + ε

2

(
M∂xu0(x) + f(u0(x))

)
(( ε

2 , x) ∈ Ωε
∗(r))

are C∞-convergent to a smooth function u on Ω(r) with an error O(ε2). More
precisely, for arbitrary m,n ≥ 0, there are constants Cmn > 0 so that

sup(t,x)∈Ωε
m+n(r) |∂m

x ∂
n
t u(t, x) − δm

x δ
n
t v

ε(t, x)| ≤ Cmnε
2.(2.4)

The function u constitutes a classical solution to the Cauchy problem (1.1).

In particular, Theorem 2.2 implies the classical existence Theorem 2.1.

Example 2.3 (A nonlinear elliptic problem). Rewrite the elliptic initial value
problem,

∂2
t φ(t, x) + ∂2

xφ(t, x) = g(φ(x, t)),(2.5)
φ(0, x) = φ0(x), ∂tφ(0, x) = φ+(x)(2.6)

for the scalar function φ in the form of problem (1.1):

(2.7) ∂t


 u(1)

u(2)

u(3)


 =


 0 0 0

0 0 1
0 −1 0


 ∂x


 u(1)

u(2)

u(3)


+


 u(3)

0
g(u(1))


 ,

denoting u(1) = φ, u(2) = ∂xφ and u(3) = ∂tφ. For functions φ0, φ+ analytic on
Iξ, the respective initial data u0(1)(x) = φ0(x), u0(2) = ∂xφ0(x), u0(3) = φ+(x) are
analytic, too. Assuming further that the nonlinearity g is analytic near φ0(0), a
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solution to (2.7) exists on some Ω = Ω(r). The constraint ∂xu(1) = u(2) propagates,
so φ := u(1) indeed solves (2.5).

In order to approximate (2.7) by a discrete problem (2.1), choose

F ε(v+, v−, v∗) = 1
2 (v+

(3) + v−(3), 0, g(v
+
(1)) + g(v−(1)))

as nonlinearity, independent of ε. The assumptions of Theorem 2.2 concerning
analyticity and boundedness of F ε are obviously fulfilled. A Taylor expansion of g
around V̄ = (v+

(1) + v−(1))/2 proves the estimate (2.2):

1
2 (g(v+

(1)) + g(v−(1))) = g(V̄ ) + 1
2 (v+

(1) − v−(1))g
′(V̄ ) + O(|v+ − v−|2).

Hence, the component vε
(1) of the discrete solutions to problem (2.1) converges to

the smooth solution φ on Ω(r) with a suitable positive r < ξ in the sense of (2.4).

3. Proof of Theorem 2.2

The proof consists of three parts: In the first, a smooth solution u to (1.1) is
constructed as the limit of a suitable sequence of discrete solutions vε to (2.1).
Secondly, C0-approximation of u is shown, i.e., (2.4) for m = n = 0. Finally, an
induction argument yields (2.4) for arbitrary m,n.

The proof combines elements from discrete approximation theory for hyperbolic
PDE [BMS] with ideas from Walter’s proof [Wal] of the Cauchy-Kovalevskaya the-
orem, which is based on the classical papers [Nir], [Nag]. Recall the strategy of
the latter. A solution u to (1.1) is constructed such that u(t, x) is x-analytic on
the time-dependent domain Bρ(t)(Iξ(t)) for any t ∈ [−T,+T ]. The size parameters
ρ(t), ξ(t) decreases as |t| increases. The motivation is that ∂x is a bounded operator
between the spaces of analytic functions on Bρ′(Iξ′) and on Bρ(Iξ), respectively,
for any ρ < ρ′ and ξ ≤ ξ′. The norm of ∂x is determined by the classical Cauchy
estimate

supx∈Bρ(Iξ)|∂xu(x)| ≤ (ρ′ − ρ)−1supx∈Bρ′ (Iξ′)|u(x)|.(3.1)

Introducing suitable time-dependent norms ‖ · ‖t for u(t), an a priori estimate of
Gronwall type is derived from (3.1),

‖u(t)‖t ≤ ‖u0‖0 +
∫ t

0

C(t, s)‖u(s)‖s ds.(3.2)

Eventually, (3.2) enables one to obtain the solution u as the fixed point of a con-
tracting map.

Time-dependent norms for discrete functions are introduced in the following.
To prove approximation of u by vε, a discrete analogue of (3.2) is derived for the
t-norm of the difference wε(t) := u(t)− vε(t). More precisely, wε(t) at time t = n ε

2
is estimated in terms of wε(t − ε

2 ) and wε(t − ε), leading to the discrete Gronwall
estimate in (3.16). The crucial technical tool is a discrete version of the Cauchy
estimate (3.1), which is given in Lemma 3.1 below.

3.1. Notation. Let D(ρ) ⊂ C denote the complex disc of radius ρ centered at 0,
and for p > 1, Dp(ρ) = D(ρ) × · · · ×D(ρ) ⊂ Cp is a p-dimensional poly-disc. Also,
recall that Iξ = [−ξ,+ξ] and Bρ(Iξ) = {z ∈ C | dist(z, Iξ) ≤ ρ}.
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The crucial quantity that determines most of the following constructions is r > 0,
the appropriate diameter of the domain Ω(r), which has to be found. From r, one
defines

ξ(t) = r − |t|, ξn = r − |n| ε2 , ρ(t) = 3r − 2|t|, ρn = 3r − |n|ε.

Discrete intervals containing m+ 1 points are given by

Iε
m =

{ {−m
2 ε, . . . ,−ε, 0, ε, . . . , m

2 ε} if m is even,
{−m

2 ε, . . . ,− ε
2 ,

ε
2 , . . . ,

m
2 ε} if m is odd.

For a function v : Iε
m → Cd, define its difference quotient, ε

2 -shift, restriction and
linear interpolation:

δxv : Iε
m−1 → C

d, (δxv)(x) = 1
ε

(
v(x+ ε

2 ) − v(x − ε
2 )
)
,

τxv : Iε
m−1 → C

d, (τxv)(x) = v(x + ε
2 ), (τ−1

x v)(x) = v(x − ε
2 ),

πv : Iε
m−2 → C

d, (πv)(x) = v(x),

Ev : I ε
2m → C

d, (Ev)(x) =
x− xε

−
ε

v(xε
+) +

xε
+ − x

ε
v(xε

−).

Here xε
−, x

ε
+ ∈ Iε

m are such that xε
− ≤ x < xε

+ and xε
+ = xε

− + ε. The restriction
of a function u : Ω(r) → Cd to the discrete domain Ωε(r) is denoted by [u]ε. For
the discrete function v : Ωε(r) → Cd, let vn be its restriction to time t = n ε

2 , so
vn(x) = v(n ε

2 , x), which is defined on the interval Iε
n′ where n′ is the largest integer

with ε
2n

′ ≤ ξn.
In these notations, the problem (2.1) takes the convenient form (n > 0):

vε
n+1 = πvε

n−1 + εδxv
ε
n + εfε

n(vε),(3.3)

fε
n(vε) = F ε(τxvε

n, τ
−1
x vε

n, πv
ε
n−1),(3.4)

where pointwise evaluation of the arguments is understood.
Without loss of generality, assume that |Mu| ≤ |u| for all u ∈ Cd, and that

u0(0) = 0. Indeed, this can be achieved by a dilation of the t-axis and an affine
transformation of the values of u, respectively. For an appropriate choice of U > 0,
f is defined on Dd(3U) and F ε on D3d(3U), respectively.

3.2. Discrete norms and their properties. For ρ > 0, define a functional on
scalar discrete functions v : Iε

m → C by

‖v‖ρ =
n∑

k=0

ρk

k!
max

x∈Iε
m−k

|δkv(x)|.

For multi-component functions v = (v(1), . . . , v(p)) : Iε
m → Cp, let

‖v‖ρ = max
i=1,...,p

‖v(i)‖ρ.

These norms share several properties with the maximum-norm of analytic functions
over a complex domain.
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Lemma 3.1. The functionals ‖ · ‖ρ provide a scale of norms on discrete functions.
For u : Iε

n → Cd and 0 ≤ ρ ≤ ρ′, one has ‖u‖ρ ≤ ‖u‖ρ′ . In addition, each ‖ · ‖ρ has
the following properties:

(1) Absolute bound: |u(x)| ≤ ‖u‖ρ for all x ∈ Iε
n.

(2) Submultiplicativity: ‖u v‖ρ ≤ ‖u‖ρ‖v‖ρ for scalar functions u and v.
(3) Discrete Cauchy estimate: For θ > 0, ‖u‖ρ + θ‖δxu‖ρ ≤ ‖u‖ρ+θ.
(4) Restriction estimate: If u : Iξ → Cd extends analytically to Bρ′(Iξ) and uε

is its restriction to Iε
n ⊂ Iξ, then, provided ρ < ρ′,

(3.5) ‖uε‖ρ ≤ (1 − ρ/ρ′)−1supBρ′ (Iξ)|u|.

(5) Analyticity estimate: Let functions vε : Iε
nε → Cd be given, with nεε ≥

ξ ≥ 0 and ‖vε‖ρ ≤ C for a sequence ε → 0. Then there exists an analytic
u : Iξ → Cd, so that Eδk

xv
ε(k) converges to ∂k

xu uniformly for each k ≥ 0
and a suitable subsequence ε(k) → 0 of ε. Moreover, u possesses a complex
extension to Bρ(Iξ) which is bounded by C.

This lemma is proven in the appendix.
A norm with properties (1) and (2) will be called a submultiplicative norm in the

following. For an arbitrary submultiplicative norm, the following lemma holds:

Lemma 3.2. Let the analytic function f : Dp(U) → C satisfy

|f(u)| ≤ C(|u(1)|, . . . , |u(p)|)
for all u ∈ Dp(U), with some function C ≥ 0 that is nondecreasing in each of its
arguments. Then for each γ > 1 and every discrete function v : Iε

n → C
p with

γ‖v‖ρ ≤ U , the composition f(v) is well defined on Iε
n, and

(3.6) ‖f(v)‖ρ ≤ ΓC(γ‖v(1)‖ρ, . . . , γ‖v(p)‖ρ).

The constant Γ depends on γ but not on the submultiplicative norm ‖ · ‖ρ.

This lemma is proven in the appendix. Two cases of particular interest are:

‖f(v)‖ρ ≤ Γ sup
Dp(U)

|f |,(3.7)

‖f(v1) − f(v2)‖ρ ≤ Γ sup
Dp(U)

|f ′| ‖v1 − v2‖ρ,(3.8)

which hold for all v, v1, v2 with ‖v‖ρ ≤ U/γ and ‖v1‖ρ, ‖v2‖ρ ≤ U/(2γ), respec-
tively, with γ > 1 arbitrary and Γ = Γ(γ).

Estimate (3.7) follows immediately with C ≡ supDp(U) |f | in (3.6). To obtain
(3.8), consider the function f̃(a, b) := f(a+ b, a− b) which is analytic in a, b ∈
Dp(U/2), and let C(|a|, |b|) := supDp(U) |f ′| |b|. Now let a = (v1 + v2)/2 and b =
(v1 − v2)/2.

3.3. Existence of a continuous solution. In the following, it will be shown that
for an appropriate r > 0 and ε small enough, discrete solutions vε exist on Ωε(r),
and a limiting function u can be defined on Ω(r). In fact, r > 0 will be defined so
that the solutions vε on Ωε(r) satisfy

‖vε
n‖σn ≤ U, σn = ρn + r = 4r − nε(3.9)



8 D. MATTHES

for all n with ε
2 |n| ≤ r; recall that vε

n(x) = vε(n ε
2 , x). Choose U > 0 suitable and

let F > 0 be an ε-independent bound for F ε on D3d(3U). The basic idea is to
derive (3.9) inductively as follows:

Mε
n := ‖vε

n+1‖σn + ‖vε
n‖σn ≤ U(1

2 + n
2N ).(3.10)

To obtain (3.10) at n = 0, observe that the functions

u0 and u0 + ε
2 (M∂xu0 + f(u0))

are analytic on a complex neighborhood of x = 0. It follows that if r and ε are
small enough, then the initial data (2.3) satisfies

‖vε
0‖4r, ‖vε

+‖4r ≤ U
4 ,

taking into account that u0(0) = 0 and using property (4) of Lemma 3.1.
Now suppose (3.10) holds at n ≥ 0. Then fε

n(vε) is defined on Iε
n, and

Mn+1 ≤ ‖vε
n‖σn+1 + ε‖δxvε

n‖σn+1︸ ︷︷ ︸
≤‖vε

n−1‖σn+1+ε

+ε ‖fε
n(vε)‖σn+1︸ ︷︷ ︸

≤ΓF

+‖vε
n‖σn+1

≤ Mn + εΓF.

To estimate δxvε and fε(vε), property (3) of Lemma 3.1 and inequality (3.7) were
employed, respectively.

In addition to |vε| ≤ U , estimates on the difference quotients follow:

|δxvε| ≤ max
n

(σ−1
n ‖vε

n‖σn) ≤ U/(2r),(3.11)

|δtvε| ≤ |δxvε| + |fε(vε)| ≤ U/r + ΓF,(3.12)
|δ2xvε| ≤ max

n
(2σ−2

n ‖vε
n‖σn) ≤ U/(2r2).(3.13)

For each ε, let vε
I be the restriction of vε to points (x, t) ∈ Ωε(r) with “even” time

coordinate, t = (2k) ε
2 . Note that vε

I is defined on a sublattice of (εZ)2. Define the
family {v̂ε

I}ε of continuous functions obtained from x-t-linear interpolation of vε
I on

Ω(r). By the estimates (3.11) and (3.12), this family is equicontinuous. Hence, the
Arzelà-Ascoli theorem applies: There is a sequence ε′ → 0 such that v̂ε′

I converges
to a smooth limit uI uniformly on Ω(r). Moreover, by (3.13), it is possible to
choose the sequence ε′ such that δxv̂ε′

I also converges uniformly to ∂xuI (cf. the
proof of property (5) in Lemma 3.1). The same procedure is applicable to vε

II , the
restriction to the “odd” time values t = (2k + 1) ε

2 ; choose a subsequence ε′′ of ε′

such that v̂ε′′
II → uII and δxv̂

ε′′
II → ∂xuII . Also, fε

n(v̂ε′′
I ) with even n converges to

f(uI) uniformly as can be deduced from the estimate (2.2) – and respectively for
n odd, fε

n(v̂ε′′
II ) → f(uII).

Since vε solves (3.3), it follows for all (t, x), (t′, x) ∈ Ω(r),

vε′′
I (t′, x) = vε′′

I (t, x) +
∫ t′

t
(δxvε′′

II (s, x) + fε′′
(vε′′

II )(s, x)) ds+ O(ε′′).

Passing to the uniform limit as ε′′ → 0:

uI(t′, x) = uI(t, x) +
∫ t′

t
(∂xuII(s, x) + f(uII)(s, x)) ds.

The roles of uI and uII can be interchanged. Consequently, both functions are
differentiable in time and satisfy

∂t

(
uI

uII

)
=
(

0 M
M 0

)
∂x

(
uI

uII

)
+
(
f(uII)
f(uI)

)
.(3.14)
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By property (5) of Lemma 3.1, the estimates ‖vε
n‖σn ≤ U imply for fixed t ∈ [−r, r]

that uI/II(t, x) extend x-analytically to Br+ρ(t)(Iξ(t)), where they are bounded by
U . And since uI/II solve the equation (3.14), their analytic continuations do as well.
So uI and uII are smooth with respect to t, as any t-derivative can be expressed in
terms of x-derivatives and compositions with the analytic function f .

The pair (uI , uII) is the only solution to (3.14) of that smoothness. This is seen
as follows: In the proof of estimate (2.4) below, u could be any x-analytic and
t-smooth solution to the problem (1.1); no reference to the above construction is
made. In particular, estimate (2.4) applies to (uI , uII) in place of u and the system
(3.14) in place of equation (1.1), respectively. But only one smooth function can
satisfy (2.4) for all ε > 0.

For symmetry reasons, the unique solution (uI , uII) to (3.14) with initial condi-
tions uI(0, x) = uII(0, x) = u0(x) satisfies uI = uII =: u on Ω(r). Hence, u solves
(1.1) with u(0, x) = u0(x) for x ∈ Ir.

3.4. Approximation in C0. For shortness, let uε = [u]ε be the restriction of the
smooth solution, and let wε = vε − uε denote the deviation of vε from u. The idea
of the proof is to calculate ε-independent bounds on the expression

Ln := ‖wε
n+1‖ρn + ‖wε

n‖ρn(3.15)

which is defined for ε
2 |n| ≤ r. Again, only n ≥ 0 is considered here, and the

treatment of n ≤ 0 is left to the reader. It will be shown that

(3.16) Ln ≤ (1 + εB∗)Ln−1 + C∗ε3 and L0 ≤ D∗ε2,

leading by the standard Gronwall estimate to

(3.17) Ln ≤ (C∗ +D∗)erB∗
ε2

which implies (2.4) for m ≥ 0 and n = 0.
To prove the estimate (3.16) at an instant of time t = εn with n ≥ 1, express

wε
n+1 in terms of uε and vε at previous time steps:

(A) Ln+1 ≤ ‖πwε
n−1 + δxw

ε
n‖ρn + ‖wε

n‖ρn

(B) +ε‖fε
n(vε) − fε

n(uε)‖ρn

(C) +‖ε(Mδxu
ε
n + fε

n(uε)) − (δtuε)n‖ρn

The three resulting expressions (A)–(C) as well as the initial conditions

(IC) L0 = ‖wε
0‖ρ0 + ‖wε

1‖ρ0

are estimated separately in the following.
(A) By property (3), and observing that ρn + ε = ρn−1,

(A) ≤ ‖wε
n‖ρn + ε‖δxwε

n‖ρn + ‖wε
n−1‖ρn

≤ ‖wε
n‖ρn+ε + ‖wε

n−1‖ρn

≤ Ln−1.
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(B) With the help of estimate (3.5), one concludes

‖fε(vε) − fε(uε)‖ρn

≤ ‖F ε(τxvε
n, τ

−1
x vε

n, v
ε
n−1) − F ε(τxuε

n, τ
−1
x uε

n, u
ε
n−1)‖ρn

≤ Γ sup |DF ε|max(‖vε
n − uε

n‖ρn , ‖vε
n−1 − uε

n−1‖ρn)
≤ B∗Ln−1.

The constant B∗ formally depends on ε via supD3d(U) |DF ε|. But the analytic
function F ε is uniformly bounded on Dp(U) independently of ε because of (2.2),
and so are its derivatives. Hence (B) ≤ εB∗Ln−1.

(C) Define the functions

Aε
x(t, x) = ∂xu(t, x) − 1

ε (u(t, x+ ε
2 ) − u(t, x− ε

2 )),(3.18)

Aε
t (t, x) = ∂tu(t, x) − 1

ε (u(t+ ε
2 , x) − u(t− ε

2 , x)),(3.19)
Aε

f (t, x) = f(u(x, t)) − F ε(u(t, x+ ε
2 ), u(t, x− ε

2 ), u(x− ε
2 , t)).(3.20)

For t∈ [−r,+r], all three functions possess an analytic extension for x∈Bρ(t)+r(Iξ(t)).
As u is smooth, one trivially has

|Aε
x(x, t)| ≤ Cxε

2 and |Aε
t (x, t)| ≤ Ctε

2.(3.21)

Furthermore, because of estimate (2.2),

|Aε
f (x, t)| ≤ K(ε+ |u(t, x+ ε

2 ) − u(t, x− ε
2 )|)2

+ sup |Df |
∣∣∣(u(t, x+ ε

2 ) + u(t, x− ε
2 ))/2 − u(t, x)

∣∣∣
≤ Cfε

2.

Subtracting 0 = M∂xu+ f(u) − ∂tu from the expression for (C),

(C) = ‖Mδx[u]εn + fε
n([u]ε) − δt[u]εn − [M∂xu+ f(u) − ∂tu]εn‖ρn

≤ ‖δx[u]εn − [∂xu]εn‖ρn + ‖δt[u]εn − [∂tu]εn‖ρn + ‖fε
n([u]ε) − [f(u)]εn‖ρn

≤ ‖[Aε
x]εn‖ρn + ‖[Aε

t ]
ε
n‖ρn + ‖[Aε

f ]εn‖ρn

≤ Γ(Cx + Ct + Cf )ε2 = C∗ε2.

For the conclusive estimate, property (4) of Lemma 3.1 has been used.
(IC) Obviously, wε

0 = 0 by (2.3). And vε
1 = vε

+ is the restriction of uε
+ :=

u0 + ε
2∂tu0, which is an x-analytic function on B4r−ε(Ir− ε

2
) and satisfies

|uε
+(x) − u( ε

2 , x)| ≤ ε2

8 sup
0<s<ε/2

|∂2
t u(s, x)|.

Exploiting the estimate (3.5) yields

L0 ≤ ‖wε
1‖r−ε ≤ D∗ε2.

3.5. Proof of smooth approximation. Since u is smooth on Ω(r), derivatives
and difference quotients may be interchanged at the cost of O(ε2):

supΩε
m+n(r)|∂m

x ∂
n
t u− δm

x δ
n
t [u]ε| ≤ C(1)

mnε
2.

This is a consequence of the more general formula (5.19) given in Lemma 5.5 in
section 5. Hence, to prove (2.4) for given m, n, it suffices to show that

|δm
x δ

n
t w

ε(x, t)| ≤ C(2)
mnε

2.(3.22)
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Submultiplicative norms for functions v : Ωε(r) → Rd are given by

‖v‖(N)
θ =

∑
n≤N

m=1,2,...

θm+n

m!n!
sup

(x,t)∈Ωε
m+n(r)

|δm
x δ

n
t v(x, t)|.

Define positive numbers θN = θ0/(N + 1), where θ0 < r is suitably chosen later. It
is inductively shown that

‖wε‖(N)
θN

≤ C
(3)
N ε2(3.23)

with appropriate constants C(3)
N . Obviously, (3.23) implies (3.22) with the choice

C
(2)
mn = C

(3)
n m!n!θ−(m+n)

n .
Firstly, some properties of the norms are summarized. In contrast to the previ-

ously considered norms ‖ · ‖ρ, which are defined for restrictions of v to intervals Iε
n,

the ‖ · ‖(N)
θ above involve the whole time-dependent function v at once. Apart from

that, each ‖ · ‖(N)
θ constitutes a submultiplicative norm, so Lemma 3.2 applies, and

(3.7), (3.8) hold. Also, the discrete Cauchy estimate (property (3) of Lemma 3.1)
carries over. Furthermore, the restriction estimate (property (4)) reads as follows:
If ũ is a smooth function such that ũ(t) is x-analytic on Bρ(I) for all t ∈ [−r,+r],
and 0 < θ < ρ, then

‖[ũ]ε‖(N)
θ ≤ Γ max

n≤N
sup
|t|≤r

sup
x∈Dρ(I)

|∂n
t ũ(t, x)|,(3.24)

where Γ depends on the ratio θ/ρ only.
For N = 0, inequality (3.23) follows from the previous discussion,

‖wε‖(0)
θ0

≤ max
n

‖wε
n‖ρn = O(ε2)

because θ0 < r ≤ ρn. Now assume (3.23) for N ≥ 0. By definition of ‖ · ‖(N)
θ , and

since vε solves the discrete equation (2.1),

‖wε‖(N+1)
θN+1

≤ ‖wε‖(N)
θN+1

+ θN+1
N+1 ‖δtwε‖(N)

θN+1

≤ ‖wε‖(N)
θN+1

+ θN+1
N+1 ‖δxwε‖(N)

θN+1
+ θ0

N2 ‖fε(uε) − fε(vε)‖(N)
θN

+ θ0
N2 ‖∆ε‖(N)

θN
.

The Cauchy estimate is applied to the sum of the first two terms, and inequality
(3.8) to the third term. The norm of

∆ε = Mδx[u]ε + fε([u]ε) − δt[u]ε = [Aε
x]ε + [Aε

t ]
ε + [Aε

f ]ε

with Aε
x, Aε

t and Aε
f defined as in (3.18)–(3.20), is estimated using (3.24),

‖∆ε‖(N)
θN

≤ Γ max
n≤N

sup
x,t

(|∂n
t A

ε
x| + |∂n

t A
ε
t | + |∂n

t A
ε
f |) ≤ C

(4)
N ε2.

In conclusion,

‖wε‖(N+1)
θN+1

≤ ‖wε‖(N)
θN

+ θ0Γ
N2 sup |Df | ‖wε‖(N)

θN
+ θ0

N2C
(4)
N ε2

≤
(
(1 + θ0Γ

N2 sup |Df |)C(3)
N + C

(4)
N

)
ε2.

(3.25)

As inequality (3.8) has been applied to estimate fε(uε) − fε(vε), it needs to be
checked that ‖uε‖(N)

θN
, ‖vε‖(N)

θN
≤ U . To verify the bound for vε, formally estimate
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along the same lines as above

‖vε‖(N+1)
θN+1

≤ ‖vε‖(N)
θN+1

+ θN+1
N+1 ‖δxvε‖(N)

θN+1
+ θ0

N2 ‖fε(vε)‖(N)
θN+1

≤ ‖vε‖(N)
θN

+ θ0
N2 ΓF ≤ ‖vε‖(0)

θ0
+ θ0ΓF

∑
n≤N 1/n2.

For simplicity, assume that ‖vε‖(0)
θ0

< 1
2U , possibly after diminishing r. As the sum∑∞

n=0 1/n2 is finite, it can be achieved that ‖vε‖(N)
θN

< 3
4U for all N ≥ 0 by choosing

θ0 small enough. For ε < εN so small that QNε
2 < U/4,

‖uε‖(N)
θN

≤ ‖vε‖(N)
θN

+ ‖wε‖(N)
θN

≤ U.

This justifies estimate (3.25) and finishes the proof.

4. A remark on numerical applicability

The iteration (3.3) solving the discrete problem (2.1) is tailored to numerical
implementation. Assume the values of vε

n−1 and vε
n are known. Then:

vε
n+1(x) = vε

n−1(x) +M(vε
n(x + ε

2 ) − vε
n(x− ε

2 )) + εfε
n(vε)(x).(4.1)

To investigate the effect of round-off errors, consider the perturbed quantity v̂ε

solving the modified equation

v̂ε
n(x) = v̂ε

n+2(x) +M(v̂ε
n+1(x+ ε

2 ) − v̂ε
n+1(x− ε

2 )) + εfε
n(v̂)(x) + µn(x).

Usually, only an absolute bound on the round-off error µ is known, |µn(x)| ≤ 10−q.
One should think of q as the number of “precise” digits, which is fixed a priori. To
estimate the deviation of v̂ε from u, modify inequality (3.16) in the obvious way:

L̂n ≤ (1 + εB∗)L̂n+1 + C∗ε3 + E∗,

where E∗ bounds the error introduced by µ. In the worst case, some component of
µ takes values +10−q and −10−q interchangingly, so that

E∗ = ‖µn‖ρn ≈ 10−q exp(r/ε).(4.2)

As before, r is the diameter of the domain Ω. The relation (4.2) predicts instability
of the discrete equation (4.1). A finer mesh size ε does not necessarily correspond
to a better approximation. One expects that there is an ε0 > 0 (depending on the
initial data u0 and radius r > 0) such that the approximation error

• decays like ∼ ε2 for ε↘ ε0,
• grows dramatically like ∼ e1/ε for ε→ 0 and ε < ε0.

From (4.2) it is suggested that ε0 ∼ r/q. The pictures in the following sections
were calculated with r ≈ 1, ε ≈ 0.1 and q ≈ 10.

5. Cross-ratio equation

The cross-ratio of four mutually distinct complex numbers q1, . . . , q4 ∈ C is

CR(q1, q2, q3, q4) =
(q1 − q2)(q3 − q4)
(q2 − q3)(q4 − q1)

.

Consider Ω(R) as a subset of C, i.e, identify each point (t, x) ∈ Ω(R) with the
complex number z = x+ it ∈ C.
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Figure 2. An Airy function is approximated by a CR-mapping.

Definition 5.1 ([NQC]). A CR-mapping is a lattice-function ψε : Ωε(R) → C such
that for all z∗ ∈ Ωε

∗(R) ⊂ C,

(5.1) CR
(
ψε(z∗ + ε

2 ), ψε(z∗ + i ε
2 ), ψε(z∗ − ε

2 ), ψε(z∗ − i ε
2 )
)

= −1.

CR-mappings are suitable discrete analogues of holomorphic functions in the
sense that any holomorphic function can be locally approximated.

Theorem 5.2. Assume φ : Ω(R) → C is a holomorphic function with φ′(0) �= 0.
Then there are positive constants r < R and Cmn, so that for each ε > 0, a CR-
mapping ψε is defined on Ωε(r) and approximates φ in C∞:

sup
z∈Ωε

m+n(r)

|δm
x δ

n
t ψ

ε(z) − ∂m
x ∂

n
t φ(z)| ≤ Cmnε

2.(5.2)

Proof. As a first step, an equation of type (2.1) is derived for an arbitrary CR-
mapping ψε : Ωε(R) → C. Denote by T± the shift operators

(T+h)(z) = h(z + ε
2 (i+ 1)), (T−h)(z) = h(z + ε

2 (i− 1)).

The edges,

αε = (T+ψ
ε − ψε)/ε, βε = (T−ψε − ψε)/ε,(5.3)

naturally satisfy the closure condition

αε + T+β
ε = βε + T−αε.(5.4)

Let further the function Qε be given as the quotient

(5.5) Qε = βε/αε.

In terms of these variables, the cross-ratio equation (5.1) implies T+β=−(Qε)−1
T−α,

and the following two formulas are obtained:

T−αε =
1 −Qε

1 +Qε
Qε αε, T+α

ε = −1 −Qε

1 +Qε

αε

T+Qε
.(5.6)

Their compatibility condition T+(T−αε) = T−(T+α
ε) provides a discrete analogue

of the Cauchy-Riemann equation:
Qε(z + i ε

2 )
Qε(z − i ε

2 )
=

1 +Qε(z + ε
2 )

1 −Qε(z + ε
2 )

· 1 −Qε(z − ε
2 )

1 +Qε(z − ε
2 )

for all z ∈ Ωε
∗(R).(5.7)
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Now introduce vε : Ωε
∗(R) → C by

(5.8) i exp(εvε(z)) = Qε(z − i ε
2 ).

Expressing the relation (5.7) in terms of vε, one obtains

δtv
ε = iδxv

ε + F ε(vε)(5.9)

which is in the form of the discrete equation (2.1) with M = i and

F ε(v+, v−, v∗) =
1
ε2

(g(εv+) − g(εv−)),(5.10)

g(V ) = log
(
−i exp(V )

1 + i exp(V )
1 − i exp(V )

)
.(5.11)

Note that vε is defined on Ωε
∗(R) instead of Ωε(R). Except for a minor mix-up of

notation, this obviously does not affect any of the results.

Lemma 5.3. For any solution vε : Ωε
∗(r) → C to (5.9), there exists a corresponding

CR-mapping ψε : Ωε(r) → C. It is uniquely determined by vε up to Euclidean
motions and a homothety.

Proof of Lemma 5.3. Let ẑ be the “bottom” of Ωε(r), i.e., ẑ = −irε ∈ Ωε(r) with
r − ε

2 < rε ≤ r. Assign αε(ẑ) an arbitrary, nonzero number Aε ∈ C. Equation
(5.8) defines Qε from vε, and (5.6) defines αε on Ωε(r). Consistency is provided,
i.e. T+(T−αε) = T−(T+α

ε), because Qε solves (5.7). Let βε = Qεαε. Assign
an arbitrary number Ψε ∈ C to ψε(ẑ), then define ψε on Ωε(r) according to (5.3).
Compatibility (5.4) is guaranteed because αε solves (5.6). To verify that ψε is indeed
a CR-mapping, combine equations (5.6) and (5.4). Variations of Aε correspond to
rigid rotations and dilations of the whole lattice ψε, variations of Ψε to translations.

�

Proof of Theorem 5.2, continued: The continuous counterpart of vε is

(5.12) u(z) = −1
2
φ′′(z)
φ′(z)

,

which is defined on some Ω(R) with R > 0 small enough (since φ′(0) �= 0 by
hypothesis). To justify this ansatz, define

aε = (T+φ− φ)/ε, bε = (T−φ− φ)/ε(5.13)

as analogues of αε and βε, respectively. By Taylor expansion, one finds

bε(z) = i exp(εu(z + i ε
2 ))aε(z) + O(ε2),(5.14)

T−aε(z) =
1 − i exp(εu(z + i ε

2 ))
1 + i exp(εu(z + i ε

2 ))
i exp(εu(z + i ε

2 ))aε(z) + O(ε2),(5.15)

corresponding to (5.5) and (5.6), respectively. The Cauchy-Riemann equation
for u,

(5.16) ∂tu = i∂xu,

corresponds to M = i and f ≡ 0 in problem (1.1). Since g(0) = g′(0) = g′′(0) = 0
by (5.11), one easily verifies |F ε(v+, v−, v∗)| ≤ Kε|v+ − v−|, so the function F ε in
(5.10) satisfies the estimate (2.2). Let vε be the solution to (5.9) with initial data
(2.3) obtained from the function u in (5.12). Theorem 2.2 yields approximation of
u by vε, according to estimate (2.4).
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By Lemma 5.3, vε corresponds to a CR-mapping ψε. Fix ψε by choosing ψε(ẑ) =
φ(ẑ) and αε(ẑ) = (T+φ(ẑ)−φ(ẑ))/ε. It remains to be shown that approximation of
u by vε implies approximation of φ by ψε. Smooth approximation is again proven
with the help of suitable norms, which are in this case

(5.17) ‖wε‖(N) =
∑

m+n≤N

1
m!n!

max
z∈Ωε

m+n(r)
|δm

x δ
n
t w

ε(z)|.

This norm is submultiplicative, so Lemma 3.2 applies. The other essential ingredi-
ent is

Lemma 5.4. For v : Ωε(r) → Cd, and N ≥ 0, one has

‖v‖(N+1) ≤ Cr(|v(z1)| + |v(z2)| + ‖δxv‖(N) + ‖δtv‖(N)),(5.18)

where z1, z2 ∈ Ωε(r) are arbitrary points with 0 < |z1 − z2| < ε.

Proof of Lemma 5.4. From the definition, it is clear that

‖v‖(N+1) ≤ max
z∈Ωε(r)

|v(z)| + ‖δxv‖(N) + ‖δtv‖(N).

Write z1 = (t1, x1), z2 = (t2, x2) and let z = (t, x) ∈ Ωε(r) be arbitrary. There
exist integers P and Q with t = ti + εP and x = xi + εQ for either i = 1 or i = 2.
Naturally, ε|P | + ε|Q| ≤ 2r. Thus

|v(z)| ≤ |v(zi)| + ε

P∑
p=1

|δxv(zi + p′ε− ε
2 )| + ε

Q∑
q=1

|δtv(z − iqε+ i ε
2 )|

≤ |v(zi)| + 2r(‖δxv‖(N) + ‖δtv‖(N)).

So (5.18) holds with Cr = 1 + 2r. �

Proof of Theorem 5.2, continued: At this point, it is sensible to introduce the no-
tion ũε = O∞(εp) for a family of smooth functions ũε : Ω(r) → Cd, meaning that
‖ũε‖CN (Ω) < CNε

p for all N ≥ 0, with suitable constants CN > 0.

Lemma 5.5. Let ũ : Ω(r) → Cd be an arbitrary smooth function. For natural
numbers m,n, one has

(5.19) [∂m
x ∂

n
t ũ]ε = δm

x δ
n
t [ũ]ε + O∞(ε2).

Moreover, for λx, λt ∈ R, define ũε±(x, t) = ũ(x± ελx, t± ελt). Then

ũε
+ + ũε

− = 2ũ+ O∞(ε2),(5.20)

ũε
+ − ũε

− = 2ε(λx∂xũ+ λt∂tũ) + O∞(ε3).(5.21)

The identity (5.19) is proven in the appendix. The derivation of the properties
(5.20), (5.21) is analogous.

It is clear from Theorem 2.2 and Lemma 5.5 that ‖[u]ε − vε‖(N) = O(ε2) for
arbitrary N . It is now shown that this implies

‖αε − aε‖(N) = O(ε2).(5.22)

Introduce the functions gε, Gε by

(5.23) α(z) = exp(gε(z))α(ẑ), a(z) = exp(Gε(z))a(ẑ).
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Combining the formulas in (5.6) yields the simple relation

τxα
ε = T

−1
− (T+α

ε) =
−1

(τxQε)(T
−1
− Qε)

αε, so δxgε = −(T+v
ε + vε).

Adopting the notion O∞(ε2), and using the rules (5.20) and (5.21),

∂xG
ε(z) =

T+φ
′ − φ′

T+φ− φ
(z) =

φ′′

φ′
(z + 1+i

2
ε
2 ) + O∞(ε2)

= −2u(z + 1+i
2

ε
2 ) + O∞(ε2) = −(T+u+ u)(z) + O∞(ε2).

Similar identities are derived for δtgε and ∂tG
ε, so that

‖δx(gε −Gε)‖(N) + ‖δt(gε −Gε)‖(N) ≤ 4‖[u]ε − vε‖(N) + O(ε2) = O(ε2).

As αε(ẑ) = aε(ẑ) by construction, the asymptotic estimates (5.14), (5.15) yield
T−αε(ẑ) = T−aε(ẑ) + O(ε2). Hence also gε(ẑ) = Gε(ẑ) = 0 and T−gε(ẑ) =
T−Gε(ẑ) + O(ε2). Lemma 5.4 gives

‖Gε − gε‖(N) ≤ CN‖[u]ε − vε‖(N).

By means of the composition estimate (3.8),

‖αε − aε‖(N) ≤ ‖ exp(gε) − exp(Gε)‖(N) |α(ẑ)| = O(ε2),

and this implies (5.22). An analogous argument gives the respective approximation
of bε by βε.

In the second step, ψε and φ are reconstructed from αε, βε and aε, bε, respec-
tively. By definition of these quantities,

δxψ
ε(z) = αε(z − ε

2 ) − βε(z + ε
2 ), δx[φ]ε(z) = aε(z − ε

2 ) − bε(z + ε
2 ),

δtψ
ε(z) = αε(z − i ε

2 ) + βε(z + ε
2 ), δt[φ]ε(z) = aε(z − i ε

2 ) + bε(z + ε
2 ).

By construction of ψε, one has ψε(ẑ) = φ(ẑ), and also T+ψ
ε(ẑ) = T+φ(ẑ) +

O(ε2) because αε(ẑ) = aε(ẑ) + O(ε2). Applying Lemma 5.4 to [φ]ε and ψε gives
‖[φ]ε − ψε‖(N) = O(ε2) and thus the desired final result (5.2). �

6. Schramm’s orthogonal patterns

In [Sch], Schramm-patterns (or orthogonal circle patterns) are proposed as dis-
crete analogues of conformal maps. A Schramm-pattern Cε assigns to each vertex
(x, t) ∈ Ω̃ε ⊂ (εZ)2 a circle Cε(x, t) in R2 ≡ C. The defining condition is that
circles belonging to neighboring vertices intersect orthogonally, and circles assigned
to opposite corners of an (εZ)2-square are tangent. So Cε(x, t) and Cε(x′, t′) in-
tersect orthogonally and are tangent, respectively, if |x − x′| + |t − t′| = ε and if
|x− x′| = |t− t′| = ε. For the formal definition, refer to the original article.

The theory developed here allows for an easy proof of local C∞-approximation of
conformal maps. The obtained local result differs in nature from the C0-convergence
theorem presented in [Sch], which deals with global boundary value problems.

For notational simplicity, the domain for an orthogonal circle pattern Cε is

Ω̃ε(r) = Ωε(r) ∩ (εZ)2,

containing half of the grid points of Ωε(r). In obvious analogy to Ωε
k(r), the sets

Ω̃ε
mn(r) ⊂ Ωε

m+n(r) are introduced so that the central difference quotient δm
x δ

n
t ψ

ε

of a function ψε on Ω̃ε(r) is naturally evaluated on Ω̃ε
mn(r). Note that Ω̃ε

mn and
Ω̃ε

nm do not coincide in general.
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Figure 3. An Airy function is approximated by a Schramm-pattern.

By the results in [Sch], a pattern Cε is – up to rigid motions – determined by
its radius function ρε, which assigns to each point (t, x) ∈ (εZ)2 the radius of the
circle Cε(t, x).

Theorem 6.1. Given a conformal map φ : Ω(R) → C with ∂xφ(0) �= 0, there is
a positive r < R, and there exists a family of orthogonal circle patterns Cε defined
on Ω̃ε(r) for all ε > 0 small enough, whose radii functions ρε are convergent to the
metric factor ρ = |∂xφ| of φ in C∞,

sup
(x,t)∈Ω̃ε

mn(r)

|δm
x δ

n
t ρ

ε(x, t) − ∂m
x ∂

n
t ρ(x, t)| ≤ Cmnε

2.(6.1)

Proof. The function log ρ is harmonic, i.e., satisfies Laplace’s equation

∂2
x(log ρ) + ∂2

t (log ρ) = 0.(6.2)

In terms of u(1) = ∂x(log ρ) and u(2) = ∂t(log ρ), harmonicity reads

∂t

(
u(1)

u(2)

)
=

(
0 1
−1 0

)
∂x

(
u(1)

u(2)

)
.(6.3)

For the radius function ρε of a Schramm-pattern, an “exponential Laplace equation”
has been derived in [Sch]. In our notations,
(6.4)

(τ2
xρ

ε)(τ2
t ρ

ε)(τ−2
x ρε)(τ−2

t ρε)
(ρε)2

=
(τ2

xρ
ε) + (τ2

t ρ
ε) + (τ−2

x ρε) + (τ−2
t ρε)

(τ2
xρ

ε)−1 + (τ2
t ρ

ε)−1 + (τ−2
x ρε)−1 + (τ−2

t ρε)−1
.

Recall that τx and τt denote the ε
2 -shift in the x- and t-direction, respectively, so

that τ±2
x and τ±2

t are shifts by ε. Equation (6.4) is satisfied by a positive function
ρε : Ω̃ε(r) → R+ if and only if it is the radius function of a Schramm-pattern.

Introduce functions vε
(1), v

ε
(2) by

exp(εvε
(1)) = (τxρε)/(τ−1

x ρε), exp(εvε
(2)) = (τtρε)/(τ−1

t ρε).(6.5)

Since ρε is given on Ω̃ε(r), vε
(1) and vε

(2) are a priori defined on different subsets of
Ωε∗(r). However, the domains of the difference quotients δtvε

(1) and δxvε
(2) coincide,

and the same is true for δxvε
(1) and δtv

ε
(2). Equation (6.4) and the compatibility
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condition δxvε
(2) = δtv

ε
(1) imply formally

δt

(
vε
(1)

vε
(2)

)
=

(
0 1
−1 0

)
δx

(
vε
(1)

vε
(2)

)
+
(

0
Gε

)
,(6.6)

with Gε = 1
ε2 log(Hε/H−ε),

Hε(v+, v−, v∗) = eεv+
(1) + e−εv−

(1) + e−εv∗
(2) − eε(v+

(1)−v−
(1)−v∗

(2)).

Suppose vε : Ωε
∗(r) → R

2 is a solution to (6.6), then the equations (6.5) are com-
patible. From the components vε

(1) and vε
(2), a solution ρε : Ω̃ε(r) → R+ to (6.5)

can be constructed and is uniquely determined up to a global scalar factor. (Note
that vε

(1) and vε
(2) are defined at more points than needed to calculate ρε. Actu-

ally, any solution vε to (6.6) corresponds to two independent Schramm-patterns.)
ρε satisfies the exponential Laplace equation (6.4), hence is the radius function of
some Schramm-pattern Cε on Ω̃ε(r).
H is an analytic function with respect to v+, v−, v∗ and ε. Keeping the values

of the v’s fixed, a simple calculation shows that(
d
dε

)k
∣∣∣∣∣
ε=0

log(Hε/H−ε) =
{

0 for k = 0, 1, 2,
(v+

(1) − v−(1)) · h(v) for k = 3,

where h is some analytic expression of the v’s. Hence |Gε| ≤ Kε|v+−v−|, implying
the estimate (2.2) for F . Now let vε be the solution to (6.6) with the restrictions
of u as initial data in (2.3). Theorem 2.2 applies and yields convergence of vε to u
on a suitable Ω(r).

Make the respective solution ρε of (6.5) unique by choosing ρε(0, 0) = ρ(0, 0).
From estimates completely analogous to those used in the proof of Theorem 5.2
(reconstruction of αε from vε) one obtains C∞-convergence of ρε to ρ. �

The radius function ρε : Ω̃ε(r) → R+ is accompanied by a function ψε :
Ω̃ε(r) → C, such that Cε(x, t) is the circle of radius ρε(x, t) > 0 around the center
ψε(x, t) ∈ C.

Theorem 6.2. Under the hypotheses of Theorem 6.1 and for every ε > 0 small
enough, there exists a Schramm-pattern Cε on Ω̃ε(r), such that the circle centers
ψε converge to the conformal map φ in C∞:

sup
(x,t)∈Ω̃ε

mn(r)

|δm
x δ

n
t ψ

ε(x, t) − ∂m
x ∂

n
t φ(x, t)| ≤ Cmnε

2.(6.7)

Proof. As pointed out before, the radius function alone determines the pattern Cε

– and hence ψε – up to a rigid motion. Formulas for the reconstruction of φ and
ψε from ρ and ρε, respectively, are now derived.

Introduce the real-valued function ω on Ω(R) by

(6.8) φ′ = ρ exp(iω),

where φ′(x, t) := ∂xφ(x, t) is holomorphic with respect to the complex variable
z = x+ it. The Cauchy-Riemann equations for φ′ read

∂xω = −∂t log ρ = −u(2),(6.9)
∂tω = ∂x log ρ = u(1),(6.10)

with u defined as before, u(1) = ∂x(log ρ), u(2) = ∂t(log ρ).
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ψoo
ψ+o

ψo+

ψ++

µ

ψooψ−o ψ+o

ψo−

ψo+

µ1µ2

µ3 µ4

Figure 4. Relations between centers of adjacent circles

Analogous quantities and relations are now given for an arbitrary Schramm-
pattern Cε. Define the real functions ωε and dε on Ω̃ε

1,0(r) by

δxψ
ε = dε exp(iωε),(6.11)

with dε(x, t) denoting the Euclidian distance between the circle centers ψε(x+ ε
2 , t)

and ψε(x+ ε
2 , t), and ωε(x, t) the slope of their connecting line to the x-axis.

In Figure 4, two pieces of a Schramm-pattern are displayed. From the left sketch,
it is clear that

∠(ψ++ − ψ0+, ψ+0 − ψ00) = ∠(µ, ψ0+, ψ++) − ∠(ψ00, ψ+0, µ)

= arctan
(
ρ++

ρ0+

)
− arctan

(
ρ00

ρ+0

)
.

Introducing vε by the formulas (6.5),

δtω
ε = gε(τtvε

(1), τ
−1
t vε

(1)),(6.12)

gε(v+, v−) = 1
ε

(
arctan exp(εv+) − arctan exp(−εv−)

)
.

From the sketch on the right, it follows that

∠(ψ+0 − ψ00, ψ00 − ψ−0) = ∠(µ4, ψ00, µ3) − ∠(µ1, ψ00, µ2)

= arctan
(
ρ0−
ρ00

)
− arctan

(
ρ0+

ρ00

)
.

Expressed in terms of ωε and vε, this yields:

δxω
ε = −gε(τtvε

(2), τ
−1
t vε

(2)).(6.13)

With formulas (6.12) and (6.13) at hand, the argument of the proof for Theorem
6.1 is continued. Let ρε : Ω̃ε(r) → R+ be the radius function approximating
the conformal factor ρ of φ, and vε the corresponding quantity approximating
u. Further, let ψε be the function of center positions of the unique Schramm-
pattern determined by the radius function ρ̂ε = ερε/

√
2, which also satisfies the

side conditions ψε(0) = φ(0) and ωε(0, ε
2 ) = ω(0, ε

2 ).
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The same norms (5.17) are used as in the proof of Theorem 5.2. To prove C∞-
convergence of ωε to ω, observe that each gε is analytic and satisfies

|gε(v+, v−) − (v+ + v−)/2| ≤ K(ε+ |v+ − v−|)2.

Restating (6.10) in the form (recall the notion O∞(ε2) from section 5)

δt[w]ε(x, t) = 1
2 (u(x, t+ ε

2 ) + u(x, t− ε
2 )) + O∞(ε2),

one obtains, using Lemma 3.2,

‖δt([w]ε − ωε)‖(N) ≤ ‖gε(τtvε, τ−1
t vε) − 1

2 (τtvε, τ−1
t vε)‖ + ‖O∞(ε2)‖(N)

≤ K(ε+ ε‖δtvε‖(N))2 + ‖[u]ε − vε‖(N) + O(ε2).

Similarly, ‖δx([ω]ε−ωε)‖(N) = O(ε2). Now Lemma 5.4 gives ‖[ω]ε−ωε‖(N) = O(ε2).
Completely analogous estimates hold for the approximation of ω̃ and ω̃ε defined by

∂tφ = ρ exp(iω̃),(6.14)

δtψ
ε = d̃ε exp(iω̃ε).(6.15)

Equations (6.12) and (6.13) change in the obvious way, and the choice ωε( ε
2 , 0) =

ω( ε
2 , 0) implies that ω̃ε(0, ε

2 ) = π/2+ω̃(0, ε
2 )+O(ε2). Another application of Lemma

5.4 yields ‖ωε − [ω]ε‖(N) = O(ε2) and ‖ω̃ε − [ω̃]ε‖(N) = O(ε2).
Since the distance between the centers of two orthogonally intersecting circles

with radii ρ1 and ρ2 is

d =
√
ρ2
1 + ρ2

2 = ρ1

√
1 + (ρ2/ρ1)2,

the quantities dε and d̃ε are given by

dε =
√

1+exp(2εvε
(1))

2 (τ−1
x ρε), d̃ε =

√
1+exp(2εvε

(2))

2 (τ−1
t ρε).(6.16)

Now observe that1

ρ =
√
ρ2 =

√
τ−1

x ρ2+τxρ2

2 + O∞(ε2) =
√

1+(τxρ/τ−1
x ρ)2

2 (τ−1
x ρ) + O∞(ε2)

=
√

1+exp(2εu(1))

2 (τ−1
x ρ) + O∞(ε2).

Hence, with Lemma 3.2 it follows

‖δx(ψε − [φ]ε)‖(N) ≤ CN (‖ρε − [ρ]ε‖(N) + ‖ωε − [ω]ε‖(N)) + O(ε2),

‖δt(ψε − [φ]ε)‖(N) ≤ CN (‖ρε − [ρ]ε‖(N) + ‖ω̃ε − [ω̃]ε‖(N)) + O(ε2).

An application of Lemma 5.4 finishes the argument. �

1The reason formulas (6.16) are employed instead of the symmetric representation d =√
ρ2
1 + ρ2

2 is that the former is an analytic expression in ρ, u on some D(U) with arbitrarily

large U as ε → 0, whereas the latter has a singularity at ρ1 = ρ2 = 0.
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7. Appendix

Proof of Lemma 3.1. As a finite sum of norms, ‖ · ‖ρ is seen to constitute a norm
itself. The absolute bound is trivial.

Submultiplicativity: For two functions u, v : Iε
n → C,

‖uv‖ρ =
n∑

k=0

ρk

k!
sup

x∈Iε
n−k

|δk
x(uv)(x)|

≤
∑
k≤n

ρk

k!

k∑
�=0

(
k
�

)
sup

x∈Iε
n−�

|δ�
xu(x)| sup

y∈Iε
n−k+�

|δk−�
x v(y)|

≤
n∑

�=0

n∑
m=0

ρ�+m

�!m!
sup

x∈Iε
n−�

|δ�
xu(x)| sup

y∈Iε
n−m

|δm
x v(y)|

≤ ‖u‖ρ‖v‖ρ.

Discrete Cauchy estimate: For u : Iε
n → Cd,

‖u‖ρ + θ‖δxu‖ρ =
n∑

k=0

ρk

k!
max

x∈Iε
n−k

|δk
xu(x)| + θ

n−1∑
k=0

ρk

k!
max

x∈Iε
n−k−1

|δk+1
x u(x)|

≤
n∑

k=0

ρk

k!
(1 + θ

k

ρ
) max

x∈Iε
n−k

|δk
xu(x)|

≤
n+1∑
k=0

(ρ+ θ)k

k!
max

x∈Iε
n−k

|δk
xu(x)| = ‖u‖ρ+θ

because for k = 0, 1, . . ., one has 1 + kθ/ρ ≤ (1 + θ/ρ)k.
Restriction estimate: With the classical Cauchy estimate

sup
x∈I

|∂k
xu(x)| ≤ k!(1/ρ′)k sup

x∈Bρ′(I)
|u(x)|

it follows that

‖[u]ε‖ρ =
n∑

k=0

ρk

k!
sup

x∈Iε
n−k

|δk
x[u]ε(x)| ≤

n∑
k=0

ρk

k!
sup
x∈I

|∂k
xu(x)|

≤
(

n∑
k=0

(ρ/ρ′)k

)
sup

x∈Bρ′ (I)
|u(x)|.

Analyticity estimate: For simplicity, assume that all nε are odd. ‖vε‖ρ ≤ C
implies |δsvε(x)| ≤ Cs!ρ−s for all x ∈ Iε

nε and all s ≤ nε. Hence, for fixed s ≥ 0
and ε small enough, the sequence of interpolated functions Eδs

xv
ε is equicontinuous.

At s = 0, the Arzelà-Ascoli theorem yields a subsequence ε(0) → 0 of ε so
that Evε(0) converges uniformly to a continuous function u. From here, proceed
inductively: Assume that Eδs

xv
ε(s) converges uniformly to ∂s

xu. Apply the Arzelà-
Ascoli theorem at s+ 1 to obtain an infinite subsequence ε(s+ 1) of ε(s) for which
Eδs+1

x vε(s+1) converges uniformly to some u(s+1). To show that u(s+1) is indeed
the s+ 1st derivative of u, consider the identity

(δs
xu

ε(s+1))(x) = (δs
xu

ε(s+1))(0) + ε
∑

0≤j<J

(δs+1
x uε(s+1))( ε

2 + εj)
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with arbitrary x = εJ ∈ Iε
nε−s. This implies for the interpolated functions

(Eδs
xu

ε(s+1))(x) = (Eδs
xu

ε(s+1))(0) +
∫ x

0

(Eδs+1
x uε(s+1))(z) dz + O(ε′)

at arbitrary x ∈ I. Pass to the limit ε′ → 0 on both sides. u(s+1) is seen to be the
x-derivative of ∂s

xu, so u ∈ Cs(I). From the theorem on dominated convergence, it
follows for x ∈ I, ∑∞

s=0
ρs

s! |∂s
xu(x)| ≤ C.

So u possesses a convergent Taylor expansion around all x ∈ I, with convergence
radius ρ, and the analytic extension is bounded by C. �

Proof of Lemma 3.2. As |u(i)(ξ)| ≤ ‖u‖ρ < U/γ by hypothesis and property (1),
the composition g(u) is a well-defined function on the respective Iε

n. The estimate
(3.6) is derived as follows: Since g : Dp(U) → Cd is analytic, it has a power series
representation

g(u) =
∑

α∈N
p
0

∂αg(0)
α!

uα, uα =
∏p

j=1 u
αj

j ,(7.1)

where α = (α1, . . . , αp) denotes a multi-index. For the coefficients in (7.1), the
Cauchy integral representation yields

|∂αg(0)|
α!

=
1

(2π)p

∣∣∣ ∫
|µ1|=m1

dµ1 · · ·
∫
|µp|=mp

dµp
g(µ1, . . . , µp)

µα1+1
1 · · ·µαp+1

p

∣∣∣
≤ F (m1, . . . ,mp)

mα1
1 · · ·mαp

p
,

the mi being arbitrary numbers with 0 < mi < U . Choosing mi = γ‖u(i)‖ρ, it
follows from submultiplicativity and the basic norm properties of ‖ · ‖ρ that

‖g(u)‖ρ ≤ ∑
α

∣∣∣∣∂αg(0)
α!

∣∣∣∣ ‖uα‖ρ

≤ F (m1, . . . ,mp)
∑

α

((‖u(1)‖ρ

m1

)α1 · · ·
( ‖u(p)‖ρ

mp

)αp
)

≤ ∑
αγ

−|α| · F (γ‖u(1)‖ρ, . . . , γ‖u(p)‖ρ).

This proves the claim and also shows that Γ := (1 − 1/γ)−p is independent of the
norm ‖ · ‖ρ. �

Proof of Lemma 5.5. One starts with the representation

δm
x δ

n
t [u]ε(x, t) =

1
εm+n

∫
[− ε

2 ,+
ε
2 ]m

dmξ

∫
[− ε

2 ,+
ε
2 ]n

dnτ ∂m
x ∂

n
t u(x+ ξ̄, t+ τ̄ )

of arbitrary partial difference quotients, where ξ= (ξ1, . . . , ξm), τ= (τ1, . . . , τn),
and the notations ξ̄ =

∑m
i=1 ξi and τ̄ =

∑n
j=1 τj have been used. Then,

(δm
x δ

n
t [u]ε − ∂m

x ∂
n
t u)(x, t) =

∫
dξ dη

εm+n

∫ 1

0 ds ∂(ξτ)∂
m
x ∂

n
t u(x+ sξ̄, t+ sτ̄ )

=
∫
dξ dη

εm+n

∫ 1

0 ds
(
∂(ξτ)∂

m
x ∂

n
t u(x, t)︸ ︷︷ ︸

A(x,t)

+s
∫ 1

0 ds
′ ∂2

(ξτ)∂
m
x ∂

n
t u(x+ s′sξ̄, t+ s′sτ̄ )︸ ︷︷ ︸

B(x,t)

)
.
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Above, ∂(ξτ) = (ξ̄)∂x + (τ̄ )∂t. The integral over A vanishes because∫
dmξ

∫
dnτ∂(ξτ)f = 0

for an arbitrary ξ, τ -independent function f . As B(x, t) is an (x, t)-smooth func-
tion, one concludes (5.19). �
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