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SOME RATIONAL MAPS WHOSE JULIA SETS
ARE NOT LOCALLY CONNECTED

P. ROESCH

Abstract. We describe examples of rational maps which are not topologically
conjugate to a polynomial and whose Julia sets are connected but not locally
connected.

Introduction and motivations

The dynamics of a rational map f acting on Ĉ is concentrated on its Julia set
which is (by definition) the minimal compact set invariant by f and f−1 containing
at least three points. The question of local connectivity of the Julia set is impor-
tant when one wants to give a model of the dynamics on some part of this limit set
(using Carathéodory’s Theorem for instance), since on its complement, the Fatou
set, the dynamics is well understood. This question of local connectivity also con-
cerns the limit set of Kleinian groups, which is the minimal compact set invariant
by the group and which contains at least three points (in order to consider only
non-elementary Kleinian groups). There is a well-known analogy between theory
and results for these two dynamical systems on Ĉ = ∂B3 which is presented in the
dictionary of Sullivan (see [Su, McM1]). All known examples of Kleinian groups
have locally connected limit sets (provided they are connected) and there is a model
for the action of the group on its limit set; see [AnMa, McM2, Min]. On the other
hand, there are several examples of non-locally connected Julia sets for polynomi-
als ; for instance Douady, and Sullivan proved (see [Su]) that any polynomial which
has a Cremer periodic point has a non-locally connected Julia set ; there are also
several examples among infinitely renormalizable polynomials (see [Mi2, So]). This
is not the case for rational maps. Indeed, in [Ro] we give a family of rational maps
for which all Julia sets are locally connected. This family contains rational maps
with a periodic Cremer point but also rational maps which are infinitely renormal-
izable near a critical point. In both cases, the Julia set of the rational map contains
an homeomorphic image of a non-locally connected Julia set of a quadratic polyno-
mial. It is itself locally connected. What happens is that the Julia set is reconnected
by the boundary of small Fatou components that insert themselves “between the
hairs”. So, two questions arise naturally. First, are the polynomials very particular
cases that do not fit in Sullivan’s dictionary? More precisely, if we define genuine
rational maps as rational maps that are not topologically conjugated on any neigh-
borhood of the Julia set to a polynomial, the question is : Does there exist genuine
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rational maps for which the Julia set is not locally connected? Secondly, is the Julia
set of a genuine rational map having a quadratic-like restriction always reconnected
as in [Ro]?

In this article we give a very simple example that answers both questions.

Theorem 1. There exist parameters a ∈ C \ {±1, 0} such that the map fa(z) =

z3 z − a

1 − az
is a genuine rational map having a connected but not locally connected

Julia set. Moreover, fa is renormalizable near each critical point and the Julia set
of the renormalized polynomial is not locally connected.

We also describe very roughly the example of Ghys, Herman, Douady, and Sulli-
van which gives certainly the first genuine rational map with non-locally connected
Julia set. However this example is not renormalizable so does not answer the second
question.

Recall that a rational map is renormalizable if some iterate of it admits a restric-
tion which is quadratic like with connected Julia set.

Definition 0.1. A holomorphic map f : U ′ → U with U = f(U ′) ⊃ U ′ which is
proper and of degree 2 is called a quadratic-like map (after [DoHu2]) if U and U ′

are topological disks. Its filled Julia set is the set Kf =
⋂

f−n(U) and its Julia set
is the boundary ∂Kf .

Recall that a periodic point x of period k with multiplier λ = (fk)′(x) is called
respectively repelling, attracting, or indifferent if |λ| > 1, |λ| < 1, or |λ| = 1. There
are different kinds of indifferent cycles depending on θ ∈ R where λ = e2iπθ. If
θ ∈ Q, then the point x belongs to J(f) and is called a parabolic point. If θ ∈ R\Q
with x ∈ J(f), then the map is not linearizable near x and x is called a Cremer
point. If θ ∈ R \ Q with x /∈ J(f), then the map is conjugated to the rotation
z �→ e2iπθz on a disk containing x ; the maximal domain of linearization is a disk
called a Siegel disk and x is called a Siegel point.

1. The example of Ghys, Herman, Douady and Sullivan

Theorem 1.1 (Ghys, Herman, Douady, Sullivan). There exist quadratic polyno-
mials of the form P (z) = e2iπθz+z2 such that 0 is a Siegel fixed point and the Julia
set J(P ) is connected but not locally connected.

The proof of Theorem 1.1 can be found in [Do, Gh, He, Su, Za]. We will sketch
it but we will give the details of the construction of E. Ghys in order to deduce the
following corollary.

Proposition 1.2. There exist genuine rational maps whose Julia set is connected
but not locally connected. Furthermore, they are not renormalizable.

For a > 3, the Blaschke fraction fa(z) = z2 z − a

1 − az
induces a R-analytic diffeo-

morphism of S1. Indeed, except 0 and ∞, the critical points are real, distinct and
symmetric with respect to S1 so that there is an inverse image of S1 in D which
surrounds the pole 1/a and another inverse image outside D surrounding the zero
a. Multiplying by some e2iπt we get a new map fa,t = e2iπtfa, which restricts to a
diffeomorphism of S1 with rotation number denoted by α(t). If α(t) ∈ R \ Q, the
map fa,t is conjugated by an homeomorphism ha,t of S1 to the rotation Rα(t) (by
Denjoy’s Theorem). This conjugacy is unique up to composition with a rotation.
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Lemma 1.3 (Ghys). If the conjugacy ha,t is quasi-symmetric but not R-analytic,
the polynomial P (z) = e2iπα(t)z + z2 has a Siegel disk whose boundary is a quasi-
circle which does not contain the critical point.

The following work of M. Herman [He] provides examples of such conjugacies.

Lemma 1.4 (Herman). For a > 3, there exists t ∈ R such that α(t) ∈ R \ Q and
ha,t is quasi-symmetric but not C2.

Theorem 1.1 follows from Lemma 1.3, Lemma 1.4 and Lemma 1.5 in which we
take for C the boundary of the Siegel disk of P and p = ∞. We give the proof of
Lemma 1.5 since we will use it several times in the article.

Lemma 1.5 (Douady, Sullivan). Let f be a rational map with a super-attracting
fixed point p. Let B(p) denote the Fatou component containing p. If there is a
non-empty compact set C ⊂ ∂B(p) such that f |C is a bijection of C, then either
J(f) is not locally connected or C is a finite union of parabolic or repelling periodic
cycles.

Proof. We reproduce the proof of non-local connectivity given by Douady and Sul-
livan in the case of polynomials with Cremer points (see [Mi1, Su]). We assume for
contradiction that the Julia set is locally connected so that in particular B(p) is
simply connected and the boundary of B(p) is also locally connected. The map f
is conjugated on B(p) to z �→ zn for some n > 1 so by Caratheodory’s theorem we
can extend continuously the linearization φ to φ : D → B(p). The set Θ ⊂ R/Z of
angles θ such that φ(e2iπθ) ∈ C is stable by the multiplication τn(θ) = nθ. More-
over, since f |C is a bijection of C, the map τn is a bijection of Θ. Since Θ is a
compact subset of R/Z and the multiplication by n is expanding, Θ is reduced to a
finite number of points so that the angles in Θ are all periodic under multiplication
by n. Therefore C consists in periodic cycles which are either parabolic or repelling
by the Snail Lemma (see [Mi1]). �

Proof of Proposition 1.2. Consider a map fa,t with t given by Herman’s Lemma.
Let’s prove that it satisfies Proposition 1.2. It is a genuine rational map and the
proof of this fact is exactly the same as in Lemma 2.6, so we refer to it. To
see that the Julia set J(fa,t) is not locally connected we describe how one goes
from fa,t to P . This is done by Ghys’ Lemma via a surgery process on fa,t as
follows. The conjugacy ha,t extends to a K-quasi-conformal homeomorphism H

of D by Ahlfors-Beurling’s Theorem. The map T : Ĉ → Ĉ defined by T (z) =
fa,t(z) for |z| ≥ 1 and T (z) = H−1 ◦ Rα(t) ◦ H(z) on D, is continuous but not
holomorphic. Following E. Ghys, we are going to change the complex structure in
order to construct the desired polynomial. Let µ(z) be the Beltrami form on D

defined by µ =
(

∂H

∂z
/
∂H

∂z

)
dz

dz
. Then µ is invariant by T and has L∞ norm less or

equal to k = K−1
K+1 . For n ≥ 1, one extends µ on T−n(D) by the pull back (Tn)∗µ of

the form defined on D, and one sets µ = 0 on C \
⋃

n≥0

T−n(D). This Beltrami form

is clearly invariant by T and still satisfies ‖µ‖∞ ≤ k < 1. By Ahlfors-Bers, Morrey,
Boyarski’s Theorem, there exists a K-quasi-conformal homeomorphism G : Ĉ → Ĉ
integrating µ and tangent to identity near ∞. Therefore P = G ◦ T ◦ G−1 is a
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rational map, since it preserves the standard complex structure of Ĉ. This rational
map P has the following properties : it has no poles, and the point ∞ is fixed
and critical. Therefore P is a quadratic polynomial. Moreover, P is conjugated
on G(D) by H ◦ G−1 to the rotation Rα(t) in D, so that G(0) is a Siegel fixed
point. Moreover G(D) is exactly the Siegel disk. Indeed, if there is a topological
disk ∆ invariant by T larger than D, then the annulus ∆ \ D is invariant by P .
By the Schwarz reflection principle, it follows that P is analytically conjugated to
a rotation on the annulus ∆ ∩ ι(∆) where ι(z) = 1/z (the rotations are the only
automorphisms of annuli). Since this annulus contains S1, this contradicts the fact
that ha,t, which is not R-analytic, is unique up to composition with a rotation.
Finally, as G is an homeomorphism it preserves the local degree so that P has no
critical point on the boundary of the Siegel disk ∂G(D). This achieves the proof of
Ghys’ Lemma.

Proposition 1.2 follows now since the basins of ∞ — i.e., the connected com-
ponent containing ∞ of the complement of the Julia set — correspond to each
other. More precisely, let Ba,t(∞), resp. B(∞) denote the basin of ∞ for fa,t,
resp. for P ; then clearly G(Ba,t(∞)) = B(∞) and, since G is an homeomorphism,
G(∂Ba,t(∞)) = ∂B(∞). It is a classical fact that if the Julia set of fa,t is locally
connected, then ∂Ba,t(∞) (see [Wh]) is also locally connected. Its image ∂B(∞),
which is J(P ), is then also locally connected. This contradicts Theorem 1.1.

Now we are going to prove by contradiction that fa,t is not renormalizable near
the critical point ω+ in C\D (the argument is analogous for the symmetric critical
point ω− = 1/ω+). Assuming the contrary, there exist k ≥ 1 and disks U ′, U with
U ′ ⊂ U such that fk

a,t : U ′ → U is a degree two covering and fkn
a,t (ω+) ∈ U ′ for

every n ≥ 0. This property also holds when one replaces U ′ by any preimage U ′
i of

U ′ by fki
a,t which contains ω+ and U by Ui = fk

a,t(U ′
i). Note that S1 is contained

in every U ′
i . Indeed, for the polynomial P , the boundary of the Siegel disk is

contained in the accumulation set of the forward orbit of 0 (which is the critical
point of P ). Therefore S1, its image by G−1, is in the accumulation set of the
forward orbit of ω+ = G−1(0). So for any point x ∈ S1, one can extract from any
sequence (fnj

a,t(ω+))j∈N converging to x a subsequence of the form (fmjk+r
a,t (ω+))j∈N

with 0 ≤ r < k. Therefore fr
a,t(U ′

n) intersects S1 for any n ≥ 0. Moreover, S1 is
contained in U ′

i since the orbit of any point is dense in S1. As U ′
i is simply connected

it contains either D or Ĉ \ D so that its image fa,t(U ′
i) = Ĉ and thus U ′

i−1 = Ĉ
also. This contradicts the fact that fk : U ′ → U is a degree 2 proper map. �

If the conjugacy ha,t is not quasi-symmetric anymore, it is not possible to make
the surgery, as it has been done. Nevertheless, using Lemma 1.7 and Lemma 1.5,
we obtain the following result.

Proposition 1.6. For a > 3 and any t ∈ R such that the rotation number α(t) of
fa,t is irrational, the Julia set J(fa,t) is not locally connected.

Proof. We denote by Ba,t(∞) the immediate basin of ∞ for fa,t. As the orbit
of any point of the circle is dense in S1 (since the rotation number of fa,t|S1 is
irrational), if the boundary of Ba,t(∞) intersects S1, then it contains the entire
circle S1. Hence, according to Lemma 1.5 applied to C = S1 and to p = ∞ (recall
that fa,t|S1 is a diffeomorphism for a > 3, either ∂Ba,t(∞)∩S1 = ∅ or J(fa,t) is not
locally connected. We assume now that ∂Ba,t(∞) ∩ S1 = ∅ and that the Julia set
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is connected. Let U denote the connected component of C \Ba,t(∞) containing 0.
Since the closure Ba,t(∞) is connected, U is a topological disc. By assumption D is
compactly contained in U , so A = U \D is an annulus. If there is no critical point
in A, the map fa,t is an homeomorphism from A onto itself (since fa,t restricts to
a degree one map of S1). In this case, A is included in an Herman ring but this
contradicts the connectedness of the Julia set. Now, since there is a critical point in
U , there is a preimage of D in U because of the Riemann-Hurwitz formula applied
to A. Let us denote by D′ this preimage D′ = f−1

a,t (D) \D. It is homeomorphic to
D since for degree reason the non-zero critical point cannot be in D′. Its closure is
contained in A because D is in A and there is no critical point on S1 . Therefore
fa,t : A \D

′ → A is a double ramified covering and this contradicts Lemma 1.7. �

Lemma 1.7. Let A be an open annulus. There does not exist a disk D′ such that
D

′ ⊂ A with an holomorphic ramified covering f of degree 2 from A \ D
′
onto A.

Proof. Recall that the length-area method allows us to calculate the modulus of an
annulus A by the following formula : mod (A) = inf{aream(A) | m is allowable}.
Allowable metrics are conformal metrics of the form m(z) = ρ(z)|dz|, where ρ is
positive and measurable, m is of finite non-zero total area, and every non-zero
homotopic curve γ in A has length lm(γ) belonging to [1, +∞]. It is classical that
the infimum is reached only for the euclidean metric i.e., with ρ(z) = λ/|z| for some
λ > 0 on the round annulus rD \ D, r > 1.

We assume for contradiction that there exist an annulus A, a disk D′ with
D

′ ⊂ A and a ramified double covering f : A \D
′ → A. We will define an allowable

metric m on A for which mod (A) = aream(A) but which is zero on D′ and so
cannot be conformally equivalent to the flat one described above ; this will give
the contradiction. Let ψ be a conformal representation from A to Ar = rD \ D
and T ⊂ Ar be the straight half-ray T = (ψ(f(c)) × [1, +∞[) ∩ Ar, where c is
the ramification point of f . Note that T is a half-geodesic for the metric m0(z) =
|dz|/|z| on Ar. Its pullback δ in A \ D

′
i.e., δ = f−1(ψ−1(T )), is a simple arc. It

separates the annulus A into two components : a disk ∆ and an annulus A′ which
is isomorphically mapped by f to A \ f(δ). We define a conformal metric m on A
as the pullback of m0 on A′ i.e., (ψ ◦ f)∗m0, extended by 0 on ∆. This measurable
metric is also allowable. Indeed, every non-zero homotopic curve γ in A has length
greater than or equal to γ′, a component of γ∩A′ that is not zero-homotopic if one
adds δ to it. This implies that ψ ◦f(γ′) is not zero-homotopic in Ar when one adds
T to it. Therefore its length in the flat metric m0 is greater than the length of S1.
Hence lm0(ψ ◦ f(γ′)) > 1 and since lm(γ′) = lm0(ψ ◦ f(γ′)), we get that lm(γ) ≥ 1.
The metric m satisfies mod (A) = aream(A). Indeed, by definition of m we have
that aream(A) = aream(A′) = areaψ∗m0(A). On the other side, m0 is the flat
metric for which the infimum is reached, so areaψ∗m0(A) = mod (A). Therefore
mod (A) = aream(A), equality that provides the announced contradiction. �

2. The second example

This section deals with a different kind of example, namely with rational maps

in the family fa(z) = z3 z − a

1 − az
for a ∈ C \ {±1, 0}. It is devoted to the proof of

Theorem 1 which is very elementary and can be summarized as follows. We first
describe the dynamical properties of the particular map f5 and then we perturb it
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inside the family in order to “create” a Cremer point on the boundary of the basin
Ba(0). We denote by Ba(x) the Fatou component containing x. When x is an
attracting fixed point (like 0 or ∞ here), Ba(x) is the immediate basin of attraction
of x. In this case, Ba(x) has at most one other preimage that we denote by B′

a(x).

Figure 1. The preimages of B5(0), of B5(∞) and of the Julia
set of the quadratic-like restriction of f5 near p and near 1/p are
respectively in light color, between dark and light and in black.

Lemma 2.1. The map f5 is renormalizable near the parabolic fixed point p =
2 −

√
3. More precisely, there exist topological disks U ′, U such that f5 : U ′ → U

is a quadratic-like map and the boundaries ∂U , ∂U ′ are the union of parts of rays
and equipotentials in B5(0).

Proof. It is very easy to verify the following properties : The point 1 is a repelling
fixed point and the other fixed points are 0,∞, p = 2 −

√
3 and 1/p = 2 +

√
3,

these last two having multiplier −1 are parabolic ; there are only two critical points
different from 0 and ∞, we denote them by ω < 1 and 1/ω. As any parabolic point
should attract a critical point, ω is captured by p and 1/ω by 1/p (since the circle
S1 is invariant). Therefore the Böttcher map φ0

5 which conjugates f5 near 0 to z3,
with (φ0

5)′(0) = 1, is well defined from B5(0) to D. Rays can be defined as usual by
R0

5(θ) = (φ0
5)−1([0, 1)e2iπθ). As the rays R0

5(0) and R0
5(1/2) are fixed by f5, they

converge to a repelling or parabolic fixed point (see [DoHu1, Mi1]). If such a fixed
ray converges to the parabolic fixed point p, it has to go to p through a repelling
petal since the union of repelling and attracting petals of p form a neighborhood of
the parabolic point (see [Mi1]). This contradicts the fact that the repelling petals
are not fixed but exchanged by f5 since the multiplier is −1. Hence the rays R0

5(0)
and R0

5(1/2) converge to the repelling fixed point 1. Let V denote the bounded
connected component of C \

(
R0

5(0) ∪ R0
5(1/2)

)
. We now define the domain on
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which the map f5 admits a quadratic-like restriction. We assume, up to replacing
φ0

5(z) by φ0
5(−z), that V contains the rays of angle comprised between 0 and 1/2.

Hence the rays R0
5(1/3) and R0

5(1/6) are included in V and both converge to a
preimage of 1 (since they are in the preimage of R0

5(0) and R0
5(1/2)). There are

exactly four preimages of 1 : 1,−1, some α ∈ (0, 1) and 1/α > 1. Since only α
belongs to V ⊂ D, the two rays converge to α.

O′

O

0

1
2

V

Figure 2. The domain V

The open set bounded by (the closure of the four rays) R0
5(1/3), R

0

5(1/6), R0
5(0),

R
0

5(1/2) contains the critical point ω since it is a disk whose boundary is mapped
with degree two to its image. It follows that the parabolic fixed point p = 2 −

√
3

also belongs to this disk since the critical point is in a Fatou component containing
p in its boundary.

Let O be a small neighborhood of the repelling fixed point 1 such that f5(O) ⊃ O.
Consider the component O′ of the preimage of f5(O) containing α. For N large
enough, the rays R0

5(−1/3N ), R0
5(1/2+1/3N ) and R0

5(1/3−1/3N ), R0
5(1/6+1/3N )

converge in O and in O′ respectively. Indeed, f5 is geometrically finite (since the
critical points are attracted by the parabolic points p and 1/p, or are fixed) so
its Julia set and, in particular, the boundary of the Fatou components are locally
connected (see [Wh, TaYi]). This implies that the inverse of the Böttcher map
ψ = (φ0

5)−1 : D → B5(0) extends continuously to the boundary ; in particular the
four rays above converge and the landing points are near 1 or near α. Now we take
ε > 0 small enough so that the bounded connected component of C\ψ(εS1) does not
intersect O∪O′. Let Ω denote the connected component of C\(ψ(εS1)∪O∪O′∪γ)
containing p, where

γ = R0
5

(
1
3
− 1

3N

)
∪ R0

5

(
1
6

+
1

3N

)
∪ R0

5

(
− 1

3N

)
∪ R0

5

(
1
2

+
1

3N

)
.
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By construction, the restriction f5 : U ′ → U is a quadratic-like map where U ′ =
Ω ∪ O ∪ O′ and U = f5(U ′). �

Corollary 2.2. There exists a neighborhood Λ of a = 5, such that for a ∈ Λ, the
map fa has a fixed point p(a) which is a holomorphic function starting at p(5) =
p = 2−

√
3. Moreover there exist U ′(a), U(a) neighborhoods of p(a) which intersect

Ba(0) such that fa : U ′(a) → U(a) is a quadratic-like restriction.

Proof. Since the derivative of z �→ f5(z) − z does not vanish at z = p, one can
define in a small neighborhood of a = 5 an holomorphic map p(a), by the Implicit
Function Theorem, satisfying fa(p(a)) = p(a). Furthermore, quadratic-like maps
are stable. More precisely, there exists a smaller neighborhood Λ of 5 such that for
a ∈ Λ there are disks U ′(a) and U(a) for which fa : U ′(a) → U(a) is a quadratic-like
map. As U ′(a) varies continuously with a (see [DoHu1]), U ′(a) has to cross R0

a(0),
since U ′ intersects R0

5(0). �

Lemma 2.3. There exist parameters a ∈ Λ such that the fixed point p(a) is a
Cremer point.

Proof. Let for θ ∈]α, β[⊂ S1, hθ(z) be an holomorphic function in z, continuous in
θ which for each θ is not the zero function. It follows from a classical argument
(based on the Rouché Theorem) that the set C of θ ∈]α, β[ such that 0 is a Cremer
fixed point for the function gθ(z) = e2iπθz +z2hθ(z), is a residual set of ]α, β[. Here
we can write τ−1◦fa◦τ (z) = λ(a)z+z2la(z) where λ(a) = f ′

a(p(a)), τ (z) = z+p(a)
and la(z) is holomorphic in z, continuous in a and not identically 0 since fa”(z)
is not identically zero. Moreover the function a �→ λ(a) cannot be constant equal
to −1 since the set A of parameters a ∈ C such that fa has a fixed point of multiplier
−1 is a finite set. Indeed, the fixed points of fa in C are solutions of a polynomial
equation P (a, z) = 0 and the fixed points z with multiplier −1 are solutions of
another polynomial equation Q(a, z) = 0 (which corresponds to f ′

a(z) = −1). So
for a ∈ A the resultant Ra of P (a, .) and Q(a, .) vanishes ; Ra is a polynomial in a
and so has a finite number of roots, if it is not the zero polynomial. For a = 4 the
fixed points 0,∞, 1, 3−

√
5

2 and 3+
√

5
2 , are all attracting except 1 which is repelling ;

so Ra is not the zero map. As λ is a non-constant holomorphic map, λ(Λ) is an
open neighborhood of λ(5) = −1. Therefore one can define an analytic curve γ ⊂ Λ
on which λ restricts to an homeomorphism onto some small arc {e2iπθ | θ ∈]α, β[}.
We denote by a : ]α, β[→ γ the “inverse” of λ satisfying λ ◦ a(θ) = e2iπθ. Let C be
the set of θ ∈]α, β[ such that e2iπθz + z2la(θ)(z) has a Cremer point. It is a residual
set in ]α, β[ so that there are parameters a ∈ γ satisfying the Lemma. �

Corollary 2.4. For any parameter a provided by Lemma 2.3, the Cremer point
p(a) is on the boundary of Ba(0).

Proof. Let φ denote the quasi-conformal homeomorphism conjugating fa : U ′(a) →
U(a) to a quadratic polynomial Pc : W ′ → W where W ′, W are the neighborhoods
of J(Pc) images of U ′(a) and U(a) respectively by φ (see [DoHu2]). By Corol-
lary 2.2, the immediate basin Ba(0) crosses U ′(a) ; let x be a point in Ba(0)∩U ′(a).
Its image y = φ(x) lies in W ′. Its backward orbit under Pc accumulates every point
of J(Pc), so that there exists a sequence (yn) of iterated preimages by Pc converg-
ing to the Cremer fixed point φ(p(a)) ∈ J(Pc). Hence the sequence xn = φ−1(yn)
converges to p(a) and stays in Ba(0). Indeed, for a ∈ Λ consider the curve
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γa = R
∞
a (1/3)∪R

∞
a (1/6) image by ι(z) = 1/z of the curve δa = R

0

a(1/3)∪R
0

a(1/6).
For a0 = 5, δa0 is a Jordan curve that surrounds the pole 1/a0 ∈ [0, 1] (since it
is not in U(a0)). Hence γa0 surrounds the zero a0 and, since O is small, γa0 does
not intersect U(a0). This situation is stable for a near a0 (since the point 1 is still
repelling). Therefore, γa separates B′

a(0) from U(a). For this reason xn ∈ Ba(0)
and p(a) is on the boundary of Ba(0). �

Figure 3. Julia set around the fixed point p(a) for a near 5

Lemma 2.5. For any parameter a given by Lemma 2.3, the Julia set J(fa) is
connected but not locally connected.

Proof. The Julia set is connected since it satisfies clearly the condition of
Shishikura’s Theorem : A rational map, which has at most one weakly repelling
fixed point (i.e. repelling or with multiplier exactly 1), has a connected Julia set.
Moreover it follows directly from Lemma 1.5 applied to the compact C = p(a) that
J(fa) is not locally connected. �

Lemma 2.6. For any parameter a given by Lemma 2.3, the map fa is a genuine
rational map.

Proof. The maximum principle easily implies the following topological property for
the Julia set J of a polynomial. Let K be any connected set contained in J , let U
be a neighborhood of J and z1, z2 ∈ J \ K ; then there exists a path γ ⊂ U \ K
joining z1 to z2. As we show next, this property is not satisfied here by fa, so
fa is a genuine rational map. We consider the curve la = R

0

a(0) ∪ R0
a(1/2). For

a = 5 it separates B′
a(∞) from Ba(∞) (see Lemma 2.1). This curve is stable in

the neighborhood Λ of 5 since the point 1 remains repelling. Therefore the curve
la still separates B′

a(∞) from Ba(∞). Let x ∈ ∂B′
a(0) ∩ ∂Ba(∞), for instance on
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∂Ba(∞) (considering the rays in Ba(∞)). Let x′ be its preimage on ∂B′
a(∞); x

and x′ cannot be connected by a path in the complement of K = ∂Ba(0) (which
is a connected subset of the Julia set) since the curve la separates them (any path
should cross la and therefore ∂Ba(0)). �

3. Other examples?

Note that the two examples we have described “come from polynomials” (in
different ways). So it would be very interesting to find an example without any
references to polynomials.

Question 3.1. Does there exist a rational map f , that has no connection with
polynomials, such that J(f) is connected but not locally connected?

Another related question would be to prove that non-local connectivity does not
come from Fatou components :

Question 3.2. Does there exist a rational map f such that J(f) is connected, not
locally connected and the boundary of every Fatou component is locally connected.

Recall that if J(f) is locally connected, the boundary of every Fatou component
is locally connected (see [Wh]).
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