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AN EXTENSION OF THE MASKIT SLICE
FOR 4-DIMENSIONAL KLEINIAN GROUPS

YOSHIAKI ARAKI AND KENTARO ITO

Abstract. Let Γ be a 3-dimensional Kleinian punctured torus group with
accidental parabolic transformations. The deformation space of Γ in the group
of Möbius transformations on the 2-sphere is well known as the Maskit slice
M1,1 of punctured torus groups. In this paper, we study deformations Γ′ of Γ
in the group of Möbius transformations on the 3-sphere such that Γ′ does not
contain screw parabolic transformations. We will show that the space of the
deformations is realized as a domain of 3-space R3, which contains the Maskit
slice M1,1 as a slice through a plane. Furthermore, we will show that the
space also contains the Maskit slice M0,4 of fourth-punctured sphere groups
as a slice through another plane. Some of the other slices of the space will be
also studied.

1. Introduction

Let Γ be a 3-dimensional Kleinian once-punctured (or simply punctured) torus
group with accidental parabolic transformations, which acts on the Riemann sphere
Ĉ as Möbius transformations. In this paper, we regard Γ as a 4-dimensional Kleinian
group and study deformations Γ′ of Γ in the group of Möbius transformations on
the 3-sphere R̂

3 = R
3∪{∞}; a Kleinian group Γ′ is called a deformation of Γ if there

is an isomorphism φ : Γ → Γ′ which takes a parabolic transformation to a parabolic
transformation. Especially, we focus on all deformations {φ : Γ → Γ′} of Γ such
that φ takes a pure parabolic transformation to a pure parabolic transformation;
the definition of a pure/screw parabolic transformation will be described below (see
also 2.5).

The n-dimensional sphere R̂n = Rn ∪ {∞} is naturally identified with the ideal
boundary of the (n + 1)-dimensional hyperbolic space Hn+1. Therefore, the group
Möb(R̂n) of orientation preserving Möbius transformations of R̂n is identified with
the group Isom(Hn+1) of orientation preserving isomorphisms of Hn+1. A discrete
subgroup of Isom(Hn+1) = Möb(R̂n) is said to be an (n + 1)-dimensional Kleinian
group.

3-dimensional Kleinian groups are well studied in various contexts; for example,
hyperbolic geometry, 3-dimensional topology, complex analysis, etc. We refer the
reader to Kapovich [8] and Marden [11] for overviews of the theory of 3-dimensional
Kleinian groups. On the other hand, the study of Kleinian groups in higher dimen-
sions is more wild and is far from getting the whole picture. We refer the reader
to Apanasov [2] and Kapovich [7] for more information in this area. Among higher
dimensional Kleinian groups, the study of 4-dimensional Kleinian groups should be
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interesting in its own light because they have “fractal” limit sets in the 3-sphere
R̂3 into which our geometric insight work well. Some examples of 4-dimensional
Kleinian groups with computer graphics of their limit sets can be found in Ahara–
Araki [1].

We now move into a more detailed argument. In what follows, we regard
Möb(R̂2) as a subgroup of Möb(R̂3) by embedding R̂2 into R̂3 by (x, y) �→ (x, y, 0).
Recall that the group Möb(R̂2) is naturally identified with the group Aut(Ĉ) of
conformal automorphisms of the Riemann sphere Ĉ, or the group of linear frac-
tional transformations. Let Γ ⊂ Möb(R̂2) be a Kleinian punctured torus group with
accidental parabolic transformations; that is, Γ is a 3-dimensional Kleinian group
such that the quotient manifold H3/Γ is homeomorphic to the trivial interval bun-
dle over a punctured torus, and the ideal conformal boundary of H3/Γ is a union
of a punctured torus and a thrice-punctured sphere. Then Γ is a rank-2 free group
and a pair of generators α, β ∈ Möb(R̂2) of Γ can be chosen so that β and the
commutator [α, β] of the generators are parabolic. The following normalization of
such a group Γ up to conjugation is fundamental.

Lemma 1.1 (cf. [9] and [10]). Let Γ = 〈α, β〉 be a (not necessarily discrete) rank-2
free group in Möb(R̂2) such that β and [α, β] are parabolic. Then there is a complex
number µ ∈ C such that Γ is conjugate in Möb(R̂2) to the group Gµ = 〈Aµ, B〉
generated by two Möbius transformations

Aµ(τ ) =
1
τ

+ µ and B(τ ) = τ + 2.(1.1)

We define:

M1,1 = {µ ∈ C : Gµ = 〈Aµ, B〉 is a rank-2 free Kleinian group}.

This set is known as the Maskit slice of 3-dimensional Kleinian punctured torus
groups (see [10] for more information).

In this paper we want to consider deformations of a 3-dimensional Kleinian group
Gµ = 〈Aµ, B〉 with µ ∈ M1,1 in the group Möb(R̂3). To explain our results, we
need to recall a classification of elements of Möb(R̂3); see Section 2 for more details.
Similar to the case of Möb(R̂2), elements of Möb(R̂3) are classified into three types:
elliptic, parabolic and loxodromic transformations. Especially a transformation in
Möb(R̂3) is parabolic if it has exactly one fixed point in R̂3. Those parabolic ele-
ments are further classified into two types: a parabolic transformation f ∈ Möb(R̂3)
is said to be pure parabolic if it is conjugate in Möb(R̂3) to a translation, and screw
parabolic otherwise. A screw parabolic transformation is conjugate to a composition
of a rotation and a translation along a common axis.

The first goal of this paper is to show the following theorem which is an analogue
of Lemma 1.1 for groups in Möb(R̂3):

Theorem 1.2 (Theorem 4.5). Let Γ = 〈α, β〉 be a (not necessarily discrete) rank-
2 free group in Möb(R̂3) such that β and [α, β] are pure parabolic. Then there
is a point p = (p, q, r) in R

3 such that Γ is conjugate in Möb(R̂3) to the group
Gp = 〈Ap, B〉 generated by

Ap(x, y, z) =
(x,−y, z)

x2 + y2 + z2
+ (p, q, r)
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and
B(x, y, z) = (x, y, z) + (2, 0, 0).

It is just a technical reason why we assume in the theorem above that β and
[α, β] are “pure parabolic” instead of “parabolic” and it is more natural to con-
sider the case where β and [α, β] could be screw parabolic. In fact, suppose
that a homeomorphism f : R̂3 → R̂3 conjugates a 3-dimensional Kleinian group
Γ ⊂ Möb(R̂2) with a parabolic transformation γ ∈ Γ to a 4-dimensional Kleinian
group Γ′ = fΓf−1 ⊂ Möb(R̂3). Then the transformation fγf−1 ∈ Γ′ could be
screw parabolic in general (see 2.5). Unfortunately, we do not know the result
of Theorem 1.2 with “pure parabolic” replaced by “parabolic.” We also remark
that, recently, Y. Kim and K. Sakugawa independently announced that the level
2 congruence subgroup of the modular group, the rank-2 free group Γ = 〈α, β〉 in
Möb(R̂2) such that α, β and αβ are parabolic, has a continuous family of deforma-
tions {Γ′} in Möb(R̂3) such that Γ′ are Kleinian groups containing screw parabolic
transformations (see also Theorem 4.2 and its remark).

We define:

M̂1,1 = {p = (p, q, r) ∈ R
3 : Gp = 〈Ap, B〉 is a rank-2 free Kleinian group}.

The next purpose of this paper is to understand the shape of the set M̂1,1. We
remark that if p = (p, q, 0), the group Gp = 〈Ap, B〉 is nothing but the Poincaré
extension of the group Gµ = 〈Aµ, B〉 with µ = p + iq. Therefore M̂1,1 contains
M1,1 as a slice through the plane r = 0 in the parameter space R3 = {p = (p, q, r)}.
On the other hand, we will show in Section 5 that the slice of M̂1,1 through the
plane q = 0 is the Maskit slice M0,4 of 3-dimensional fourth-punctured sphere
groups which is defined by

M0,4 = {µ ∈ C : Hµ = 〈B, C, Dµ〉 is a rank-3 free Kleinian group},
where B(τ ) = τ + 2, C(τ ) = τ/(2τ + 1) and Dµ(τ ) = C(τ − µ) + µ (see Section 3).

Theorem 1.3 (Theorems 5.4 and 5.7). The Maskit slice M0,4 appears as the slice
of M̂1,1 through the plane q = 0. Moreover, there is a constant 0 < ϕ0 < π/2 such
that for every θ ∈ [−ϕ0, ϕ0], M0,4 also appears as the slice through the plane q = 0
with angle θ rotated along the p-axis.

Although the boundary of the slices of M̂1,1 through the planes r = 0 and q = 0
are so called “fractal,” we will also obtain in Section 5 the following theorem (see
also Figure 1).

Theorem 1.4 (Corollary 5.11). The boundary of the slice of M̂1,1 through the
plane p = 0 is a union of countably many analytic arcs.

One can find in Figure 2 some computer graphics of the limit sets of the groups
Gp for parameters p ∈ R3 which lie (or seem to lie) in the set M̂1,1. These figures
can be seen as 3-dimensional extensions of the beautiful patterns in the complex
plane included in the book by Mumford, Series and Wright [15].

We remark that Möbius transformations in Möb(R̂3) can be related to two-by-
two matrices whose entries lie in the quaternion algebra; see Cao–Parker–Wang [5].
However, in this paper, we take a geometric approach and make use of geometric
techniques in the theory of Kleinian groups, instead of calculating in the quaternion
algebra.
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Figure 1. A schematic figure of slices of M̂1,1 through the planes
p = 0, q = 0 and r = 0.

This paper is organized as follows: In Section 2, we recall some basic facts
of Möbius transformations. In Section 3, we recall the definition of the Maskit
slice M1,1 (resp. M0,4) of 3-dimensional punctured torus groups (resp. fourth-
punctured sphere groups). In Section 4, we prove Theorem 1.2 on a normalization
of 4-dimensional punctured torus groups with accidental parabolics. In Section 5,
we study the shape of the space M̂1,1 and prove Theorems 1.3 and 1.4. As an
application of Theorem 1.2, we give in Section 6, Appendix, an example of a family
of 4-dimensional Kleinian groups with 3-generators, which contain punctured torus
groups as 2-generator subgroups.

2. Preliminaries

In this section, we recall from Beardon [4] and Matsumoto [13] the basic facts
of Möbius transformations on an n-dimensional sphere R̂n = Rn ∪ {∞}. In the
succeeding sections, we are mainly concerned with the cases of n = 2, 3.

2.1. Inversions. For x = (x1, . . . , xn) ∈ Rn,

|x| =
√

x2
1 + · · · + x2

n

denotes the Euclidean norm of x. An (n − 1)-dimensional sphere σ in R̂n is either
an Euclidean sphere {x ∈ R

n : |x − a| = r} with a ∈ R
n, r > 0, or an (n − 1)-

dimensional Euclidean plane P plus {∞}. The inversion Jσ : R̂n → R̂n in the
sphere σ is defined as follows: if σ = {x ∈ Rn : |x − a| = r}, then

Jσ(x) = r2 x − a

|x − a|2 + a,(2.1)
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Figure 2. Computer graphics of the limit sets Λ(Gp) of Gp re-
stricted to the domain {(x, y, z) ∈ R3 : |x| ≤ 3}. The brightness
of a point (x, y, z) ∈ Λ(Gp) depends on its z-value. These are the
views from the same point.
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and if σ = P ∪ {∞}, then Jσ is the reflection in the plane P . In particular, we
denote the inversion in the unit sphere at the origin by

J(x) =
x

|x|2 .

Then the inversion Jσ in (2.1) is written as

Jσ(x) = r2J(x − a) + a.(2.2)

2.2. Möbius transformations. A Möbius transformation on R̂n is a product of
finite numbers of inversions in codimension one spheres in R̂n. We denote by
Möb(R̂n) the group of orientation preserving Möbius transformations. It is known
that the group Möb(R̂n) is equal to the group of all orientation preserving conformal
automorphism of R̂n. In particular, the group Möb(R̂2) is naturally identified with
the group Aut(Ĉ) of orientation preserving conformal automorphism of Ĉ and with
the Lie group PSL2(C). The followings are typical examples of transformations
f : R̂n → R̂n in Möb(R̂n):

• A translation: f(x) = x + a, where a ∈ Rn. We denote by Ta(x) = x + a.
• A magnification: f(x) = λx, where λ > 0.
• An orthonormal transformation: f(x) = P (x), where P ∈ SO(n).

General Möbius transformations can be written as follows.

Lemma 2.1 (Theorem 3.5.1 in [4]). Let f ∈ Möb(R̂n).
(1) If f(∞) = ∞, then f(x) = λP (x) + u, where λ > 0, P ∈ SO(n) and

u ∈ Rn.
(2) If f(∞) 
= ∞, then f(x) = λPJ(x−u)+v, where λ > 0, P ∈ O(n)\SO(n)

and u, v ∈ R
n.

2.3. Isometric spheres. Let f ∈ Möb(R̂n) be the same as in Lemma 2.1(2). Note
that u = f−1(∞) and v = f(∞). The isometric sphere I(f) of f is defined by

I(f) = {x ∈ R
n : |x − u| =

√
λ}.

It follows from the equality (2.2) that the inversion in I(f) is written as JI(f)(x) =
λJ(x−u)+u. Thus the transformation f(x) = λPJ(x−u)+v can be written as

f(x) = P (JI(f)(x) − u) + v.

From this, one can observe that f maps the interior of I(f) = {x ∈ Rn : |x − u| =√
λ} onto the exterior of I(f−1) = {x ∈ R

n : |x − v| =
√

λ}. In particular, the
map f restricted to I(f) is an isometry.

2.4. Poincaré extensions. We embed R̂
n in R̂

n+1 in the natural way by
(x1, . . . , xn) ∈ Rn �→ (x1, . . . , xn, 0) ∈ Rn+1 and ∞ �→ ∞. Then for every
f ∈ Möb(R̂n), there is a unique f̃ ∈ Möb(R̂n+1), called the Poincaré extension
of f , such that f̃ |

R̂n = f . In fact, if f is a composition of inversions in (n − 1)-
dimensional spheres σ1, . . . , σk in R̂n, f̃ is obtained by the composition of inver-
sions in n-dimensional spheres σ̃1, . . . , σ̃k in R̂

n+1, where σ̃i is the sphere which is
orthogonal to R̂

n at σi. In this way, Möb(R̂n) can be regarded as a subgroup of
Möb(R̂n+1). Let

Hn+1 = {(x1, . . . , xn+1) ∈ R
n+1 : xn+1 > 0}
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denote the upper half-space of R̂n+1 equipped with the hyperbolic metric ds2 =
(dx2

1+· · ·+dx2
n+1)/x2

n+1. It is the upper half-space model of the (n+1)-dimensional
hyperbolic space. For every f ∈ Möb(R̂n), its Poincaré extension f̃ ∈ Möb(R̂n+1)
induces an orientation preserving isomorphism of Hn+1. In this way, Möb(R̂n) can
be identified with the group Isom(Hn+1) of orientation preserving isomorphism of
Hn+1.

2.5. Classifications of Möbius transformations.

Definition 2.2. Let f ∈ Möb(R̂n) = Isom(Hn+1). We say that f is elliptic if f has
a fixed point in Hn+1. If f is not elliptic, f is said to be parabolic if f has exactly
one fixed point in R̂

n, and loxodromic if f has exactly two fixed points in R̂
n.

It is known that every element f ∈ Möb(R̂n) is either elliptic, parabolic or loxo-
dromic (see (2.23) in [13]). To describe a standard form of elliptic transformations,
it is convenient to consider in the unit ball model Bn+1 = {x ∈ Rn+1 : |x| < 1} of
the hyperbolic space: In this setting, if f ∈ Isom(Bn+1) is elliptic with f(0) = 0,
then f(x) = P (x) for some P ∈ SO(n + 1). In the rest of the paper, we always
consider in the upper half-space model of the hyperbolic space. Standard forms of
parabolic and loxodromic transformations are given in the following:

Lemma 2.3 ((2.24) in [13]). Let f ∈ Möb(R̂n).

(1) If f is a parabolic transformation with a fixed point ∞, then f(x) = P (x)+
u for some u ∈ R

n \ {0} and P ∈ SO(n) with P (u) = u.
(2) If f is a loxodromic transformation with fixed points 0,∞, then f(x) =

λP (x) for some λ > 0 with λ 
= 1 and P ∈ SO(n).

Definition 2.4 (pure parabolic and screw parabolic). A parabolic transformation
f ∈ Möb(R̂n) is said to be pure parabolic if it is conjugate to a translation x �→ x+u,
and screw parabolic otherwise.

We now observe the case of n = 3. Since every P ∈ SO(3) has an eigenvalue of
1, we have the following:

Lemma 2.5. Let f ∈ Möb(R̂3).

(1) If f is parabolic, it is conjugate in Möb(R̂3) to a transformation given by⎛⎝ x1

x2

x3

⎞⎠ �→

⎛⎝ cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎞⎠ ⎛⎝ x1

x2

x3

⎞⎠ +

⎛⎝ 0
0
1

⎞⎠ ,(2.3)

where 0 ≤ θ < 2π. (Then f is pure parabolic if and only if θ = 0.)
(2) If f is loxodromic, it is conjugate in Möb(R̂3) to a transformation given by⎛⎝ x1

x2

x3

⎞⎠ �→ λ

⎛⎝ cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎞⎠ ⎛⎝ x1

x2

x3

⎞⎠ ,

where λ > 1 and 0 ≤ θ < 2π.

It is worth noting that in Möb(R̂3) a pure parabolic transformation is topologi-
cally conjugate to any screw parabolic transformation. More precisely, a translation
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(x1, x2, x3) �→ (x1, x2, x3) + (0, 0, 1) is conjugate to a screw parabolic transforma-
tion of the form (2.3) by an orientation-preserving homeomorphism f : R̂

3 → R̂
3

defined by ⎛⎝ x1

x2

x3

⎞⎠ �→

⎛⎝ cos(x3θ) − sin(x3θ) 0
sin(x3θ) cos(x3θ) 0

0 0 1

⎞⎠⎛⎝ x1

x2

x3

⎞⎠ .

2.6. Kleinian groups. A discrete subgroup Γ of Isom(Hn+1) = Möb(Rn) is called
an (n + 1)-dimensional Kleinian group. It is known that Γ is a Kleinian group if
and only if Γ acts properly discontinuously on Hn+1; that is, given any compact
subset K ⊂ Hn+1, the set {γ ∈ Γ : γ(K) ∩ K 
= ∅} is finite.

Let Γ be an (n + 1)-dimensional Kleinian group. The domain of discontinuity
Ω(Γ) ⊂ R̂n of Γ is defined to be the set of points x ∈ R̂n such that there is a
neighborhood U of x such that the set {γ ∈ Γ : γ(U) ∩ U = ∅} is finite. The
complement of Ω(Γ) in R̂n is called the limit set of Γ, and denoted by Λ(Γ).

2.7. Notation. Throughout this paper, we use the following notation:
• If S is a subset of a group G, we denote by 〈S〉 ⊂ G the subgroup generated

by S.
• According to the usual convention, a Möbius transformation f ∈ Möb(R̂2)

is written in a linear fractional form

f(τ ) =
aτ + b

cτ + d
(a, b, c, d ∈ C)

by identifying R̂2 with the Riemann sphere Ĉ.
• A Möbius transformation f : R̂3 → R̂3 in Möb(R̂3) is written as a function

f(x) of x = (x, y, z) ∈ R
3.

• We denote by Pz=0 the plane {(x, y, z) ∈ R3 : z = 0} and by Pr=0 the plane
{(p, q, r) ∈ R3 : r = 0} and so on. In addition, we write P̂z=0 = Pz=0∪{∞}
and P̂r=0 = Pr=0 ∪ {∞} and so on.

3. Groups in Möb(R̂2)

In this section, we recall some basic facts of Kleinian groups in Möb(R̂2) which
are isomorphic to the fundamental groups of a thrice-punctured sphere, a fourth-
punctured sphere or a punctured torus. We refer the reader to Kra [9] and Keen–
Series [10].

A surface Σg,n of type (g, n) is an oriented closed surface of genus g with n
punctures. If n > 0, the fundamental group π1(Σg,n) of Σg,n is a free group. A
representation ρ : π1(Σg,n) → Möb(R̂2) is said to be type-preserving if it takes
a loop surrounding a puncture to a parabolic transformation. In this section, we
consider images of faithful type-preserving representations ρ : π1(Σg,n) → Möb(R̂2)
for (g, n) = (0, 3), (0, 4) and (1, 1). We choose generators for π1(Σ0,3) = 〈b, c〉,
π1(Σ0,4) = 〈b, c, d〉 and π1(Σ1,1) = 〈a, b〉 as in Figure 3. We define groups of type
(0, 3), (0, 4) and (1, 1) in Möb(R̂2) as follows:

Definition 3.1. Let Γ be a subgroup of Möb(R̂2).
• Γ is said to be of type (0, 3) if it is the image of a faithful, type-preserving

representation ρ : π1(Σ0,3) = 〈b, c〉 → Möb(R̂2), or equivalently, if it is a
rank-2 free group 〈β, γ〉 such that β, γ and βγ are parabolic.
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Figure 3. Surfaces Σ0,3, Σ0,4 and Σ1,1, and free homotopy classes
of elements of their fundamental groups.

• Γ is said to be of type (0, 4) if it is the image of a faithful, type-preserving
representation ρ : π1(Σ0,4) = 〈b, c, d〉 → Möb(R̂2) such that ρ(b) is para-
bolic, or equivalently, if it is a rank-3 free group 〈β, γ, δ〉 such that β, γ, δ, βγ
and βδ are parabolic.

• Γ is said to be of type (1, 1) if it is the image of a faithful, type-preserving
representation ρ : π1(Σ1,1) = 〈a, b〉 → Möb(R̂2) such that ρ(b) is parabolic,
or equivalently, if it is a rank-2 free group 〈α, β〉 such that β and [α, β] is
parabolic.

3.1. Groups of type (0, 3). Observe that the subgroup 〈B, C〉 of Möb(R̂2) gen-
erated by

B(τ ) = τ + 2 and C(τ ) =
1

B( 1
τ )

=
τ

2τ + 1

is of type (0, 3). It is known that any group of type (0, 3) in Möb(R̂2) is conjugate
to this group:

Lemma 3.2. Let Γ = 〈β, γ〉 be a rank-2 free subgroup of Möb(R̂2) such that β, γ

and βγ are parabolic. Then Γ is conjugate in Möb(R̂2) to the group 〈B, C〉 defined
above.

3.2. Groups of type (0, 4). For a given µ ∈ C, let

Hµ = 〈B, C, Dµ〉

be the group in Möb(R̂2) generated by

B(τ ) = τ + 2, C(τ ) =
τ

2τ + 1
and Dµ(τ ) = C(τ − µ) + µ.

It is known that any group of type (0, 4) in Möb(R̂2) is normalized in this form:

Lemma 3.3. Let Γ = 〈β, γ, δ〉 be a rank-3 free subgroup of Möb(R̂2) such that
β, γ, δ, βγ and βδ are parabolic. Then Γ is conjugate in Möb(R̂2) to Hµ = 〈B, C, Dµ〉
for some µ ∈ C.

A fundamental domain for Hµ with Imµ ≥ 1 is given in the left of Figure 4. The
Maskit slice of groups of type (0, 4) in Möb(R̂2) is defined by

M0,4 = {µ ∈ C : Hµ = 〈B, C, Dµ〉 is a rank-3 free Kleinian group}.

Some basic properties of M0,4 can be found in the next subsection.
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Figure 4. Fundamental domains (the shaded regions) for Hµ

(left) and Gµ (right).

3.3. Groups of type (1, 1). For a given µ ∈ C, let

Gµ = 〈Aµ, B〉
be the group in Möb(R̂2) generated by

Aµ(τ ) =
1
τ

+ µ and B(τ ) = τ + 2.

It is known that any group of type (1, 1) in Möb(R̂2) is normalized in this form:

Lemma 3.4. Let Γ = 〈α, β〉 be a rank-2 free subgroup of Möb(R̂2) such that β and
[α, β] are parabolic. Then Γ is conjugate in Möb(R̂2) to Gµ = 〈Aµ, B〉 for some
µ ∈ C.

A fundamental domain for Gµ with Imµ ≥ 2 is given in the right of Figure 4.
The Maskit slice of groups of type (1, 1) in Möb(R̂2) is defined by

M1,1 = {µ ∈ C : Gµ = 〈Aµ, B〉 is a rank-2 free Kleinian group}
(see also Figure 5). It is easy to see that M1,1 is invariant under the maps µ �→ µ+2
and µ �→ −µ, and that M1,1 contains the set {µ ∈ C : |Im µ| ≥ 2}. It is also known
that the Maskit slice M1,1 is contained in the set {µ ∈ C : |Im µ| > 1} (cf. [10]).
Furthermore, Minsky [14] showed that M1,1 consists of two connected components
and that each connected component of M1,1 plus {∞} is a closed topological disc
in Ĉ.

We now mention the relationship between the Maskit slices M0,4 and M1,1.
First observe for every µ ∈ C that

C = A−1
µ BAµ and Dµ = AµBA−1

µ .

Thus Hµ = 〈B, C, Dµ〉 is always a subgroup of Gµ = 〈Aµ, B〉. This implies that
M1,1 ⊂ M0,4. Furthermore, it is known by Kra that M0,4 is similar to M1,1:

Theorem 3.5 (Kra [9]). The map τ �→ 2τ of C onto itself induces a bijective map
from M0,4 onto M1,1.
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Figure 5. The Maskit slice M1,1 (black part) restricted to the
domain {µ ∈ C : 0 ≤ Re µ ≤ 2, 1 ≤ Im µ ≤ 3}.

4. Groups in Möb(R̂3)

We define 4-dimensional analogues of 3-dimensional groups of types (0, 3), (0, 4)
and (1, 1) as follows:

Definition 4.1. Let Γ be a subgroup of Möb(R̂3).
• Γ is said to be of type (0, 3) if it is a rank-2 free group 〈β, γ〉 such that β, γ

and βγ are pure parabolic.
• Γ is said to be of type (0, 4) if it is a rank-3 free group 〈β, γ, δ〉 such that

β, γ, δ, βγ and βδ are pure parabolic.
• Γ is said to be of type (1, 1) if it is a rank-2 free group 〈α, β〉 such that β

and [α, β] are pure parabolic.

As mentioned in Section 1, Introduction, it is just a technical reason why we
assume some elements of these groups are (not only parabolic but also) pure par-
abolic. In this section, we study normalizations of these groups in Möb(R̂3) up to
conjugation.

4.1. Groups of type (0, 3) in Möb(R̂3). Observe that the Poincaré extension of
the group 〈B(τ ) = τ + 2, C(τ ) = τ/(2τ + 1)〉 ⊂ Möb(R̂2) acting on Ĉ is given by

〈B(x) = x + (2, 0, 0), C(x) = JBJ(x)〉 ⊂ Möb(R̂3),

where Ĉ is identified with P̂z=0 ⊂ R̂3 via the map τ = x + iy �→ x = (x, y, 0),
and J(x) = x/|x|2 is the inversion in the unit sphere. (Here and hereafter, we use
the same symbols B, C for the Poincaré extensions of B, C ∈ Möb(R̂2) by abuse of
notation.) Any group of type (0, 3) in Möb(R̂3) is conjugate to this group:

Theorem 4.2. Let Γ = 〈β, γ〉 be a rank-2 free subgroup of Möb(R̂3) such that β,
γ and βγ are pure parabolic. Then Γ is conjugate in Möb(R̂3) to the group 〈B, C〉
defined above.

Proof. Observe first that Fix(β) 
= Fix(γ). In fact, if Fix(β) = Fix(γ), β commutes
with γ since both β, γ are pure parabolic. This contradicts that 〈β, γ〉 is free. There-
fore, after conjugating the group 〈β, γ〉 in Möb(R̂3) if necessary, we may assume
that β(∞) = ∞ and γ(0) = 0. Observe that there exist lines l and m through the
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origin 0 which are invariant under the actions of 〈β〉 and 〈γ〉, respectively. After
conjugating by an orthonormal translation if necessary, we may assume that both
l, m lie in the sphere P̂z=0. Then one can see that the group 〈β, γ〉 preserves the
sphere P̂z=0 and its orientation. Thus the result follows from Lemma 3.2. �

Remark. Recently, Y. Kim and K. Sakugawa independently announced (oral com-
munication) that there is a continuous family of rank-2 free Kleinian groups Γ =
〈β, γ〉 in Möb(R̂3) such that β, γ and βγ are (screw) parabolic.

In the next subsection, we need the following:

Corollary 4.3. Let 〈β, γ〉 be a rank-2 free subgroup of Möb(R̂3) such that β, γ
and βγ are pure parabolic. If β = B and γ(0) = 0, then γ = C±1; that is,
〈β, γ〉 = 〈B, C〉.

Proof. By Theorem 4.2, there is a transformation f ∈ Möb(R̂3) which conjugates
〈B, γ〉 to 〈B, C〉. Since J conjugates B and C each other, we may assume that
fBf−1 = B and fγf−1 = C±1. This implies that f(0) = 0 and f(∞) = ∞. Then
by Lemma 2.1, we have f = λP , where λ > 0 and P ∈ SO(3). Moreover, it follows
from the condition fBf−1 = B that f is a rotation along the x-axis. Since such f
conjugates C to itself, we have γ = f−1C±1f = C±1. �

4.2. Groups of type (0, 4). In this subsection, we will show that every group of
type (0, 4) in Möb(R̂3) is conjugate to a group of type (0, 4) in Möb(R̂2).

For a given p = (p, q, r) ∈ R
3, let

Hp = 〈B, C, Dp〉

be the subgroup of Möb(R̂3) generated by

B(x) = x + (2, 0, 0), C(x) = JBJ(x) and Dp(x) = C(x − p) + p.

Observe that if p lies in the plane Pr=0, the group Hp for p = (p, q, 0) is the
Poincaré extension of the group Hµ = 〈B, C, Dµ〉 for µ = p + iq defined in 3.2.

Theorem 4.4. Let Γ = 〈β, γ, δ〉 be a rank-3 free subgroup of Möb(R̂3) such that
β, γ, δ, βγ and βδ are pure parabolic. Then Γ is conjugate in Möb(R̂3) to Hp =
〈B, C, Dp〉 for some p = (p, q, 0) ∈ Pr=0.

Proof. Note that the subgroups 〈β,γ〉, 〈β, δ〉 of 〈β,γ, δ〉 are of type (0, 3) in Möb(R̂3).
Therefore, after conjugating 〈β, γ, δ〉 in Möb(R̂3) if necessary, we may assume that
β = B and Fix(γ) = 0, and hence that 〈β, γ〉 = 〈B, C〉 by Corollary 4.3. Since a
rotation along the x-axis conjugates the group 〈B, C〉 to itself, we may also assume
that the fixed point p := Fix(δ) of δ lies in the plane Pz=0. To obtain the result,
it suffices to show that 〈β, δ〉 = 〈B, Dp〉. Now let us conjugate the group 〈B, δ〉
by the translation T−1

p (x) = x − p to the group T−1
p 〈B, δ〉Tp = 〈B, T−1

p δTp〉.
Since T−1

p δTp fixes 0, we have 〈B, T−1
p δTp〉 = 〈B, C〉 from Corollary 4.3. Thus we

conclude that 〈B, δ〉 = Tp〈B, C〉T−1
p = 〈B, Dp〉. �

4.3. Groups of type (1, 1). In this subsection, we will obtain a normalization of
groups of type (1, 1) in Möb(R̂3). In contrast to the case of groups of type (0, 4),
we will see that the space of groups of type (1, 1) in Möb(R̂3) is strictly larger than
the space of groups of type (1, 1) in Möb(R̂2).
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For a given p ∈ R3, let

Gp = 〈Ap, B〉

be the subgroup of Möb(R̂3) generated by

Ap(x) = ĴJ(x) + p and B(x) = x + (2, 0, 0),

where
Ĵ(x, y, z) = (x,−y, z)

is the inversion in the sphere P̂y=0. Observe for every p ∈ R3 that

C = A−1
p BAp and Dp = ApBA−1

p .

Thus Hp = 〈B, C, Dp〉 is always a subgroup of Gp = 〈Ap, B〉. In addition, observe
that if p lies in the plane Pr=0, the group Gp for p = (p, q, 0) is the Poincaré
extension of the group Gµ = 〈Aµ, B〉 for µ = p + iq defined in 3.3. The next
theorem reveals that every group of type (1, 1) in Möb(R̂3) is conjugate to the
group Gp for some p ∈ R3. (We will prove a slightly stronger statement.)

Theorem 4.5. Let Γ = 〈α, β〉 be a rank-2 free group in Möb(R̂3) such that β is
pure parabolic and [α, β] is (not necessarily pure) parabolic. Then Γ is conjugate in
Möb(R̂3) to Gp = 〈Ap, B〉 for some p = (p, q, r) ∈ R

3.

Proof. We first show that Fix(α) ∩ Fix(β) = ∅. If not, we may assume that ∞ ∈
Fix(α) ∩ Fix(β). It then follows from Lemma 2.1 that α(x) = λP (x) + u and
β(x) = x + v for some λ > 0, P ∈ SO(3) and u, v ∈ R3. Then a calculation yields
[α, β](x) = x + λP (v) − v. Thus [α, β] is pure parabolic with the fixed point ∞.
This implies that β commutes with [α, β], which contradicts that 〈α, β〉 is free.

Therefore we may assume that β(∞) = ∞ and α(0) = ∞. It then follows from
Lemma 2.1 that α, β are of the forms α(x) = λPJ(x)+p and β(x) = x+u for some
λ > 0, P ∈ O(3)\SO(3) and p, u ∈ R3. We may further conjugate the group 〈α, β〉
by a transformation f ∈ Möb(R̂3) fixing 0 and ∞ without changing our assumptions
β(∞) = ∞, α(0) = ∞. Such a transformation is of the form f = λ′Q ∈ Möb(R̂3)
with λ′ > 0, Q ∈ SO(3) by Lemma 2.3. Therefore, after conjugating 〈α, β〉 by a
magnification if necessary, we may assume that the radius of the isometric sphere of
α equals 1, and hence that α, β are of the forms α(x) = PJ(x)+p and β(x) = x+u.
In addition, we claim that we may also assume that

u = (u, v, 0) and P−1(u) = (u,−v, 0)

for some u, v ≥ 0 after conjugating 〈α, β〉 by a suitable orthonormal transformation
if necessary. In fact, choose Q ∈ SO(3) so that Q(u) = (u, v, 0) and QP−1(u) =
(u,−v, 0). Then Q conjugates α(x) = PJ(x) + p to QαQ−1(x) = QPQ−1J(x) +
Q(p) and β(x) = x + u to QβQ−1(x) = x + Q(u). Now observe that (QPQ−1)−1

takes Q(u) = (u, v, 0) to QP−1(u) = (u,−v, 0). Therefore, replacing QPQ−1, Q(p)
and Q(u) by P , p and u, respectively, we obtain the claim.

Next we will show that u = P−1(u) = (2, 0, 0) by using the condition that [α, β]
is parabolic. Recall that Tv denotes the translation x �→ x + v with v ∈ R

3.
Using this notation, we have α(x) = TpPJ(x), β(x) = Tu(x), α−1 = JP−1T−p(x)
and β−1(x) = T−u(x). Then the transformation (βα)−1[α, β]βα = α−1β−1αβ is
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calculated as

α−1β−1αβ(x) = JP−1T−pT−uTpPJTu(x)

= JP−1T−uPJTu(x)
= JT−P−1(u)JTu(x),

where the last equality follows from P−1T−uP (x) = P−1(P (x)−u) = x−P−1(u) =
T−P−1(u)(x). Since u = (u, v, 0) and P−1(u) = (u,−v, 0) lie in the plane Pz=0,
the transformation α−1β−1αβ = JT−P−1(u)JTu preserves the sphere P̂z=0 and
its orientation. By letting µ = u + iv and identifying P̂z=0 with Ĉ via the map
x = (x, y, 0) �→ τ = x + iy, we see that the action of α−1β−1αβ restricted to the
sphere P̂z=0

∼= Ĉ is a Möbius transformation

τ �→ τ + µ

−µτ + 1 − µ2
,

whose matrix representation is(
1 µ
−µ 1 − µ2

)
∈ PSL2(C).

Since α−1β−1αβ is parabolic and Reµ = u ≥ 0, we conclude that µ = 2, and hence
that u = P−1(u) = (2, 0, 0).

Now let us denote by Rθ ∈ SO(3) the rotation of angle θ ∈ R along the x-axis.
Since P ∈ O(3) \ SO(3) and P (u) = u, we have P = RϕĴ for some ϕ ∈ R. Noting
that ĴR−θ = RθĴ and JRθ = RθJ for every θ ∈ R, we obtain

RθαR−1
θ (x) = Rθ(RϕĴJR−θ(x) + p) = Rϕ+2θĴJ(x) + Rθ(p),

RθβR−1
θ (x) = β(x).

Therefore, after conjugating 〈α, β〉 by Rθ with θ ≡ −ϕ/2 (mod π) if necessary, we
may assume that α, β are of the forms α(x) = Ap(x) = ĴJ(x) + p and β(x) =
B(x) = x + (2, 0, 0). Thus we obtain the desired normalization. �

Remark. The condition that the group Γ = 〈α, β〉 is free is only used to show that
Fix(α) ∩ Fix(β) = ∅.

5. The space of groups of type (1, 1) in Möb(R̂3)

We define the space of Kleinian groups of type (1, 1) in Möb(R̂3) by

M̂1,1 = {p = (p, q, r) ∈ R
3 : Gp = 〈Ap, B〉 is a rank-2 free Kleinian group}.

The aim of this section is to study the shape of M̂1,1 ⊂ R3. In particular, the slices
of M̂1,1 along the planes Pq=0 and Pp=0 will be studied.

Remark. Although B, [Ap, B] ∈ Gp are pure parabolic for every p, the possibility
remains that for some p ∈ M̂1,1, the group Gp has (accidental) screw parabolic
transformations. We do not know whether it does happen or not.

Observe that by definition we have

M̂1,1 ∩ Pr=0 = M1,1,

where the set M1,1 ⊂ C is regarded as a subset of the plane Pr=0 via the identifi-
cation C � p + iq �→ (p, q, 0) ∈ Pr=0.
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We next observe in Theorem 5.1 below that there are two subsets V1, V2 of the
parameter space R

3 = {p = (p, q, r)} such that V1 ⊂ M̂1,1 ⊂ V2 and that both
of them are invariant under the action of the rotation along the p-axis. Recall
that Rθ ∈ SO(3) ⊂ Möb(R̂3) denotes the rotation of angle θ ∈ R around the x-
axis. We also note that Rθ acts on the parameter space R3 = {p = (p, q, r)} as
a rotation around the p-axis. Furthermore, identifying Ĉ with P̂r=0 ⊂ R̂

3 via the
map µ = p + iq �→ p = (p, q, 0), we define a map Rθ : Ĉ → R̂

3 by

Rθ(µ) := Rθ(p) = (p, q cos θ, q sin θ).

Theorem 5.1. We have⊔
0≤θ<π

Rθ({µ ∈ C : |Im µ| ≥ 2}) ⊂ M̂1,1 ⊂
⊔

0≤θ<π

Rθ(M0,4).

Proof. Suppose first that p ∈ M̂1,1. Then Gp is discrete, and thus the subgroup
Hp ⊂ Gp is also discrete. Choose 0 ≤ θ < π and µ ∈ C such that p = Rθ(µ).
Then we have Hp = RθHµR−1

θ , where Hµ is naturally regarded as a subgroup of
Möb(R̂3). It then follows from the discreteness of Hp that µ ∈ M0,4, and hence
that p = Rθ(µ) ∈

⊔
0≤θ<π Rθ(M0,4).

Next suppose that p ∈ Rθ({µ ∈ C : |Im µ| ≥ 2}) for some 0 ≤ θ < π. Then
the interiors of the isometric spheres I(Ap) = {x ∈ R

3 : |x| = 1} of Ap and
I(A−1

p ) = {x ∈ R3 : |x − p| = 1} of A−1
p are disjoint. Therefore we can find a

fundamental domain for Gp = 〈Ap, B〉 in R̂3 as a 3-dimensional analogue of the
fundamental domain for Gµ in Ĉ as in Figure 4. Then by Poincaré’s polyhedron
theorem (see Maskit [12, IV, H] and the remark below), Gp is a rank-2 free Kleinian
group in Möb(R̂3). Thus we conclude that p ∈ M̂1,1. �

Remark. Poincaré’s polyhedron theorem for 3-dimensional polyhedra in R̂
3 with

side-pairing maps in Möb(R̂3) can be deduced from the theorem for 4-dimensional
polyhedra in H4 with side-pairing maps in Isom(H4); the precise statement can be
found in Maskit [12]. We remark that, in general, a polyhedron in R̂3 need not be
convex; see also Epstein–Petronio [6].

5.1. Slice through the plane Pq=0. The goal of this subsection is to show Theo-
rem 5.4, which states that the Maskit slice M0,4 of groups of type (0, 4) in Möb(R̂2)
appears as the slice of M̂1,1 through the plane Pq=0 = Rπ

2
(C).

Before starting the proof of Theorem 5.4, we will make some observations on
groups Gp ⊂ Möb(R̂3) with p ∈ Pq=0. Observe that if p ∈ Pq=0, the action of
Gp = 〈Ap, B〉 preserves the sphere P̂y=0. More precisely, let p = (p, 0, r) ∈ Pq=0

and µ = p+ ir ∈ C. Then the action of Gp = 〈Ap, B〉 restricted to the sphere P̂y=0

is given by

Ǧµ = 〈Ǎµ, B〉; Ǎµ(τ ) =
1
τ

+ µ, B(τ ) = τ + 2,

where P̂y=0 is identified with Ĉ via the map x = (x, 0, z) �→ τ = x + iz. (Here
we use the notation Ǧµ and Ǎµ to distinguish them from Gµ and Aµ defined in
3.3.) Note that Ǎµ is an orientation reversing conformal automorphism of Ĉ and
that Ǎ2

µ = A2
µ. Let Ǧ+

µ be the index two subgroup of Ǧµ of orientation preserving
transformations. Then we have

Ǧ+
µ = 〈Ǎ2

µ, Ǎ−1
µ BǍµ, B〉;
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in fact, one can check that Ǧ+
µ ⊂ Möb(R̂2) and [Ǧµ : Ǧ+

µ ] = 2. Now observe that

Ǎ−1
µ BǍµ(τ ) =

τ

2τ + 1
= C(τ )

and
ǍµBǍ−1

µ (τ ) = Dµ(τ ) = C(τ − µ) + µ.

It then follows that Hµ = 〈B, C, Dµ〉 is a subgroup of Ǧ+
µ = 〈B, C, Ǎ2

µ〉 and that
Ǧ+

µ = 〈Hµ, Ǎ2
µ〉. The statement of Theorem 5.4 can be rephrased so that Ǧ+

µ is
discrete provided that Hµ is discrete.

To prove Theorem 5.4, we need to recall some basic facts of the action of a group
Hµ = 〈B, C, Dµ〉 for µ ∈ M0,4 on Ĉ. For simplicity we assume that Imµ > 0, but
the argument for the case Im µ < 0 is parallel. Let J1 = 〈B, C〉 and J2 = 〈B, Dµ〉
be the subgroups of Hµ of type (0, 3), and let ∆1 = {τ ∈ C : Im τ < 0} and
∆2 = {τ ∈ C : Im τ > Im µ}. In this notation, we have the following:

Lemma 5.2 (cf. [9]). (1) Let i = 1, 2. The disc ∆i is a component of Ω(Hµ),
and is (Hµ, Ji)-invariant; that is, h(∆i) = ∆i for every h ∈ Ji and h(∆i)∩
∆i = ∅ for every h ∈ H \ Ji.

(2) h(∆1) ∩ ∆2 = ∅ for every h ∈ Hµ.
(3) The set Ω0(Hµ) := Ω(Hµ) \

⋃
h∈Hµ

h(∆1 ∪ ∆2) is either an empty set or a
connected component of Ω(Hµ) which is Hµ-invariant and simply connected.

We state below the second Klein–Maskit combination theorem for Kleinian
groups in Möb(R̂3) to what extent we need in the proof of Theorem 5.4 (and
its extension, Theorem 5.7). We refer the reader to Maskit [12, VII] for more
information.

Theorem 5.3 (the second Klein–Maskit combination theorem [12]). Let H ⊂
Möb(R̂3) be a torsion-free Kleinian group and A ∈ Möb(R̂3). Let J1, J2 be sub-
groups of H, and let B1, B2 ⊂ R̂3 be closed topological balls. If they satisfy the
following conditions (1)–(5), then G = 〈H, A〉 is discrete and isomorphic to the
HNN-extension H∗A of H by A:

(1) Let i = 1, 2. The interior B̊i of Bi is (H, Ji)-invariant; that is, h(B̊i) = B̊i

for every h ∈ Ji and h(B̊i) ∩ B̊i = ∅ for every h ∈ H \ Ji.
(2) h(B̊1) ∩ B̊2 = ∅ for every h ∈ H.
(3) The complement R̂3 \

⋃
h∈H h(B1 ∪ B2) has an interior point.

(4) The transformation A takes the interior of B1 onto the exterior of B2; that
is, A(B̊1) ∩ B̊2 = ∅ and A(∂B1) = ∂B2.

(5) J2 = AJ1A
−1.

Remark. The conditions (1), (2) and (3) guarantee that B̊1/J1 and B̊2/J2

can be embedded disjointly into Ω(H)/H, and that the complement Ω(H)/H \
(B̊1/J1 ∪ B̊2/J2) has an interior point. The conditions (4) and (5) guarantee
that the action of A descends to a pairing map of the resulting boundary of
Ω(H)/H \ (B̊1/J1 ∪ B̊2/J2).

For the convenience of the reader, we give a sketch of the proof of Theorem 5.3;
see [12, VII. D and E] for more details.

Sketch of proof of Theorem 5.3. Recall from [12] that the group H∗A is the free
group of words in A and the elements of H modulo equivalence induced from
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the relation J2 = AJ1A
−1. Therefore each element of H∗A is equivalent to a

word of the form Aαnhn · · ·Aα1h1 (αi ∈ Z, hi ∈ H) which satisfy the following
conditions: (1) hi 
= id for i > 1, (2) αi 
= 0 for i < n, (3) αi+1 < 0 if αi < 0
and hi+1 ∈ J1 \ {id}, and (4) αi+1 > 0 if αi > 0 and hi+1 ∈ J2 \ {id}. We denote
by Φ : H∗A → 〈H, A〉 ⊂ Möb(R̂3); Φ(Aαnhn · · ·Aα1h1) = Aαnhn · · ·Aα1h1 the
natural projection.

Now let us take an open set U in R̂
3 \

⋃
h∈H h(B1∪B2). Since H is a torsion-free

Kleinian group, we may assume that h(U)∩U = ∅ for every h ∈ H \ {id}. We will
show that Φ(g)(U) ∩ U = ∅ for every g = Aαnhn · · ·Aα1h1 
= id. This implies that
Φ is an isomorphism and 〈H, A〉 is discrete.

We first assume that n = 1. If α1 = 0, then g = h1 ∈ H \ {id} and thus
g(U) ∩ U = ∅. When α1 
= 0, g(U) = Aα1h1(U) lies in B̊1 if α1 < 0 and in B̊2 if
α1 > 0. In both cases we have g(U) ∩ U = ∅.

Next assume that n = 2. If α2 = 0, then g = h2A
α1h1 and g(U) ⊂⋃

h∈H h(B̊1 ∪ B̊2), which implies that g(U) ∩ U = ∅. When α2 
= 0, we can show
that g(U) = Aα2h2A

α1h1(U) ⊂ B̊1 ∪ B̊2. In fact, if h2A
α1h1(U) ⊂ B̊1, one can see

that h2 ∈ J1 and α1 < 0. This implies that α2 < 0 and that g(U) ⊂ B̊1. Similarly,
if h2A

α1h1(U) ⊂ B̊2 we have g(U) ⊂ B̊2. Finally, if h2A
α1h1(U) ⊂ R̂3 \ (B̊1 ∪ B̊2),

g(U) lies in B̊1 if α2 < 0 and in B̊2 if α2 > 0. Thus we have g(U) ⊂ B̊1∪ B̊2, which
implies that g(U) ∩ U = ∅ also in this case.

The proof for the case of n > 2 is obtained by induction. �

Applying Lemma 5.2 and Theorem 5.3, we can now prove the following:

Theorem 5.4. We have

M̂1,1 ∩ Pq=0 = Rπ
2
(M0,4).

Proof. It follows from Theorem 5.1 that if p ∈ M̂1,1 ∩ Pq=0, then p ∈ Rπ
2
(M0,4).

Conversely, suppose that p = (p, 0, r) ∈ Rπ
2
(M0,4), and hence that the subgroup

Hp = 〈B, C, Dp〉 of Gp is discrete. We assume for simplicity that the third coor-
dinate r of p = (p, 0, r) is positive, but the argument for the case r < 0 is almost
parallel. Let

B1 = {(x, y, z) ∈ R
3 : z ≤ 0} ∪ {∞},

B2 = {(x, y, z) ∈ R
3 : z ≥ r} ∪ {∞}

and

J1 = 〈B, C〉, J2 = 〈B, Dp〉.
We will check that Hp, Ap, B1, B2, J1 and J2 satisfy the conditions (1)–(5) in
Theorem 5.3. Now take µ ∈ M0,4 such that p = Rπ

2
(µ). Then Imµ > 0 by our

assumption r > 0. The map Rπ
2

: Ĉ → Rπ
2
(Ĉ) = P̂y=0 conjugates the action

of Hµ on Ĉ to the action of Hp on the sphere P̂y=0. Therefore the group Hp

can be regarded as the Poincaré extension of the group Hµ acting on the sphere
P̂y=0

∼= Ĉ (see the left of Figure 6). Thus the conditions (1) and (2) directly follow
from Lemma 5.2. Now observe that, for i = 1, 2, every orbit h(Bi) (h ∈ Hp) of
Bi except for Bi is a ball of radius ≤ r/2 with center in Py=0. Therefore one
can take an open domain, say, {(x, y, z) ∈ R3 : |x| > r/2, 0 < z < r} which
does not intersect

⋃
h∈H h(B1 ∪ B2). Thus the condition (3) follows. It is easy to
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check the condition (4). Finally, the condition (5) J2 = ApJ1A
−1
p follows from the

facts that B = ApCA−1
p and Dp = ApBA−1

p . Therefore Theorem 5.3 asserts that
Gp = 〈Hp, Ap〉 is discrete and isomorphic to the group Hp∗Ap

. Thus we conclude
that p ∈ M̂1,1. �

Figure 6. The balls B1, B2, C(B2) and Dp(B1) and the planes
Py=0 and Rθ(C) in the proofs of Theorems 5.4 (left) and 5.7 (right).
These are the views along the x-axis.

5.2. Slices through the planes Rθ(C). Recall from Theorem 5.4 that the Maskit
slice M0,4 appears as the slice of M̂1,1 through the plane Pq=0 = Rπ

2
(Ĉ). In this

subsection, we will extend this result to Theorem 5.7, which states that there is a
constant ϕ0 > 0 such that M0,4 also appears as the slice of M̂1,1 through the plane
Rθ(Ĉ) for every θ ∈ [π/2 − ϕ0, π/2 + ϕ0].

We first fix our terminology:

Definition 5.5 (lens). The intersection K1∩K2 of two spherical balls K1, K2 in R̂3

is called a lens. The inner angle of lens K1 ∩K2 is the interior angle ψ (0 < ψ < π)
formed by two faces of K1 ∩ K2.

The following lemma is essential in the proof of Theorem 5.7; this is a special
case of the collar lemma of Basmajian [3, Theorem 1.1].

Lemma 5.6 (Basmajian [3]). For a given µ ∈ M0,4, let ∆ be a non-invariant
component of Ω(Hµ). Let C(∆) be the convex hull of ∆ in H3, and let StabHµ

(∆)
denote the stabilizer of ∆ in Hµ. Then there is a constant k0 > 0, which does not
depend on the choices of µ ∈ M0,4 and ∆ ⊂ Ω(Hµ), such that the k0-neighborhood
of C(∆) in H3 with respect to the hyperbolic metric is (Hµ, StabHµ

(∆))-invariant.

Remark. Note that C(∆) ⊂ H3 ⊂ R̂
3 can be regarded as a lens in R̂

3 with inner
angle π/2. Similarly, the k0-neighborhood of C(∆) in H3 is a lens in R̂3 with inner
angle π/2 + ϕ0, where ϕ0 is the constant determined by k0.
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We give here a proof of Lemma 5.6 for the convenience of the reader.

Proof of Lemma 5.6. Since ∆ is a non-invariant component of Ω(Hµ), it follows
from Lemma 5.2 that the stabilizer StabHµ

(∆) of ∆ is a group of type (0, 3), and
that ∆ is (Hµ, StabHµ

(∆))-invariant. Therefore we only need to show that there
exists a constant k0 > 0, which does not depend on the choices of µ and ∆, such
that the hyperbolic distance from C(∆) to h(C(∆)) is greater than 2k0 for every
h ∈ Hµ \ StabHµ

(∆).
Now let ∂C(∆) denote the relative boundary of C(∆) in H3 and let r : H3 →

∂C(∆) be the nearest point retraction. For a given h ∈ Hµ \ StabHµ
(∆), let

U ⊂ ∂C(∆) denote the image of h(C(∆)) via the map r. Then one can check
that g(U) ∩ U = ∅ for every g ∈ StabHµ

(∆). Therefore the hyperbolic area
of U is bounded above by the hyperbolic area (= 2π) of the thrice-punctured
sphere ∂C(∆)/StabHµ

(∆). From this, we can deduce the existence of a desired
constant k0. �

Using Lemma 5.6, we can now prove the following:

Theorem 5.7. There is a constant 0 < ϕ0 < π/2 such that

M̂1,1 ∩ Rθ(C) = Rθ(M0,4)

for every θ ∈ [π/2 − ϕ0, π/2 + ϕ0].

Proof. The argument is similar to the argument of the proof of Theorem 5.4. Let
0 < ϕ0 < π/2 be the constant as in Remark of Lemma 5.6. We will show below
that for every θ ∈ [π/2 − ϕ0, π/2 + ϕ0] we have M̂1,1 ∩ Rθ(C) = Rθ(M0,4). By
symmetry, we may assume that π/2 − ϕ0 ≤ θ ≤ π/2.

It follows from Theorem 5.1 that if p ∈ M̂1,1 ∩ Rθ(C), then p ∈ Rθ(M0,4).
Conversely, suppose that p = (p, q, r) ∈ Rθ(M0,4), and hence that the subgroup
Hp = 〈B, C, Dp〉 of Gp is discrete. We again assume that r > 0. Let B1, B2 ⊂ R̂

3

and J1, J2 ⊂ Hp be the same as in the proof of Theorem 5.4. We will check that
Hp, Ap, B1, B2, J1 and J2 satisfy the conditions (1)–(5) in Theorem 5.3. Since the
conditions (4) and (5) are similarly satisfied, we only need to check the conditions
(1)–(3).

Now take µ ∈ M0,4 such that Rθ(µ) = p. Then Im µ > 0 by our assumption
r > 0. Observe that the action of group Hp preserves the sphere Rθ(Ĉ), and that
the map Rθ : Ĉ → Rθ(Ĉ) conjugates the action of Hµ on Ĉ to the action of Hp

on the sphere Rθ(Ĉ). Therefore the group Hp can be regarded as the Poincaré
extension of the group Hµ acting on the sphere Rθ(Ĉ) ∼= Ĉ (see the right of Figure
6). Observe that Rθ takes the components ∆1, ∆2 of Ω(Hµ) as in Lemma 5.2 to
the intersections

∆′
1 := B̊1 ∩ Rθ(Ĉ) and ∆′

2 := B̊2 ∩ Rθ(Ĉ)

of the balls B̊1, B̊2 with the sphere Rθ(Ĉ), respectively. Therefore ∆′
i is (Hp, Ji)-

invariant for i = 1, 2, and h(∆′
1) ∩ ∆′

2 = ∅ for every h ∈ Hp. Now let ϕ denote
π/2 − θ. Then our assumption π/2 − ϕ0 ≤ θ ≤ π/2 can be written as 0 ≤ ϕ ≤ ϕ0.
Let D1, D2 be the two components of R̂3 \Rθ(Ĉ) such that the inner angles of the
lenses D1 ∩ B1 and D2 ∩ B1 are π/2 + ϕ and π/2 − ϕ, respectively.

(1) We first show that B̊1 is (Hp, J1)-invariant. (The same argument reveals
that B2 is (Hp, J2)-invariant.) It is easy to see that h(B̊1) = B̊1 for every h ∈ J1.
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To show that B̊1 ∩ h(B̊1) = ∅ for every h ∈ Hp \ J1, it suffices to show that
(D1 ∩ B̊1) ∩ (D1 ∩ h(B̊1)) = ∅. In fact, h takes the lens D1 ∩ B̊1 with inner angle
π/2 + ϕ to the lens D1 ∩ h(B̊1) with the same inner angle. Since we are assuming
that 0 ≤ ϕ ≤ ϕ0, it follows from Lemma 5.6 that (D1 ∩ B̊1) ∩ (D1 ∩ h(B̊1)) = ∅.

(2) We next show that h(B̊1) ∩ B̊2 = ∅ for every h ∈ Hp. By symmetry, it
suffices to show that (D1 ∩ h(B1)) ∩ (D1 ∩ B2) = ∅. This follows from the facts
that h(∆′

1) ∩ ∆′
2 = ∅, that the lens D1 ∩ h(B1) has the inner angle π/2 + ϕ, and

that the lens D1 ∩B2 has the inner angle π/2 − ϕ.
(3) Finally, we show that R̂

3 \
⋃

h∈Hp
h(B1 ∪ B2) has an interior point. This

follows from the fact that, for i = 1, 2, every orbit h(Bi) (h ∈ Hp) of Bi except for
Bi is a ball of radius ≤ r/2 which intersects with the plane Rθ(Ĉ).

Therefore Theorem 5.3 asserts that Gp = 〈Hp, Ap〉 is discrete and isomorphic to
the group Hp∗Ap

. Thus we conclude that p ∈ M̂1,1. �

5.3. Slice through the plane Pp=0. In this subsection, we consider the case of
p ∈ Pp=0. In this case the cyclic subgroup 〈Ap〉 ⊂ Gp preserves the sphere Px=0

and its orientation. One of the main results of this subsection is Theorem 5.9,
which gives a necessary and sufficient condition for p ∈ Pp=0 to be contained in
M̂1,1. As a consequence, we will show in Corollary 5.11 that the boundary of the
slice of M̂1,1 through the plane Pp=0 is a union of countably many analytic arcs,
although the boundaries of the slices of M̂1,1 through the planes Pr=0 and Pq=0

are so-called “fractal.”
We begin with the notion of a Ford domain: Let Γ ⊂ Möb(R̂3) be a Kleinian

group and suppose that γ(∞) 
= ∞ for every γ ∈ Γ \ {id}. Given γ ∈ Γ we denote
by E(γ) the exterior of the isometric sphere I(γ) of γ; that is, E(γ) is the connected
component of R̂3 \ I(γ) containing ∞. Then the Ford domain for Γ is defined by

Ford(Γ) =
⋂

γ∈Γ\{id}
E(γ),

which turns out to be a fundamental domain for Γ. Below, we denote by radi(I(f))
the radius of the isometric sphere I(f) of a transformation f ∈ Möb(R̂3) with
f(∞) 
= ∞.

We will need the following lemma in the proof of Theorem 5.9.

Lemma 5.8. Let f ∈ Möb(R̂3) be a loxodromic transformation with f(∞) 
= ∞,
and suppose that f preserves the sphere P̂x=0 and its orientation. Let B(x) =
x + (2, 0, 0). Then [f, B] is loxodromic, pure parabolic or elliptic if and only if
radi(I(f)) < 1, = 1 or > 1, respectively.

Proof. Note that the points f−1(∞), f(∞) lie in the plane Px=0. We may assume
that f−1(∞) = 0 after conjugating by a translation if necessary. We write v =
f(∞). Then one see from 2.3 that f(x) = PJI(f)(x)+v for some P ∈ O(3)\SO(3).
Moreover, since f preserves the sphere P̂x=0 and its orientation, one can see that
P (e1) = e1, where e1 = (1, 0, 0).

Now write r = radi(I(f)) and suppose first that r = 1. Then we see that
the transformation [f, B] = fBf−1B−1 maps the exterior of the sphere S1 :=
B(I(f−1)) onto the interior of the sphere S2 of radius 1/4 with center at v +3/4 e1

(see Figure 7). Note that S1 touches to S2 at v + e1, and that the transformation
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[f, B] fixes the point v + e1. Furthermore, we see that the differential of the map
[f, B] at this point is the identity. Thus we conclude that [f, B] is pure parabolic.
By the same argument, we see that if r < 1, then S1 ∩ S2 = ∅ and thus [f, B] is
loxodromic, and if r > 1, then [f, B] fixes every point of S1 ∩ S2 and thus [f, B] is
elliptic. �

Figure 7. Surfaces S1 and S2 in the case of r = 1. This is the
view along the z-axis.

Theorem 5.9. Let p ∈ Pp=0. Then p ∈ M̂1,1 if and only if radi(I(An
p)) ≤ 1 for

all n ∈ N. Moreover, for a given n ∈ N, radi(I(An
p)) = 1 if and only if [An

p, B] is
pure parabolic.

Proof. Let p ∈ Pp=0. We first remark that An
p(∞) 
= ∞ for every n ∈ Z \ {0},

because An
p(∞) lies in the interiors of I(Ap) or I(A−1

p ). Therefore the Ford domain

Ford(〈Ap〉) =
⋂

n∈Z\{0}
E(An

p)

for the cyclic group 〈Ap〉 can be defined. In addition, observe that the center
An

p(∞) of I(An
p) lies in the plane Px=0 for every n ∈ Z \ {0}, and by definition that

radi(I(An
p)) = radi(I(A−n

p )) for every n ∈ N.
Suppose first that radi(I(An

p)) ≤ 1 for all n ∈ N. Then the Ford domain
Ford(〈Ap〉) contains the set {(x, y, z) ∈ R3 : |x| ≥ 1}. Therefore we can apply the
Klein–Maskit combination theorem (Theorem 5.3) to show that Gp = 〈Ap, B〉 is
discrete and isomorphic to the rank-2 free group 〈Ap〉∗B by letting B1 = {(x, y, z) ∈
R3 : x ≤ −1}, B2 = {(x, y, z) ∈ R3 : x ≥ 1} and J1 = J2 = {id}.

Conversely, suppose that radi(I(An
p)) > 1 for some n. Then by Lemma 5.8,

[An
p, B] is elliptic. If the order of this elliptic element is infinite, then the group

Gp is non-discrete, and if the order is finite, then Gp is not free. In both cases, we
conclude p 
∈ M̂1,1.

The second statement also follows from Lemma 5.8. �
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Now let p = (0, q, r) ∈ Pp=0 and µ = q + ir ∈ C. In this notation, the map
Ap(x) = ĴJ(x)+p restricted to the sphere P̂x=0 is a Möbius transformation given
by

Áµ(τ ) = −1
τ

+ µ,

where P̂x=0 is identified with Ĉ via the map x = (0, y, z) �→ τ = y + iz. (Here we
use the notation Áµ to distinguish it from Aµ and Ǎµ.) The matrix representation
of Áµ is

Áµ =
(

µ −1
1 0

)
∈ PSL2(C).

We denote the entries of Án
µ for n ∈ N by

Án
µ =

(
an bn

cn dn

)
.

Then the radius of the isometric sphere I(Án
µ) of Án

µ is given by 1/|cn|. In other
words, we have radi(I(An

p)) = radi(I(A−n
p )) = 1/|cn| for every n ∈ N. Since(

an+1 bn+1

cn+1 dn+1

)
=

(
µ −1
1 0

) (
an bn

cn dn

)
=

(
µan − cn µbn − dn

an bn

)
,

we have an+1 = µan − cn and cn+1 = an. Therefore we obtain the following
recurrence equations:

c1 = 1, c2 = µ and cn+2 = µcn+1 − cn (n ∈ N).

In particular, cn = cn(µ) is a monic µ-polynomial of degree (n − 1); for example,

c3(µ) = µ2 − 1,

c4(µ) = µ3 − 2µ,

c5(µ) = µ4 − 3µ2 + 1,

and so on. Using this notation and identifying Pp=0 with C, we can rephrase
Theorem 5.9 as follows.

Theorem 5.10. We have

M̂1,1 ∩ Pp=0 =
⋂
n∈N

{µ ∈ C : |cn(µ)| ≥ 1}.

Since the set {µ ∈ C : |cn(µ)| = 1} is a one-dimensional real analytic variety for
every n ∈ N, we have the following corollary.

Corollary 5.11. The boundary of M̂1,1 ∩ Pp=0 in the plane Pp=0 is a union of
countably many analytic arcs.

One can find in Figures 8 and 9 the numerical graphics of the loci of µ ∈ C such
that |cn(µ)| = 1 or ≤ 1 for some n.
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Figure 8. The loci of µ ∈ {q + ir ∈ C : 0 ≤ q ≤ 2, 0 ≤ r ≤ 1}
such that |cn(µ)| = 1 for n = 2, 3, 4 and 10. The arcs without
labels correspond to n = 10.

Figure 9. The union of the loci of µ ∈ {q + ir ∈ C : −2 ≤ q ≤
2, −1 ≤ r ≤ 1} such that |cn(µ)| ≤ 1 for 2 ≤ n ≤ 20. The darkness
increases as the number of the intersections increases.

6. Appendix

In this section we consider a family of 3-generator Kleinian groups in Möb(R̂3),
which can be viewed as an analogue of the family of groups of type (1, 1) in Möb(R̂2).
These groups contain groups of type (1, 1) in Möb(R̂3) and their limit sets are union
of round spheres.

For a given p = (0, q, 0) ∈ R
3 with q > 2, we define an ideal hexahedron Dp as

follows (see Figure 10):

Dp =

{
x = (x, y, z) ∈ R

3 :
|x| ≤ 1/

√
2, 0 ≤ y ≤ q, |z| ≤ 1/

√
2,

|x| ≥ 1, |x − p| ≥ 1

}
.

Observe that eight edges of Dp have dihedral angle π/4 and the remaining four
edges have dihedral angle π/2. Moreover, the following three transformations in
Möb(R̂3) pair the faces of Dp:

Ap(x) = ĴJ(x) + p, B(x) = x + (
√

2, 0, 0), C(x) = x + (0, 0,
√

2).(6.1)
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Figure 10. The ideal hexahedron Dp with p = (0, 4, 0).

(Although the notation Ap is common with the previous sections, we remark that
B, C are different from those in the previous sections.) Therefore, it follows from
Poincaré’s polyhedron theorem (cf. [12]) that the group

Kp = 〈Ap, B, C〉

generated by Ap, B and C in Möb(R̂3) is discrete, and that Kp is isomorphic to
the abstract group

g = 〈a, b, c : [a, b]2 = [a, c]2 = [b, c] = id〉.

For arbitrary p ∈ R
3, we also denote by Kp = 〈Ap, B, C〉 the group in Möb(R̂3)

generated by the transformations Ap, B and C as in (6.1). Note that if Kp is
isomorphic to g, the subgroup 〈Ap, BC〉 of Kp is a group of type (1, 1) in Möb(R̂3)
because BC(x) = x + (

√
2, 0,

√
2) is a translation of length 2.

6.1. Groups of type (1, 0; 2). For a given p0 = (0, q, 0) ∈ R3 with q > 2, we
will study deformations of Kp0

in the next subsection. As a preparation for this
purpose, in this subsection, we study deformations of the subgroup 〈Ap0

, B〉 of
Kp0

= 〈Ap0
, B, C〉.

Let Σ1,0;2 denote a torus with a singular point of cone-angle π. The fundamental
group π1(Σ1,0;2) of the orbifold Σ1,0;2 is isomorphic to an abstract group 〈a, b :
[a, b]2 = id〉. We say that a group Γ in Möb(R̂3) is of type (1, 0; 2) if it is the
image of a faithful representation ρ : π1(Σ1,0;2) = 〈a, b : [a, b]2 = id〉 → Möb(R̂3)
such that ρ(b) is pure parabolic. Note that if Kp = 〈Ap, B, C〉 is isomorphic to
g, the subgroups 〈Ap, B〉, 〈Ap, C〉 of Kp are of type (1, 0; 2) in Möb(R̂3). Similar
to Theorem 4.5, we have the following normalization of groups of type (1, 0; 2) in
Möb(R̂3).

Theorem 6.1. Let Γ = 〈α, β〉 be a subgroup of Möb(R̂3) which is isomorphic
to the abstract group 〈a, b : [a, b]2 = id〉 and suppose that β is pure parabolic.
Then Γ is conjugate in Möb(R̂3) to 〈Ap, B〉 for some p = (p, q, r) ∈ R3, where
Ap, B ∈ Möb(R̂3) are as in (6.1).
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Proof. The proof is almost parallel to the proof of Theorem 4.5. We can first show
that Fix(α) ∩ Fix(β) = ∅. In fact, if not, the same argument as in the proof of
Theorem 4.5 implies that [β, [α, β]] = id, which contradicts the assumption that
Γ = 〈α, β〉 is isomorphic to the abstract group 〈a, b : [a, b]2 = id〉. Therefore, by
using the same normalization as in the proof of Theorem 4.5, we may assume that
α, β are of the forms α(x) = PJ(x)+p, β(x) = x+(u, v, 0) where P ∈ O(3)\SO(3),
p ∈ R

3 and u, v ≥ 0 such that P−1(u) = (u,−v, 0). Then α−1β−1αβ preserves
the sphere P̂z=0

∼= Ĉ and its orientation. Furthermore, identifying P̂z=0 with Ĉ

via the map (x, y, 0) �→ x + iy and letting µ = u + iv, one sees that the map
α−1β−1αβ restricted to the sphere P̂z=0

∼= Ĉ is a Möbius transformation whose
matrix representation is(

1 µ
−µ 1 − µ2

)
∈ PSL2(C).

It then follows from the condition [α, β]2 = id that µ =
√

2, and hence, that
u = P−1(u) = (

√
2, 0, 0). The remaining argument is the same as the argument of

the proof of Theorem 4.5. �

6.2. Deformations of the group Kp. For a given p0 = (0, q, 0) ∈ R
3 with q > 2,

we now consider deformations {φ : Kp0
→ Γ} of Kp0

in Möb(R̂3) such that the
isomorphism φ takes a pure parabolic transformation to a pure parabolic transfor-
mation. The following theorem reveals that every such deformation Γ of Kp0

is
conjugate to Kp for some p ∈ R3.

Theorem 6.2. Let Γ = 〈α, β, γ〉 be a subgroup of Möb(R̂3) which is isomorphic to
the abstract group g = 〈a, b, c : [a, b]2 = [a, c]2 = [b, c] = id〉, and suppose that β, γ

and [α, βγ] are pure parabolic. Then Γ is conjugate in Möb(R̂3) to Kp = 〈Ap, B, C〉
for some p ∈ R3.

Proof. Note that the subgroups 〈α, β〉, 〈α, γ〉 of Γ are of type (1, 0; 2) in Möb(R̂3),
and 〈α, βγ〉 is of type (1, 1). By Theorem 6.1, we may assume that 〈α, β〉 = 〈Ap, B〉
for some p ∈ R3 after conjugating 〈α, β, γ〉 if necessary. We will show that γ = C±1

below. Since γ is pure parabolic and commutes with B, we have γ(∞) = ∞.
Since we are normalizing so that the radius of the isometric sphere of α = Ap

equals 1, it follows from Theorem 6.1 that γ is a translation of length
√

2, and
from Theorem 4.5 that Bγ is a translation of length 2. Therefore the direction of
translations of B and γ are perpendicular. This implies that γ = C±1. Thus we
obtain 〈α, β, γ〉 = 〈Ap, B, C〉. �

We now define:

N = {p = (p, q, r) ∈ R
3 : Kp = 〈Ap, B, C〉 is discrete and ∼= g}.

Since the group Kp for p ∈ N contains the groups 〈Ap, B−1C〉, 〈Ap, BC〉 of type
(1, 1) in Möb(R̂3), the set N ⊂ R3 lies in the rotations of the set M̂1,1 of angles
π/4, 3π/4 along the q-axis. One can also see that N is invariant under the action
of the translations x �→ x + (

√
2 m, 0,

√
2n), m, n ∈ Z. The following lemma shows

that the set N contains a 3-dimensional domain of R
3.

Lemma 6.3. We have {p = (p, q, r) ∈ R
3 : |q| ≥ 2} ⊂ N .
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Proof. For a given p = (p, q, r) ∈ R3 with |q| ≥ 2, we let p0 = (0, q, 0). We suppose
that q ≥ 2 for simplicity, but the argument for the case of q ≤ −2 is almost parallel.
Deforming the ideal hexahedron Dp0

in a similar way as in Figure 4, we can obtain
an ideal polyhedron to which Poincaré’s polyhedron theorem can be applied (cf.
[12]) to show that the group Kp = 〈Ap, B, C〉 is discrete and isomorphic to the
abstract group g. Thus we conclude that p ∈ N . �

6.3. Limit sets of Kleinian groups Kp. For a given p ∈ R3, one can see that
A−1

p BAp = JBJ and A−1
p CAp = JCJ hold. Therefore the group Kp = 〈Ap, B, C〉

always contains the group

L := 〈B, C, JBJ, JCJ〉.

Note that the action of L preserves the sphere P̂y=0 and its orientation. Now we
take an ideal pentahedron D− as follows:

D− = {x = (x, y, z) ∈ R
3 : |x| ≤ 1/

√
2, |z| ≤ 1/

√
2, |x| ≥ 1, y ≤ 0}.

Then one can see that the ideal octahedron D− ∪ J(D−) is a fundamental domain
for the action of L acting on the half-space {(x, y, z) ∈ R

3 : y < 0}. Therefore L

can be regarded as a Kleinian group in Möb(R̂2) of the first-kind; that is, the limit
set Λ(L) of L is the whole sphere P̂y=0. Thus the limit set Λ(Kp) of a Kleinian
group Kp for p ∈ N is the closure of a union of round spheres:

Λ(Kp) =
⋃

γ∈Kp/L

γ(Λ(L)).

One can find in Figure 11 some computer graphics of the limit sets of Kp for
parameters p ∈ R3 which lie (or seem to lie) in N .

By using the observation of the subgroup L ⊂ Kp above, we obtain an alternative
proof of Lemma 6.3. In fact, a Kleinian group Kp for p = (p, q, r) with |q| ≥ 2
can be regarded as an amalgamation of the Kleinian group L with the cyclic group
〈Ap〉 as follows: Suppose q ≥ 2 for simplicity. Then we can apply the second Klein–
Maskit combination theorem (Theorem 5.3) to show that Kp = 〈L, Ap〉 is discrete
and Kp

∼= L∗Ap
by letting

B1 =
{

x ∈ R
3 :

∣∣∣x −
(
0,

q

4
, 0

)∣∣∣ ≤ q

4

}
,

B2 =
{

(x, y, z) ∈ R
3 : y ≥ q − 2

q

}
,

J1 = 〈JBJ, JCJ〉 and J2 = 〈B, C〉.
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Figure 11. Computer graphics of the limit sets Λ(Kp) of groups
Kp: These are the images f(Λ(Kp)) of Λ(Kp) by the Möbius trans-
formation f(x) = 2ĴJ(x−e2)−e2, e2 = (0, 1, 0), which takes the
half-space y ≤ 0 to the unit ball |x| ≤ 1 and the point e2 to the
infinity. These are the views along the z-axis.
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