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SUBGROUPS OF PSL(3,C) WITH FOUR LINES

IN GENERAL POSITION IN ITS LIMIT SET

W. BARRERA, A. CANO, AND J. P. NAVARRETE

Abstract. In this article we provide an algebraic characterization of the sub-
groups of PSL(3,C) for which the maximum number of complex lines in gen-
eral position contained in its limit set, according to Kulkarni, is equal to four.
Also, we give an explicit description of the discontinuity region, according to
Kulkarni, of such groups.

Introduction

Classical Kleinian groups are divided into two classes: elementary and non-
elementary groups. This classification is made according to the number of points
in the limit set of the group. When the group is elementary, the number of points
in the limit set is less than or equal to two. In the case when the group is non-
elementary, the limit set is a perfect set (see for example [8]).

When we try to extend the notions of elementary and non-elementary groups to
discrete subgroups of PSL(3,C) acting on P2

C
, the first difficulty we encounter is

the absence of a standard notion of limit set. However, in [1] it is proved, under
certain assumptions on the discrete group, that Kulkarni’s limit set agrees with the
complement of the equicontinuity set. Moreover, Kulkarni’s limit set is a union
of complex projective lines. This leads us to think in elementary groups as those
groups whose Kulkarni’s limit set contains a finite number of lines. However, there
are discrete subgroups of PSL(3,C) whose limit set contains infinitely many com-
plex lines, but the maximum number of complex lines in general position contained
in this limit set is finite, for example the suspensions of classical Kleinian groups
(see [2, 3]). It suggests that a notion of elementary group is given in terms of the
maximum number of complex projective lines in general position contained in the
limit set of the group.

We do not know a classification of those discrete subgroups of PSL(3,C) such
that the maximum number of complex lines in general position contained in its
limit set is one, two or three.

In this paper we restrict our attention to subgroups of PSL(3,C) such that
the maximum number of complex projective lines in general position contained in
Kulkarni’s limit set is equal to four, and we obtain the following:

Theorem 0.1. If Γ ⊂ PSL(3,C) is a hyperbolic toral group, then the discontinuity
region, in Kulkarni’s sense, agrees with the equicontinuity set and it is projectively
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equivalent to four disjoint copies of H × H, where H ⊂ C denotes the upper half-
plane.

Theorem 0.2. Let Γ ⊂ PSL(3,C) be a discrete group. The maximum number of
complex lines in general position contained in Kulkarni’s limit set is equal to four,
if and only if, Γ contains a hyperbolic toral group (see section 2) whose index is at
most 8. Moreover, the limit set of this hyperbolic toral group is equal to the limit
set of Γ.

As a consequence of these results, the components of Kulkarni’s dis-
continuity region are complete Kobayashi hyperbolic (compare to Theorem 1.3 in
[1]).

Finally, we conjecture that in the case when the limit set of the discrete group
Γ ⊂ PSL(3,C) contains at least five complex lines in general position, then it
contains an infinity of complex lines in general position.

This article is organized as follows: In section 1 we state some definitions
and results about projective geometry and complex Kleinian groups. In partic-
ular, the concept of vertex is studied, and we prove that, under the hypothesis of
Theorem 0.2, every family L ⊂ Λ(Γ) of complex lines, contains precisely two ver-
tices.

In section 2, hyperbolic toral groups are defined, we compute Kulkarni’s limit
set for such groups and we prove Theorem 0.1. Moreover, we prove that Kulkarni’s
discontinuity region is not the maximal domain of discontinuity.

Finally, in section 3, we prove Theorem 0.2. The sketch of proof is the following:
It suffices to prove the theorem for the subgroup which fixes both vertices. These
vertices can be considered as the points e1 = [1 : 0 : 0] and e2 := [0 : 1 : 0].

It is proved that there exists an element γL in the group which acts as a lox-
odromic element on both pencils of complex lines determined by e1 and e2 (see
Lemma 3.4). Analogously, there exists an element γP in the group which acts as
a parabolic element on both pencils of complex lines determined by e1 and e2 (see
Lemma 3.5).

In consequence, the action of the group on each of these pencils of complex lines
is not discrete. However, in each case, there is an equicontinuity set which consists
of the complement of a circle of complex lines (see Lemma 3.7). Therefore, the
group can be represented by matrices with real entries (see Lemma 3.8), and the
equicontinuity set of the group acting on P2

C
consists of four disjoint copies of H×H

(see Proposition 3.9).
In order to find generators for the hyperbolic toral group, we use Proposition 3.11

together with Lemma 3.12 to prove the existence of a group of 2 × 2 submatrices
which can be considered as a commutative discrete subgroup of SL(2,Z) of rank
at most two. Lemmas 3.4 and 3.6 show that such a group cannot be trivial. Since
SL(2,Z) does not contain copies of Z ⊕ Z, such a subgroup must be of rank one
and its generator is an hyperbolic toral automorphism. Finally, Lemma 3.10 shows
the existence of two appropriated parabolic elements.

1. Preliminaries and notation

1.1. Projective geometry. We recall that the complex projective plane P2
C

is
defined as

P2
C := (C3 \ {0})/C∗,
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where C∗ acts on C3 \ {0} by the usual scalar multiplication. This is a compact
connected complex 2-dimensional manifold. Let [ ] : C3 \ {0} → P2

C
be the quotient

map. If β = {e1, e2, e3} is the standard basis of C3, we will write [ej ] = ej and if
w = (w1, w2, w3) ∈ C3 \ {0}, then we will write [w] = [w1 : w2 : w3]. Also, � ⊂ P2

C

is said to be a complex line if [�]−1 ∪ {0} is a complex linear subspace of dimension
2. Given p, q ∈ P2

C
distinct points, there is a unique complex projective line passing

through p and q, such complex projective line is called a line, for short, and it is
denoted by ←→p, q.

Consider the action of Z3 (viewed as the cubic roots of the unity) on SL(3,C)
given by the usual scalar multiplication, then

PSL(3,C) = SL(3,C)/Z3

is a Lie group whose elements are called projective transformations. Let [[ ]] :
SL(3,C) → PSL(3,C) be the quotient map, γ ∈ PSL(3,C) and γ̃ ∈ GL(3,C),
we will say that γ̃ is a lift of γ if there is a cubic root τ of Det(γ) such that
[[τ γ̃]] = γ; also, we will use the notation (γij) to denote elements in SL(3,C). One
can show that PSL(3,C) is a Lie group that acts transitively, effectively and by
biholomorphisms on P2

C
by [[γ]]([w]) = [γ(w)], where w ∈ C3 \{0} and γ ∈ SL3(C).

1.2. Complex Kleinian groups. Let Γ ⊂ PSL(3,C) be a subgroup. The set
L0(Γ) is defined as the closure of the points in P2

C
with infinite isotropy group (see

[7]). The set L1(Γ) is the closure of the set of cluster points of Γz where z runs
over P2

C
\ L0(Γ). Recall that q is a cluster point for ΓK, where K ⊂ P2

C
is a non-

empty set, if there is a sequence (km)m∈N ⊂ K and a sequence of distinct elements
(γm)m∈N ⊂ Γ such that γm(km)

m→∞
�� q. The set L2(Γ) is defined as the closure of

cluster points of ΓK where K runs over all the compact sets in P2
C
\(L0(Γ)∪L1(Γ)).

The Limit Set in the sense of Kulkarni for Γ is defined as:

Λ(Γ) = L0(Γ) ∪ L1(Γ) ∪ L2(Γ).

The Discontinuity Region in the sense of Kulkarni of Γ is defined as:

Ω(Γ) = P2
C \ Λ(Γ).

We will say that Γ is a Complex Kleinian Group if Ω(Γ) �= ∅.
The following two lemmas can be found in [2].

Lemma 1.1. Let Γ ⊂ PSL3(C) be a subgroup, p ∈ P2
C

such that Γp = p and
� a complex line not containing p. Define Π = Πp,� : Γ −→ Bihol(�) given by
Π(g)(x) = π(g(x)) where π = πp,� : P2

C
−{p} −→ � is given by π(x) = ←→x, p∩ �, then:

(i) π is a holomorphic function.
(ii) Π is a group morphism.
(iii) If Ker(Π) is finite and Π(Γ) is discrete, then Γ acts discontinuously on

Ω = (
⋃

z∈Ω(Π(Γ))
←→z, p) − {p}. Here Ω(Π(Γ)) denotes the discontinuity set

of Π(Γ).
(iv) If Γ is discrete, Π(Γ) is non-discrete and � is invariant, then Γ acts dis-

continuously on Ω =
⋃

z∈Eq(Π(Γ))
←→z, p− (� ∪ {p}).
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Lemma 1.2. Let G ⊂ PSL(2,C) be a non-discrete group, then:

(i) The set P1
C
\Eq(G) is either empty, has one point, two points, a circle or

P1
C
.

(ii) If C is an invariant closed set which contains at least 2 points, then P1
C
\

Eq(G) ⊂ C.
(iii) The set P1

C
\Eq(G) is the closure of the loxodromic fixed points.

1.3. Counting lines. In the paper [1] we described the limit set Λ(Γ) as a union of
complex lines, under certain conditions. There exist special points in Λ(Γ) (called
vertices) through which infinitely many complex lines contained in the limit set
pass. The set of these points is important for the description of the group Γ and
for the study of the action of Γ on its limit set. In the case when the maximum
number of lines in general position contained in Λ(Γ) is four, we prove that there
exist precisely two vertices (see Proposition 1.4). In what follows, we give the formal
definitions and results.

Definition 1.3. Let Γ ⊂ PSL(3,C) be a discrete subgroup. Given a family L
of complex lines contained in the limit set Λ(Γ), we say that v is a vertex for L,
whenever it is an intersection point of two distinct lines in L, and there are infinitely
many complex lines contained in Λ(Γ) and passing through v.

Proposition 1.4. Let Γ ⊂ PSL(3,C) be a discrete group. Assume that the maxi-
mum number of complex lines in general position in Λ(Γ) is equal to four. If L is
a family consisting of four complex lines in general position in Λ(Γ), then:

(i) The family of lines L contains precisely two vertices.
(ii) For every vertex v of L, the stabilizer subgroup, StabΓ(v), is a subgroup of

Γ with finite index.

In order to prove Proposition 1.4 we state and prove the following lemmas.

Lemma 1.5. Let Γ ⊂ PSL(3,C) be a discrete subgroup. If the maximum number
of lines in general position contained in Λ(Γ) is four, then there are infinitely many
complex lines contained in Λ(Γ).

Proof. Let {�1, . . . , �n} (n ≥ 4) be the set of complex lines contained in Λ(Γ).
We consider the subgroup Γ0 :=

⋂n
i=1 StabΓ(�i), which has finite index in Γ [it

has finite index because any element γ ∈ Γ acts as a permutation on the set of
lines {�1, . . . , �n} therefore γn(�i) = �i for all 1 ≤ i ≤ n ]. If γ is any element in
Γ0, then there are four γ invariant lines in general position. Hence γ fixes four
points in general position, so it is the identity element, therefore Γ is finite; a
contradiction. �

Lemma 1.6. If Γ ⊂ PSL(3,C) is a discrete group such that the maximum number
of complex lines in general position in Λ(Γ) is greater than or equal to three, then
Λ(Γ) is a union of complex lines.

Proof. Let C = {� ∈ (P2
C
)∗ | � ⊂ Λ(Γ)}, then

C =
⋃
�∈C

� ⊂ Λ(Γ)

is a Γ-invariant closed set and contains at least 3 lines in general position. Theorem
1.1 in [1] implies that P2

C
\ C ⊂ Eq(Γ) = Ω(Γ). In other words, C ⊃ Λ(Γ). �
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Lemma 1.7. Let Γ ⊂ PSL(3,C) be a discrete group. If the maximum number
of complex lines in general position in Λ(Γ) is equal to four, then the number of
vertices for any family L, consisting of four complex lines in general position in
Λ(Γ), is greater than one.

Proof. Let L = {�1, �2, �3, �4} be a family of four complex lines in general position
in Λ(Γ). If � is any complex line contained in Λ(Γ), then � passes through an
intersection point of complex lines in L, because the maximum number of complex
lines in general position in Λ(Γ) is equal to four. By Lemma 1.5, there exists a
vertex v for L. Let us assume there is no other vertex for L, then by Lemma 1.6

Λ(Γ) =
( ⋃
�∈B

�
)
∪
( ⋃
�∈A

�
)
,

where B is the set of complex lines in P2
C
contained in Λ(Γ) passing through v, and

A is the set of complex lines contained in Λ(Γ) not passing through the vertex v.
The closed set

⋃
�∈B � is Γ-invariant, because the vertex v is fixed by every

element in Γ.
There are finitely many complex lines in A, otherwise there would be another

vertex for L. Therefore,
⋃

�∈A � is a Γ-invariant closed set, and the group Γ0 =⋂
�∈A StabΓ(�) has finite index in Γ.
If �0 is any line in A, then D = (

⋃
�∈B �)∪ �0 is a Γ0-invariant closed set and the

maximum number of complex lines in general position contained in D is equal to
three. Theorem 1.1 in [1] implies that

P2
C \D ⊂ Eq(Γ0) = Eq(Γ) = Ω(Γ) = P2

C \ Λ(Γ).

Hence, Λ(Γ) ⊂ D; a contradiction to the hypothesis that the maximum number of
complex lines in general position contained in Λ(Γ) is four. �

Proof of Proposition 1.4. (i) By Lemma 1.7 there are at least two vertices for L. If
there were more than two vertices for L, then there would be at least six lines in
general position in Λ(Γ), and it cannot happen. Therefore, there are precisely two
vertices for L.

(ii) If v is a vertex for L, then for every γ ∈ Γ, γ(v) is a vertex for L. Hence, the
set of vertices for L is Γ-invariant. By (i), there are precisely two vertices v1 and
v2 for L, then StabΓ(v1) and StabΓ(v2) have index at most two in Γ. �

2. Toral groups

An element A ∈ SL(2,Z), is called a Hyperbolic Toral Automorphism if none of
the eigenvalues of A lies on the unit circle (see [6]).

Definition 2.1. Any subgroup of PSL(3,C) conjugated to the group

ΓA =

{(
Ak b
0 1

) ∣∣∣ b ∈ M(2× 1,Z), k ∈ Z

}
,

where A ∈ SL(2,Z) is a Hyperbolic Toral Automorphism, is called a Hyperbolic
Toral Group.
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Proof of Theorem 0.1. It suffices to prove the theorem for the group ΓA. First, we
notice that ΓA is the subgroup of PSL(3,Z) generated by

(2.1) P̃1 =

⎛⎝ 1 0 0
0 1 1
0 0 1

⎞⎠ , P̃2 =

⎛⎝ 1 0 1
0 1 0
0 0 1

⎞⎠ , L̃ =

(
A 0
0 1

)
,

therefore it is a discrete subgroup of PSL(3,C).
Now, there is

t =

(
1 a
b 1

)
∈ GL(2,R), a, b ∈ R \Q

such that

tAt−1 =

(
α 0
0 α−1

)
; α ∈ R \Q, |α| > 1.

If we set

T =

(
t 0
0 1

)
,

then

L := T L̃T−1 =

⎛⎝ α 0 0
0 α−1 0
0 0 1

⎞⎠ ;

P1 := T P̃1T
−1 =

⎛⎝ 1 0 y0
0 1 x0

0 0 1

⎞⎠ , P2 := T P̃2T
−1 =

⎛⎝ 1 0 x0

0 1 z0
0 0 1

⎞⎠ ,

where x0 = − 1
ab−1 , y0 = a

ab−1 , z0 = b
ab−1 .

We denote by Γ̂A the conjugated group TΓAT
−1. The general element in the

group Γ̂A has the form:⎛⎝ αn 0 ky0 + lx0

0 α−n kx0 + lz0
0 0 1

⎞⎠ , k, l, n ∈ Z.

It is not hard to check the following: If [z : 0 : 1] or [0 : z : 1] lies on L0(Γ̂A),
then z ∈ R.

Lemma 2.2. If [z1 : z2 : 1] lies on L1(Γ̂A), then z1, z2 ∈ R.

Proof. Let us assume that Im(z1) �= 0. Thus there are w = [u : v : 1] and a
sequence

gm =

⎛⎝ αnm 0 kmy0 + lmx0

0 α−nm kmx0 + lmz0
0 0 1

⎞⎠ ,

of distinct elements in Γ̂A such that

gm(w) =

⎡⎣ αnmu+ kmy0 + lmx0

α−nmv + kmx0 + lmz0
1

⎤⎦
m→∞

��

⎡⎣ z1
z2
1

⎤⎦ .

Hence, αnmu + kmy0 + lmx0 m→∞
�� z1 and α−nmv + kmx0 + lmz0 m→∞

�� z2.

Since Im(αnmu + kmy0 + lmx0) = αnmIm(u) → Im(z1) �= 0, we can assume that
(nm) is constant.
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If either km or lm is not bounded, then we can assume, without loss of generality,
that lm m→∞

�� ∞. Thus,

αnmu+ kmy0 + lmx0

lm m→∞
�� 0 and

α−nmv + kmx0 + lmz0
lm m→∞

�� 0,

then
km
lm m→∞

�� − x0

y0
, and

km
lm m→∞

�� − z0
x0

.

It follows that x2
0 = y0z0, then 1 − ab = 0; a contradiction. Hence, km and lm are

bounded, then there are only finitely many elements (gm), m ∈ N; a contradiction.
Therefore z1 ∈ R, and similarly it is proved that z2 ∈ R. �

Lemma 2.2 implies that the points lying in ←−→e1, e3∪←−→e2, e3 and L0(Γ̂A)∪L1(Γ̂A) can
be represented by points with real entries. Hence, by a similar argument to the one
used in Lemma 4.8 in [9], the limit set Λ(L) = ←−→e1, e3∪←−→e2, e3 is contained in the limit

set Λ(Γ̂A). Moreover, the limit set Λ(P1) =
←−→e1, e2 is contained in L0(Γ̂A) ⊂ Λ(Γ̂A).

By Theorem 1.2 [1], we obtain Λ(Γ̂A) =
⋃

g∈̂ΓA
Λ(g).

Let g ∈ Γ̂A induced by the matrix⎛⎝ αn 0 ky0 + lx0

0 α−n kx0 + lz0
0 0 1

⎞⎠ , k, l, n ∈ Z.

If n = 0, then Λ(g) = ←−→e1, e2. If n �= 0, then g is a loxodromic element and

[−ky0+lx0

αn−1 : −kx0+lz0
α−n−1 : 1] is its saddle fixed point. The limit set Λ(g) is equal to the

union of the complex line determined by this saddle point and e1, and the complex
line determined by e2 and this saddle point. If we set pk,l,n = [0 : −kx0+lz0

α−n−1 : 1] and

qk,l,n = [−ky0+lx0

αn−1 : 0 : 1], then it is not hard to check that

Λ(g) = ←−−−−→e1, pk,l,n ∪←−−−−→e2, qk,l,n.

Given that y0/x0 = −a and z0/x0 = −b are not rational numbers, the closure of
the set ⋃

g∈̂ΓA

Λ(g)

is equal to
←−→e1, e2 ∪

⋃
r∈R

(
←−−−−−−→
e1, [0 : r : 1] ∪

←−−−−−−→
e2, [r : 0 : 1]).

Hence Kulkarni’s discontinuity region for Γ̂A is biholomorphic to the set

{(z1, z2) ∈ C2 | z1 /∈ R or z2 /∈ R}.
Finally, Ω(ΓA) = Eq(ΓA) because Λ(ΓA) contains three lines in general position
(see Theorem 1.1 in [1]). �

Remark 2.3. Kulkarni’s discontinuity region for a hyperbolic toral group is not the
maximal domain of discontinuity.

Proof. It suffices to prove the remark for the group Γ̂A. Let C denote the closed

Γ̂A-invariant cone
←−→e1, e2 ∪

⋃
r∈R

←−−−−−−→
e1, [0 : r : 1].
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It suffices to prove that Γ̂A acts properly and discontinuously on P2
C
\ C. Let us

assume it is not the case, then there exists a sequence (km) of points in P2
C
\ C

such that km m→∞
�� k ∈ P2

C
\ C, and a sequence of distinct elements γm ∈ Γ̂A such

that γm(km) m→∞
�� z ∈ P2

C
\ C. Since Eq(Π1(Γ̂A)) = ←−→e2, e3 \ {[0 : r : 1] | r ∈ R},

we may assume that there is a neighborhood U ⊂ ←−→e2, e3 \ {[0 : r : 1] | r ∈ R} of

π1(k), such that π1(km) ∈ U , for all m ∈ N, and Π1(Γ̂A) is normal in U . Hence,
there is a subsequence of Π1(γm), still denoted Π1(γm), that converges uniformly on
compact subsets of U . Therefore lim

m→∞
Π1(γm)(π1(k)) = lim

m→∞
Π1(γm)(π1(km)) =

lim
m→∞

π1(γm(km)) = π1(z).

We notice that Π1(γm) can be identified with a Möbius transformation of the
form ζ �→ αnmζ+ jmx0+ lmy0, where nm, jm, lm are integers, x0, y0, α ∈ R\Q, and
|α| > 1. It follows that lim

m→∞
Π1(γm)(π1(k)) = [0 : r1 : r2] for some r1, r2 ∈ R, and

we obtain that π1(z) = [0 : r1 : r2]; a contradiction to the fact that z /∈ C.
�

As a consequence of the last remark, an Hyperbolic toral group cannot be con-
jugated to a subgroup of PU(2, 1) (see Cor. 4.13 in [9]).

Proposition 2.4. If H is a finite index subgroup of the group G, then

L0(G) = L0(H),

L1(G) =

k−1⋃
i=0

ai(L1(H)),

where a0H, . . . , ak−1H are the left cosets of H in G.

Proof. The inclusion L0(H) ⊂ L0(G) is obtained by definition. Now, let (gn) be a
sequence of distinct elements of G such that gn(x) = x for all n. Since [G : H] < ∞,
then we can assume that g1H = gnH for all n > 1. Thus, for each n > 1, there
exists hn ∈ H such that g1 = gnhn. Also, hm �= hn whenever m �= n (otherwise,
hm = hn and gmhm = g1 = gnhn implies that gm = gn). Moreover, hn = g−1

n g1
implies that hn(x) = x for all n > 1. Therefore L0(G) ⊂ L0(H).

Given that L0(H) = L0(G), it follows that L1(H) ⊂ L1(G). Since L1(G) is G
invariant,

k−1⋃
i=0

ai · (L1(H)) ⊂ L1(G).

Let (gn) be a sequence of distinct elements of G and z ∈ P2
C
\ L0(G) = P2

C
\ L0(H)

such that gn(z) m→∞
�� x. Since [G : H] < ∞, we can assume that gnH = ajH

for all n. Thus, for each n, there exists hn ∈ H such that ajhn = gn. Also,

hm �= hn whenever m �= n, and hn(z) m→∞
�� a−1

j (x), so a−1
j (x) ∈ L1(H), then

x ∈ aj · (L1(H)). �
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Proposition 2.5. If Γ contains a Hyperbolic Toral Group ΓA of finite index, then
Λ(Γ) = Λ(ΓA).

Proof. We may assume that ΓA is generated by the parabolic elements P1, P2 and
the loxodromic element L (see the proof of Theorem 0.1), where

L =

⎛⎝ α 0 0
0 α−1 0
0 0 1

⎞⎠ , P1 =

⎛⎝ 1 0 y0
0 1 x0

0 0 1

⎞⎠ , P2 =

⎛⎝ 1 0 x0

0 1 z0
0 0 1

⎞⎠ .

Now, we prove that Λ(Γ) contains three complex lines in general position.
Let �1, �2, �3 denote the complex lines←−→e2, e3,

←−→e1, e3,
←−→e1, e2, respectively. We notice

that Λ(P1) = �3 ⊂ L0(ΓA) ⊂ L0(Γ) ⊂ Λ(Γ). Thus, it suffices to show that �1∪ �2 =
Λ(L) ⊂ Λ(Γ), and for this, it is enough to prove that

�1 ∩ (L0(Γ) ∪ L1(Γ)) and �2 ∩ (L0(Γ) ∪ L1(Γ))

have empty interior in �1 and �2, respectively.
By Proposition 2.4, �2 ∩ L0(Γ) = �2 ∩ L0(ΓA) and by the proof of Theorem 0.1,

the set �2∩L0(ΓA) has empty interior in �2. Similarly �1∩L0(Γ) has empty interior
in �1.

We remark that �3 �= γ(�2) for all γ ∈ Γ. [Otherwise, there is γ ∈ Γ such that
γ−1(�3) = �2. Since �3 ⊂ L0(ΓA) = L0(Γ), then �2 = γ−1(�3) ⊂ γ−1(L0(Γ)) =
L0(Γ) = L0(ΓA); a contradiction ]. Similarly, �3 �= γ(�1) for all γ ∈ Γ.

By Lemma 2.2, a−1
i (�2) ∩ L1(ΓA) is contained (except, possibly, for one point)

in the set a−1
i (�2) ∩ P2

R
, for all i = 0, . . . , k − 1. Since a−1

i (�2) ∩ P2
R
has empty

interior in a−1
i (�2), it follows that a−1

i (�2) ∩ L1(ΓA) has empty interior in a−1
i (�2)

for all i = 0, . . . , k − 1. Hence �2 ∩ ai(L1(ΓA)) has empty interior in �2 for all
i = 0, . . . , k − 1. Therefore,

�2 ∩ (L1(Γ)) =
k−1⋃
i=0

(ai(L1(ΓA)) ∩ �2)

has empty interior in �2. Analogously �1 ∩ (L1(Γ)) has empty interior in �1.
Given that Λ(ΓA), and Λ(Γ) contain at least three lines in general position,

Theorem 1.1 in [1] implies that Ω(ΓA) = Eq(ΓA) and Ω(Γ) = Eq(Γ). Since [Γ :
ΓA] < ∞, it follows that Eq(ΓA) = Eq(Γ). Hence, Λ(ΓA) = Λ(Γ). �

3. Four-line groups

Through this section Γ ⊂ PSL(3,C) is a discrete group such that the maximum
number of complex lines in general position lying in Λ(Γ) is equal to four. Let
L denote a family of four complex lines in general position in Λ(Γ). The points
e1 = [1 : 0 : 0] and e2 = [0 : 1 : 0], are the vertices for L, and the complex lines
�1 = ←−→e2, e3, �2 = ←−→e1, e3, belong to L. The subgroup StabΓ(e1)∩StabΓ(e2) is denoted
by Γ0. The projections πei,�i : P

2
C
\ {ei} → �i and Πei,�i : Γ → Bihol(�i), i = 1, 2,

are respectively denoted by πi and Πi, i = 1, 2.
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Lemma 3.1. Either Π1(Γ0) or Π2(Γ0) contains loxodromic elements.

Proof. On the contrary, let us assume that Π1(Γ0) and Π2(Γ0) do not contain
loxodromic elements. Thus, each element γ ∈ Γ0 has a lift γ̃ ∈ GL(3,C) which is
given by:

γ̃ =

⎛⎝ γ11 0 γ13
0 γ22 γ23
0 0 1

⎞⎠ ,

where |γ11| = |γ22| = 1. Given that Γ0 has finite index in Γ, we have that Eq(Γ) =
Eq(Γ0). By Theorem 1.1 in [1], Ω(Γ) = Eq(Γ) = Eq(Γ0).

Claim: The set Eq(Γ0) is equal to P2
C
\←−→e1, e2.

Let

gn =

⎛⎜⎝ γ
(n)
11 0 γ

(n)
13

0 γ
(n)
22 γ

(n)
23

0 0 1

⎞⎟⎠ , |γ(n)
11 | = |γ(n)

22 | = 1, n ∈ N,

be a sequence of distinct elements in Γ0. The sequences γ
(n)
13 and γ

(n)
23 cannot be

simultaneously bounded. Otherwise, there exists a subsequence of gn, still denoted
gn, such that gn m→∞

�� g ∈ PGL(3,C); a contradiction to the fact that Γ is dis-

crete. Hence we have the following cases:

Case 1. Precisely one of the sequences γ
(n)
13 and γ

(n)
23 is not bounded. By Lemma

3.2 in [1], there is a subsequence of gn, still denoted gn, and a pseudo-projective
map S such that gn m→∞

�� S and the proof of the same lemma implies that S is

induced by one of the matrices:⎛⎝ 0 0 1
0 0 0
0 0 0

⎞⎠ or

⎛⎝ 0 0 0
0 0 1
0 0 0

⎞⎠ .

In any situation, Ker(S) = ←−→e1, e2.

Case 2. Both sequences γ
(n)
13 and γ

(n)
23 are not bounded. By Lemma 3.2 in [1], there

is a subsequence of gn, still denoted gn, and a pseudo-projective map S such that
gn m→∞

�� S and S is induced by one of the matrices:⎛⎝ 0 0 λ
0 0 1
0 0 0

⎞⎠ or

⎛⎝ 0 0 1
0 0 μ
0 0 0

⎞⎠ , |λ| ≤ 1, |μ| ≤ 1.

In any situation Ker(S) = ←−→e1, e2.

Finally, applying Lemmas 3.2 and 3.3 in [1], we prove the claim.
Hence, Λ(Γ) = ←−→e1, e2; a contradiction to the hypothesis that the maximum num-

ber of complex lines in general position in Λ(Γ) is equal to four. �

Lemma 3.2. If Π2(Γ0) contains a loxodromic element, then
⋂

τ∈Π2(Γ0)
Fix(τ ) con-

tains a single point. An analogous statement holds in the case when Π1(Γ0) contains
a loxodromic element.
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Proof. On the contrary, let us assume that F2 =
⋂

τ∈Π2(Γ0)
Fix(τ ) contains more

than one point, then F2 = {e1, z} for some z ∈ �2 \ {e1}. By conjugating by a
projective transformation, we may assume that z = e3. Thus each element γ ∈ Γ0

has a lift γ̃ ∈ SL(3,C) which is given by:

γ̃ =

⎛⎝ γ11 0 0
0 γ22 γ23
0 0 1

⎞⎠ ,

where γ11γ22 = 1. In consequence �1 = ←−→e2, e3, �3 = ←−→e1, e2 and e1 are invariant
under the action of Γ0. Moreover, the closure of the Γ0-orbit of the complex line
�2, denoted Γ0 · �2, is a closed proper subset of P2

C
. Hence,

U = P2
C \ (�1 ∪ �3 ∪ (Γ0 · �2)),

is an open, Γ0-invariant subset of P2
C
, and the maximum number of complex lines

in general position lying in its complement is three. By Theorem 1.1 in [1], U ⊂
Eq(Γ0) = Eq(Γ) = Ω(Γ), then Λ(Γ) ⊂ �1 ∪ �3 ∪ (Γ0 · �2); a contradiction to the
hypothesis that the maximum number of complex lines in general position in Λ(Γ)
is equal to four. �

Lemma 3.3. The groups Π1(Γ0) and Π2(Γ0) contain loxodromic elements.

Proof. By Lemma 3.1, either Π1(Γ0) or Π2(Γ0) contain loxodromic elements. With-
out loss of generality let us assume that Π1(Γ0) contains a loxodromic element. If
Π2(Γ0) does not contain loxodromic elements, every element γ ∈ Γ0 has a lift in
GL(3,C) which is given by: ⎛⎝ a 0 b

0 c d
0 0 1

⎞⎠ ,

where |a| = 1. In consequence, there exist

γ =

⎛⎝ a 0 b
0 c d
0 0 1

⎞⎠ , where |c| < 1, and τ =

⎛⎝ a′ 0 b′

0 c′ d′

0 0 1

⎞⎠ ∈ Γ0,

such that Π1(γ) is loxodromic and Fix(Π1(γ)) �= Fix(Π1(τ )). Now, κ = τγτ−1γ−1

is induced by the matrix ⎛⎝ 1 0 x
0 1 y
0 0 1

⎞⎠ ,

where x = −b− ab′ + a′b+ b′, y = −d− cd′ + c′d+ d′. We note that y �= 0 because
Fix(Π1(γ)) �= Fix(Π1(τ )). The sequence

γmκγ−m =

⎛⎝ 1 0 amx
0 1 cmy
0 0 1

⎞⎠ , |a| = 1, |c| < 1,

has a subsequence that tends to a matrix of the form:⎛⎝ 1 0 z
0 1 0
0 0 1

⎞⎠ ,

as m → ∞; a contradiction to the hypothesis that Γ is discrete. �
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Lemma 3.4. There is an element γL ∈ Γ0 such that Π1(γL) and Π2(γL) are
loxodromic.

Proof. By Lemma 3.3, there are γ1, γ2 ∈ Γ0 such that Π1(γ1),Π2(γ2) are loxo-
dromic. If Π2(γ1),Π1(γ2) are not loxodromic, then straightforward computations
show that Π1(γ1γ2) and Π2(γ1γ2) are loxodromic. �

From now on, γL denotes a fixed element in Γ0 such that Π1(γL) and Π2(γL) are
loxodromic. Also, by conjugating with a projective transformation, we may assume
that γL has a lift γ̃L = (γLij) which is a diagonal matrix.

Lemma 3.5. There is an element τ ∈ Γ0 such that Π1(τ ) and Π2(τ ) are parabolic
elements.

Proof. By Lemma 3.2, there exist γ1, γ2 ∈ Γ0 such that Fix(Π1(γ1)) �= Fix(Π1(γL))
and Fix(Π2(γ2)) �= Fix(Π2(γL)).

Set κj = γLγjγ
−1
L γ−1

j , j = 1, 2, then Πi(κj) is parabolic whenever i = j and it
is either the identity or parabolic in the other case. Thus, the only interesting case
is Π1(κ2) = Id and Π2(κ1) = Id, but in this case, a straightforward computation
shows that Π1(κ1κ2) and Π2(κ1κ2) are parabolic. �

In what follows, γP denotes a fixed element in Γ0, with a lift (γPij), such that
Π1(γP ) and Π2(γP ) are parabolic.

Lemma 3.6. If | γL11 |<| γL33 |, then | γL22 |>| γL33 |.

Proof. On the contrary, let us assume that |γL22| < |γL33|. By straightforward
computations, the matrix ⎛⎝ 1 0 γm

L11γP13γ
−m
L33

0 1 γm
L22γP23γ

−m
L33

0 0 1

⎞⎠
is a lift of γ−m

L γP γ
m
L . Hence, γ−m

L γPγ
m
L m→∞

�� Id; a contradiction to the fact that

Γ0 is discrete. �

Lemma 3.7. The sets �1 \ Eq(Π1(Γ0)) and �2 \ Eq(Π2(Γ0)) are circles.

Proof. The set �1\Eq(Π1(Γ0)) is not empty nor consists of one single point because
there exists a loxodromic element in Π1(Γ0). Moreover, it cannot consist of two
points because there exist a loxodromic element and a parabolic element in Π1(Γ0)
with precisely one fixed point in common. Furthermore, �1 \ Eq(Π1(Γ0)) is not
equal to �1, because the set

Π1

(⋃
�∈C

� \ {e1}
)
,

where C denotes the set of complex lines contained in Λ(Γ0) passing through e1,
is a Π1(Γ0)-invariant closed and proper subset of �1. Thus Lemma 1.2 yields the
result. The proof for �2 \ Eq(Π2(Γ0)) is analogous. �
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Lemma 3.8. The group Γ0, up to conjugation, leaves P2
R
invariant.

Proof. By Lemma 3.4, there is an element γL ∈ Γ0 such that Π1(γL) and Π2(γL)
are loxodromic elements. Thus, after conjugating with a projective transformation,
we may assume that Fix(Π1(γL)) = {[e2], [e3]} and Fix(Π2(γL)) = {[e1], [e3]}. In
consequence, γL has a lift γ̃L ∈ SL(3,C) given by:

γ̃L =

⎛⎝ γ11 0 0
0 γ22 0
0 0 γ33

⎞⎠ ,

where γ11γ22γ33 = 1. Thus, there are α1, α2 ∈ C∗ such that:

�1 \ Eq(Π1(Γ0)) = [{rα1e2 + se3 | r, s ∈ R} \ {0}];
�2 \ Eq(Π2(Γ0)) = [{rα2e1 + se3 | r, s ∈ R} \ {0}].

Let η ∈ PSL(3,C) be the element induced by the linear map:

η̃ =

⎛⎝ α2 0 0
0 α1 0
0 0 1

⎞⎠ .

By straightforward computations, we obtain that

Π1(η
−1Γ0η)[{re2 + se3 | r, s ∈ R} \ {0}] = [{re2 + se3 | r, s ∈ R} \ {0}];

Π2(η
−1Γ0η)[{re1 + se3 | r, s ∈ R} \ {0}] = [{re1 + se3 | r, s ∈ R} \ {0}].

In consequence, P2
R
is η−1Γ0η-invariant. �

In what follows, we assume that P2
R
is Γ0-invariant.

Proposition 3.9. The equicontinuity set of Γ is projectively equivalent to four
disjoint copies of H×H, where H ⊂ C denotes the upper half-plane.

Proof. Let us set

R(�1) = [{re2 + se3|r, s ∈ R} \ {0}],
R(�2) = [{re1 + se3|r, s ∈ R} \ {0}].

The open set given by

U = P2
C \

( 2⋃
j=1

⋃
p∈R(�j)

←−→ej , p
)
,

is equal to four disjoint copies of H × H. Moreover, it is Γ0-invariant and its
complement contains four complex lines in general position. By Theorem 1.1 in [1],
U ⊂ Eq(Γ0). On the other hand, if � is a complex line such that e1 ∈ � ⊂ Λ(Γ),
then ⋃

p∈R(�1)

←−→e1, p ⊂
⋃

γ∈Γ0

←−−→e1, xγ = Γ0� ⊂ Λ(Γ), where xγ = Π1(γ)(π1(� \ {e1})).

Analogously, if � is a complex line such that e2 ∈ � ⊂ Λ(Γ), then⋃
p∈R(�2)

←−→e2, p ⊂
⋃

γ∈Γ0

←−−→e2, yγ = Γ0� ⊂ Λ(Γ), where yγ = Π2(γ)(π2(� \ {e2})).

In consequence Eq(Γ) = Ω(Γ) ⊂ U . Finally, since Γ0 is a subgroup of finite index
of Γ, we see that Eq(Γ0) = Eq(Γ). Therefore, Eq(Γ) = U . �
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In what follows, we denote by Par(Γ0) the set

Par(Γ0) = {γ ∈ Γ0 |Π1(γ) and Π2(γ) is either parabolic or the identity}.

Lemma 3.10. The set Par(Γ0) is a group isomorphic to Z× Z.

Proof. If we denote by H the subgroup of all matrices in SL(3,C) of the form⎛⎝ 1 0 a
0 1 b
0 0 1

⎞⎠ , a, b ∈ R,

then it is not hard to check that every element γ ∈ Par(Γ0) has a lift γ̃ ∈ H. It
follows, by straightforward computations, that Par(Γ0) is a group. We denote by
˜Par(Γ0) the subgroup of H consisting of those matrices that are lifts of elements

in Par(Γ0).
We denote by Lat : H → R2 the group morphism given by Lat((γij)) =

(γ13, γ23). In order to prove that Par(Γ0) is isomorphic to a lattice in R2, it

suffices to show that there are two elements in Lat( ˜Par(Γ0)) which are R-linearly
independent. The matrix

κ1 =

⎛⎝ 1 0 γL11
γP13

γ−1
L33

0 1 γL22
γP23

γ−1
L33

0 0 1

⎞⎠
is the lift in ˜Par(Γ0) of γ−1

L γPγL. Finally, we observe that the system of linear
equations

rLat(κ1) + sLat(γP ) = 0

has determinant γP23
γP13

γ−1
L33

(γL11
− γL22

) �= 0. �

We denote by ˜Par(Γ0) the subgroup of SL(3,C), consisting of those matrices of
the form ⎛⎝ 1 0 a

0 1 b
0 0 1

⎞⎠ , a, b ∈ R,

which are lifts of elements in Par(Γ0). The function Lat : ˜Par(Γ0) → R2 is the
group morphism given by Lat(γij) = (γ13, γ23).

We define Γ̌ as the intersection of the stabilizers, in Γ, of every component of
Eq(Γ). It is not hard to check that Γ̌ is a subgroup of Γ of index at most 4, which

contains Par(Γ0). Moreover, Γ̌ can be lifted to a subgroup Γ̃ of GL(3,R) where
each element has the form: ⎛⎝ a 0 c

0 b d
0 0 1

⎞⎠ ,

where a, b > 0 and c, d ∈ R.
As a consequence, Π1(Γ̌) and Π2(Γ̌) do not contain elliptic elements.

In what follows, eLat : Γ̃ → GL(2,R+) denotes the function given by

eLat(γij) =

(
γ11 0
0 γ22

)
.

We remark that eLat is a group morphism whose kernel is ˜Par(Γ0).
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Proposition 3.11. Lat( ˜Par(Γ0)) is invariant, as a set of R2, under the action of

the group eLat(Γ̃).

Proof. Let (a, b) ∈ Lat( ˜Par(Γ0)) and (γij) ∈ eLat(Γ̃). Thus, there is τ ∈ ˜Par(Γ0)

and γ ∈ Γ̃ such that Lat(τ ) = (a, b) and eLat(γ) = (γij). Hence, κ = γτγ−1 ∈
˜Par(Γ0) and Lat(κ) = (γ11a, γ22b). �

Lemma 3.12. eLat(Γ̃) is a commutative discrete group with at most 2 generators.

Proof. Since the map ρ : eLat(Γ̃) → R2,

ρ

(
a 0
0 b

)
= (Log(a), Log(b)),

is a group isomorphism, it suffices to show that eLat(Γ̃) is discrete. On the contrary,

there are sequences of distinct elements (αm), (βm) ∈ R+ such that

(
αm 0
0 βm

)
∈

eLat(Γ̃) and αm, βm m→∞
�� 1. Let γm = (γ

(m)
i,j ) ∈ Γ̃ such that

eLat(γm) =

(
αm 0
0 βm

)
.

Since Lat( ˜Par(Γ0)) is a lattice of rank 2, there is a sequence (τm) ∈ Lat( ˜Par(Γ0))

such that (Lat(τm) + (γ
(m)
13 , γ

(m)
23 )) is a bounded sequence. Thus we can assume

that there are c, d ∈ R such that (Lat(τm) + (γ
(m)
13 , γ

(m)
23 )) m→∞

�� (c, d). Now, it is

not hard to check that

γmτm m→∞
��

⎛⎝ 1 0 c
0 1 d
0 0 1;

⎞⎠ ;

a contradiction to the fact that Γ̃ is discrete. �

Proof of Theorem 0.2. If Γ contains a hyperbolic toral group ΓA of index at most
eight, then Proposition 2.5 implies that Λ(Γ) = Λ(ΓA). By the proof of Theorem
0.1, the maximum number of complex lines in general position in Λ(ΓA) is equal to
four.

In order to prove the converse, it suffices to prove that Γ̌ is a hyperbolic toral
group.

Let σ be a subset of Γ̌ such that the number of elements in σ is equal to the rank
of the discrete commutative group eLat(Γ̃) and its lifts to Γ̃ generate eLat(Γ̃) as
a commutative discrete group. Let us fix an element τ0 ∈ σ, by conjugating with
a projective transformation, we may assume that τ0 has a lift τ̃0 ∈ Γ̃ which is a
diagonal matrix. Finally, let γ1, γ2 be two generators of the group Par(Γ0).

We claim that σ ∪ {γ1, γ2} is a set of generators for Γ̌. In fact, let γ ∈ Γ̌ and

γ̃ ∈ Γ̃ be a lift. There is an element u in the group generated by σ with a lift ũ ∈ Γ̃
such that eLat(γ̃) = eLat(ũ). Hence, γu−1 ∈ Ker(eLat) = Par(Γ0), so the claim
is proved.
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Now, let v = (a, c), w = (b, d) be two linearly independent vectors in R2 such

that Lat( ˜Par(Γ0)) = Zv + Zw. Also, set

t =

(
a b
c d

)
; T =

(
t 0
0 1

)
.

Thus, some computations show that:

T−1γjT =

(
I ej
0 1

)
for j = 1, 2.

Now, for each h ∈ σ̃, we have

T−1hT =

(
t−1ht νh
0 1

)
,

and νh = 0, whenever h = eLat(τ̃0). Proposition 3.11 yields that the group G =
〈{t−1ht : h ∈ σ̃}〉 is an infinite commutative subgroup of SL(2,Z). It is a known
fact (see [4, 5]) that SL(2,Z) is a word hyperbolic group, and word hyperbolic
groups do not contain copies of Z⊕ Z. Hence, G has rank one or zero.

Finally, G cannot be trivial by Lemmas 3.4 and 3.6; therefore, its rank is one
and its generator is an hyperbolic toral automorphism. �
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