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LINES OF MINIMA WITH NO END

IN THURSTON’S BOUNDARY OF TEICHMÜLLER SPACE

YUKI IGUCHI

Abstract. Let ν+ and ν− be two measured laminations which fill up a hy-
perbolic surface. Kerckhoff [Duke Math. J. 65 (1992), 187–213] defines a line
of minima as a family of surfaces where convex combinations of the hyperbolic
length functions of ν+ and ν− are minimum. This is a proper curve in the
Teichmüller space. We show that there exists a line of minima which does not
converge in the Thurston compactification of the Teichmüller space of a com-
pact Riemann surface. We also show that the limit set of the line of minima
is contained in a simplex on the Thurston boundary.

1. Introduction

Let X be a Riemann surface of type (g, n). That is, X is obtained from a closed
Riemann surface of genus g by removing n points. We assume that the Euler
characteristic of X is negative and denote by T (X) the Teichmüller space of X. In
this paper, we investigate the asymptotic behavior of paths in T (X) which were
proposed by Kerckhoff [Ke]. Let ν+, ν− be two measured geodesic laminations
on X and let �(ν+) and �(ν−) be the hyperbolic length functions of ν+ and ν−.
Kerckhoff showed that there exists a unique hyperbolic surface at which the function
�(ν+) + �(ν−) is minimum over all T (X) if ν+ and ν− fill up X. Scaling ν+ by
et/2 and ν− by e−t/2 and tracing a unique minimizing point Lt of the sum of the
length functions, we can consider a one-parameter family L = {Lt}t∈R of hyperbolic
surface. This family is called a line of minima. It is known that there exists a line
of minima between any two distinct points in T (X) (see [Ke]). It is also known
that every line of minima is a uniformly quasi-geodesic for the Teichmüller distance
dT (see [CRS1]); namely, there exist universal constants c ≥ 1 and C ≥ 0 such that
the inequality

1

c
|t− s| − C ≤ dT (Ls,Lt) ≤ c|t− s|+ C

holds for all s, t ∈ R. There is another significant class of curves in T (X). What
is called Teichmüller geodesics are geodesics for the Teichmüller distance. These
also have an analytic description similar to lines of minima: Gardiner-Masur [GM]
showed that for two transverse measured foliations F and G, the function defined
to be the product of the extremal length functions of F and G is minimized along
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a unique Teichmüller geodesic and that this Teichmüller geodesic is defined by a
holomorphic quadratic differential whose horizontal and vertical foliations are in
the projective measured classes of F and G, respectively.

Teichmüller space can be defined either as a space of equivalence classes of con-
formal structures on X or as a space of equivalence classes of hyperbolic structures
on X. Each of the two curves considered above is natural from one of these points
of view: Tecihmüller geodesics from the point of view of conformal geometry and
lines of minima from the point of view of hyperbolic geometry. There is no obvious
way to compare the two curves. It is of interest to formulate the convergence of
Teichmüller geodesics or lines of minima. There is a natural compactification of
T (X) due to Thurston in view of hyperbolic geometry; the action of the mapping
class group extends continuously to the compactification and the boundary, called
the Thurston boundary, is equal to the set PML of all projective measured lami-
nations. In [DS], Diaz and Series studied the behavior of lines of minima near the
Thurston boundary. They showed the following:

Theorem A. Let ν+ =
∑N

i=1 aiαi be a rational measured lamination (that is, αi

is a collection of disjoint simple closed curves on X and ai > 0 for all i) and ν−

any measured lamination so that ν+, ν− fill up the surface. Then

lim
t→∞

Lt = [α1 + · · ·+ αN ] ∈ PML.

If ν+ and ν− are two measured laminations which fill up the surface and such that
ν+ is uniquely ergodic and maximal, then

lim
t→∞

Lt = [ν+] ∈ PML.

It is worth pointing out that in the case of ν+ =
∑N

i=1 aiαi, the line of minima

converges to
[∑N

i=1 αi

]
, rather than to the projective class

[∑N
i=1 aiαi

]
of ν+.

Similar results on the behavior of Teichmüller geodesics has been proven by Masur
[Ma]. In this case, a geodesic ray is determined by a base surface X and a quadratic
differential q on X. Roughly speaking, the end of this ray depends on the horizontal
foliation F of q. Masur showed the following:

Theorem B. If q is a Jenkins-Strebel differential, that is, if F has only compact
leaves, then the associated ray converges in the Thurston boundary to the barycenter
of the leaves (the foliation with the same closed leaves all of whose cylinders have
unit height), while if q is uniquely ergodic and minimal, it converges to the projective
class of F .

The question of the description of the behavior of an arbitrary Teichmüller geo-
desic or line of minima in the Thurston boundary is still open. Recently, Lenzhen
[L] showed the following:

Theorem C. There exists a Teichmüller geodesic ray which does not converge in
the Thurston compactification.

In the introduction of [CRS2], Choi, Rafi and Series expected that the above
theorem is true for lines of minima. We give a proof for their expectation:

Theorem 1.1. There exists a line of minima which does not converge in the
Thurston compactification.
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In the proof of Theorem C, Lenzhen constructed an explicit quadratic differential
and flat surface. To prove Theorem 1.1, we show that the line of minima associated
to Lenzhen’s quadratic differential does not approach any point of the Thurston
boundary. Lenzhen mentioned only the case of genus two, but her construction can
be extended for the general case. We shall explain the construction precisely in §6.
Moreover, we give a description of the limit set of the line of minima.

This paper is organized as follows. The aim is to prove Theorem 1.1. In §2,
we recall the definitions and properties of ingredients of Teichmüller theory and
Thurston theory. In order to prove the theorem, we need to estimate the Te-
ichmüller distance between Teichmüller geodesics and lines of minima in the thin
part of the Teichmüller space. For this purpose, Minsky’s product region theorem
in [Mi] and length estimates for short geodesics in [CRS2] play an important role.
We shall introduce these precisely throughout §3, §4 and §5. In §6, we give a proof
of Theorem 1.1. In §7, we investigate limit sets of lines of minima associated to
Lenzhen’s quadratic differentials.

2. Preliminaries

In this section, we describe basic facts of Teichmüller theory and Thurston theory
of projective measured laminations. In what follows, X is a Riemann surface of
type (g, n). That is, X is obtained from a closed Riemann surface of genus g by
removing n marked points. We say that each of the marked points is a puncture.

2.1. Measured laminations. A collection γ of disjoint simple geodesics on X is
a geodesic lamination on X if the union |γ|, called the support, of all geodesics in γ
is a closed set in X. Each of the geodesics in γ is called a leaf of γ. Furthermore,
let Λ be the set of all compact arcs which are transverse to |γ| with endpoints, if
any, on X \ |γ|. A function ν : Λ → R is a transverse measure on γ if the following
three properties hold:

(1) ν(α) = ν(β) if α is isotopic to β through elements of Λ,
(2) ν(α) =

∑
i∈I ν(αi) if α =

⋃
i∈I αi and

(3) ν(α) > 0 if and only if α ∩ |γ| �= ∅,
for α, β ∈ Λ and for any countable family {αi}i∈I of elements of Λ which satisfies
that αi ∩ αj = ∂αi ∩ ∂αj if i �= j. A pair (γ, ν) of a geodesic lamination γ and
a transverse measure ν supported on |γ| is called a measured lamination on X.
When γ is not noted, we abuse notation and abbreviate (γ, ν) to ν for simplicity.
Two measured laminations μ and ν are said to fill up X if i(μ, ξ) + i(ξ, ν) > 0
for any measured laminations ξ. The set of all measured laminations is denoted
by ML = ML(X). The positive numbers R+ naturally acts on ML \ {0} as
multiplicative factors, and we denote the quotient set by PML = PML(X).

The simplest example of measured laminations is the case where the supports
consist of finitely many compact geodesics. Namely, γ is a collection {Cj}j∈J of
finitely many disjoint simple closed geodesics and ν is defined to be

ν(α) =
∑
j∈J

ajcard(α ∩ Cj)

for some weight aj > 0. Writing S for the set of all homotopy classes of non-trivial,
non-peripheral simple closed curves, we can regard S as a subset of ML in the
above sense.
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For ν ∈ ML and α ∈ S, the intersection number i(ν, α) between ν and α is
defined to be

i(ν, α) = inf
α′

ν(α′),

where the infimum is taken over all simple closed curves α′ homotopic to α. The
set ML is made into a topological space by the weak topology: this means that a
sequence νn converges to ν in ML if and only if i(νn, α) converges to i(ν, α) for all
α ∈ S. It is known that the intersection number function extends homogeneously
and continuously on ML×ML.

Let MF be the space of all measure equivalence classes of measured foliations.
The set S can naturally be thought of as a subset of MF . It is known that there
exists a unique homeomorphism σ from MF to ML such that the restriction to S
is the identity. For the direct construction of σ : MF → ML, we refer the reader
to [Le] and also [Ke].

2.2. Teichmüller spaces. Amarked Riemann surface (Y, f) is a pair of a Riemann
surface Y and a quasiconformal mapping f : X → Y . Two marked Riemann
surfaces (Y1, f1) and (Y2, f2) are said to be Teichmüller equivalent if there exsists
a conformal mapping h : Y1 → Y2 such that h is homotopic to f2 ◦ f−1

1 . The
equivalence class of (Y, f) is denoted by [Y, f ]. The set T (X) of all Teichmüller
equivalence classes of marked Riemann surfaces is called the Teichmüller space of
X. The Teichmüller distance is defined to be

dT (X)([Y1, f1], [Y2, f2]) := log inf
h

K(h),

where the infimum is taken over all qusiconformal mappings h : Y1 → Y2 homotopic
to f2 ◦ f−1

1 and the maximal dilatation of h is denoted by K(h). This gives T (X) a
complete distance function; the metric space

(
T (X), dT (X)

)
is homeomorphic to the

open ball B6g−6+2n. Recall that T (X) is identified with the space of all equivalence
classes of hyperbolic metrics on X with constant curvature −1. Here two metrics
ρ1 and ρ2 are said to be Teichmüller equivalent if there exists an isometry from
(X, ρ1) to (X, ρ2) isotopic to the identity.

2.3. Quadratic differentials. Let q be a quadratic differential on X which is
holomorphic except possibly at punctures. We allow the quadratic differential q
having a pole of order at least one at punctures. This means that the area ‖ q ‖=∫
X
|q(z)||dz|2 is finite, and we normalize so that the area is 1. We refer the reader

to [St] for a deeper discussion of quadratic differentials.
Each of the zeros and the poles of q is called a critical point. Away from all the

critical points, we define a new local coordinate, called a natural coordinate, by

w =

∫ √
q(z)dz

for any local coordinate z. The transition maps are given by the form z �→ ±z +
c for c ∈ C. The vertical foliation and the horizontal foliation is obtained by
pulling back the vertical and the horizontal foliation, respectively, in C via the
natural coordinates. Hence, every quadratic differential q determines a pair of
transverse measured foliations with singularities at the critical points of q; Gardiner
and Masur [GM] showed that for any pair (F,G) of transverse measured foliations
with i(F,G) = 1, there exists a unique Riemann surface Y and a unique quadratic
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differential q on Y with unit area such that the vertical and the horizontal foliation
of q are measure equivalent to F and G, respectively.

2.4. Teichmüller geodesics. Let ν+ and ν− be measured laminations which fill
up X with i(ν+, ν−) = 1. For each t ∈ R, set ν+t = et/2ν+ and ν−t = e−t/2ν−. Let
Gt be the Riemann surface and qt be the quadratic differential on Gt such that the
vertical and the horizontal foliation of qt are measure equivalent to σ−1(ν+t ) and
σ−1(ν−t ), respectively. Here σ is the homeomorphism from MF to ML as stated
above. Then the path t �→ Gt is a geodesic on T (X), and we call it the Teichmüller
geodesic of ν+ and ν−.

2.5. Lines of minima. It is known that for a fixed hyperbolic structure, the hy-
perbolic length function on S extends homogeneously and continuously on ML.
For any hyperbolic metric ρ ∈ T (X), we write �ρ(ν) for the length of a measured
lamination ν. Let ν+, ν− be as above. Kerckhoff [Ke] showed that the length
function

ρ �→ �ρ(ν
+) + �ρ(ν

−)

is minimized at a unique metric L0 ∈ T (X). For each t ∈ R, let Lt be the unique
metric which minimizes the function ρ �→ et/2�ρ(ν

+) + e−t/2�ρ(ν
−). Then t �→ Lt

is a path in T (X), and we call it the line of minima of ν+ and ν−.

2.6. The Thurston boundary. The Thurston compactification of T (X) is the
closure of the Thurston embedding

T (X) � ρ �→ [α �→ �ρ(α)] ∈ PR,

where PR = ((R≥0)
S − {0})/R+. The boundary of image of T (X) is called the

Thurston boundary of T (X). Thurston showed that the boundary coincides with
PML homeomorphic to the sphere S

6g−7+2n; the closure of image of T (X) is
homeomorphic to the closed ball B6g−6+2n ∪ S6g−7+2n. For more details we refer
the reader to [FLP].

2.7. Continued fractions. We recall that every real number θ has a continued-
fraction expansion of the form

a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

,

with a0 ∈ Z, an ∈ N for n ≥ 1 and that θ is irrational if and only if infinitely many
ai’s are non-zero. We shall write the above expansion as θ = [a0; a1, a2, a3, · · · ] and
call an an element of θ. The irrational number θ is said to be of bounded type if the
sequence {an}n∈N is bounded and it is said to be of unbounded type if the sequence
is unbounded.

For n ∈ N, let pn and qn be coprime integers with

pn
qn

= a0 +
1

a1 +
1

a2 +
1

· · ·+ 1
an

.

We denote by [a0; a1, a2, · · · , an] the right term in the above equation.
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The following properties [Kh] hold:

pn+1 = an+1pn + pn−1 and qn+1 = an+1qn + qn−1,(1)

1

qn + qn+1
≤ |pn − θqn| ≤

1

qn+1
,(2)

p2n
q2n

↗ θ and
p2n+1

q2n+1
↘ θ.(3)

2.8. Flat geodesics in Tori. For any t, θ ∈ R, we define the linear mapping Gθ
t

by the matrix

1√
1 + θ2

(
θet/2 e−t/2

−et/2 θe−t/2

)
.

The map Gθ
t is made of the affine mapping [(x, y) �→ (et/2x, e−t/2y)] followed from

the rotation by the angle (π/2 − tan−1 θ). For any (q, p) ∈ Z2, we call the (q, p)-
curve at time t to be the image of (q, p) under the map Gθ

t , and we denote the
Euclidean length of the (q, p)-curve at time t by lθt (q, p). An easy calculation shows
that

(4) lθt (q, p) =

√
(p− qθ)2et + (q + pθ)2e−t

1 + θ2
.

Then the following lemma holds:

Lemma 2.1 (Lenzhen, [L]). Suppose that θ = [a0; a1, a2, a3, · · · ] is an irrational
number with ai ≥ 3 for i ∈ N. Suppose that the (q, p)-curve is the shortest curve
at some time t; that is, lθt (q, p) = inf lθt (q

′, p′), where the infimum is taken over all
(q′, p′) ∈ Z

2. If t ≥ log ((1 + a0θ)/(θ − ao)), then p = pn and q = qn for some
n ∈ N. Also, at time Tn = log ((pnθ + qn)/|qnθ − pn|), the (qn, pn)-curve is the
shortest. For t ∈ [Tn, Tn+1], the shortest curve is either (qn, pn) or (qn+1, pn+1).

2.9. Notation. To simplify our presentation, we use the symbols �,
∗�, O, and

Θ defined as follows: for two functions f , g, the notation f � g and f
∗� g mean

respectively, that there are constants c > 1, C > 0 depending only on the topology
of X and some fixed constant ε0 > 0 such that

1

c
g(x)− C ≤ f(x) ≤ cg(x) + C and

1

c
g(x) ≤ f(x) ≤ cg(x).

For two positive functions, x and y, the notation x = O(y) means that x/y is
bounded above by a constant depending only on the topology of X and ε0; the
notation x = Θ(y) means that x = O(y) and y = O(x).

3. Minsky’s product region theorem

In order to prove Theorem 1.1, we need to estimate the Teichmüller distance
between two elements in the thin part of T (X). For this purpose, Minsky’s product
region theorem will be useful. To state this precisely, we first introduce the notion
of twists and Fenchel-Nielsen coordinates.
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Figure 1

3.1. Twists in hyperbolic metrics. There are various ways to define twists; we
shall follow Minsky [Mi] and Choi, et al. [CRS2]. Fix a hyperbolic metric ρ on
X. Let α be an oriented simple closed geodesic and let ζ be a simple geodesic that
intersects α transversely. Let p be a point of the intersection α∩ζ. In the universal
cover D of X, a lift ζ̃ of ζ intersects a lift α̃ of α at a lift p̃ of p. Let ζR, ζL be the
endpoints of ζ̃ on S1 to the right and left of α̃, respectively. If pα : D ∪ S1 → α̃ is
the orthogonal projection to α̃, then the twist of ζ around α at p is defined to be

twρ(ζ, α, p) = ±dD(pα(ζR), pα(ζL))

�ρ(α)
,

where the sign is (+) if the direction from pα(ζL) to pα(ζR) coincides with the
orientation of α̃ and (−) if it is opposite (see Figure 1). Because different lifts of
ζ are disjoint even if the simple geodesic ζ is not closed, the twist twρ(ζ, α, p) is

independent of the choice of a triple (ζ̃ , α̃, p̃) of lifts. Minsky [Mi] showed that the
inequality

|twρ(ζ, α, q)− twρ(ζ, α, p)| ≤ 1

holds for any point q ∈ ζ ∩ α. He thus defines

twρ(ζ, α) = min
p∈ζ∩α

twρ(ζ, α, p)

so that the twist is independent of the choice of a point of intersection. For a
measured lamination ν that intersects α transversely, we can also define the twist
of ν around α by

twρ(ν, α) = inf
ζ
twρ(ζ, α),

where the infimum is taken over all leaves ζ of ν. Note that the twist twρ(ν, α)
depends only on the underlying geodesic lamination |ν|; in other words, the trans-
verse measure is ignored. However, we will be working with measured geodesic
lamination. For convenience, we write Twρ(ν, α) for |twρ(ν, α)|.

3.2. Fenchel-Nielsen coordinates. Take a curve system {α1, · · · , αk} so that the
completions of all components of X \

⋃k
i=1 αi are pairs of pants. Recall that such a

curve system is a maximal collection of disjoint, non-peripheral, non-trivial simple
closed curves on X and vice versa. This implies k = 3g− 3+n. We call the system
a pants curve system of X. Suppose, to start, that X is compact (i.e., n = 0). For
any standard hyperbolic metric ρ on X, we immediately obtain k positive numbers
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{�ρ(αi)}ki=1, called the length parameters. Additional k real numbers, called the
twist parameters, are defined as follows (see [Mi].)

A pair of pants P with boundary curves α1, α2, α3 contains three unique ho-
motopy classes of simple properly embedded arcs γ12, γ23, γ13, called the seams,
such that γij joins αi to αj . Fix a set of representatives of the seams which match
on opposite sides of each non-peripheral αi. This determines a curve system μ of
non-trivial, non-peripheral simple closed curves.

Now for any standard hyperbolic metric ρ on X, the seams have geodesic rep-
resentatives γρ

ij which are orthogonal to αρ
i and αρ

j , where αρ
i is the ρ-geodesic

representative in the homoropy class αi. The seams cut each pair of pants into
two congruent right-angled hexagons, and in particular, they bisect the boundary
components. Now for each αj and each pair of corresponding seam endpoints, there
is a unique geodesic path along αj that must be spliced between the endpoints, so
that the resulting curve is homotopic to a curve in μ. The length τρ(αj) of this
path (which can be given a sign, since αj is oriented) is the same for both pairs of
seam endpoints on αj . We define our twist parameter sρ(αj) to be τρ(αj)/�ρ(αj).

This construction gives a homeomorphism FN : T (X) → R
k
+ × R

k, taking
(�ρ(α1), . . . , �ρ(αk), sρ(α1), . . . , sρ(αk)). We note that a positive Dehn twist on αj

has the effect of incrementing sρ(αj) by one and leaving the other coordinates
invariant.

In the case with punctures, the construction is similar, except that one or two
ends of a pair of pants may be a puncture, and we allow the seams to be non-
compact arcs terminating in boundaries or punctures.

Minsky [Mi] gives a comparison between twisting numbers and the Fenchel-
Nielsen twit parameters:

Lemma 3.1. Let {α1, · · · , αk} be a pants curve system of X and let ν be a measured
lamination on X which intersects the geodesic representative of α = αi transversely
for some 1 ≤ i ≤ k. Then the inequality

|(twρ(ν, α)− twρ′(ν, α))− (sρ(α)− sρ′(α))| ≤ 4

holds for any ρ, ρ′ ∈ T (X).

3.3. Minsky’s product region theorem. The Margulis lemma provides a uni-
versal constant εM such that all components of the εM-thin part (i.e., the subset
of X where the injectivity radius is less than εM) are horocyclic neighborhoods of
cusps or annular collars about short geodesics. By the εM-thick part, we mean the
complement of the thin part.

Let A be a collection of disjoint, non-trivial, non-peripheral, simple closed curves
on X. Adding certain curves to A, we get a pants curve system P of X containing
A. Let XA be the punctured surface obtained from X by removing all the curves
in A and replacing the resulting boundary components by punctures. Note that
P \A can be thought of as a pants curve system of XA.

Following [Mi], we now define a projection

Π : T (X) → T (XA)×Hα1
× · · · ×Hαr

,

where A = {α1, · · · , αr} and Hαi
is the upper half-plane. The first component Π0

which maps to T (XA) is defined by forgetting the length and the twist parameters of
the curves in A and keeping similar remaining curves in P\A; the other component
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Παi
which maps to Hαi

is defined by

Παi
(ρ) = sρ(αi) + i/�ρ(αi).

Minsky’s product region theorem states that, up to bounded additive error, the
Teichmüller distance on the thin part of T (X) is approximated by the sup metric
on

T (XA)×Hα1
× · · · ×Hαr

.

Theorem 3.2 (Minsky, [Mi]). There exists a constant ε0 smaller than εM such
that

dT (X)(ρ, σ) = max
α∈A

{
dT (XA)(Π0(ρ),Π0(σ)), dHα

(Πα(ρ),Πα(σ))
}
±O(1)

holds for any ρ, σ ∈ Tε0(X,A). Here, by the thin part Tε0(X,A) of T (X), we mean
the subset where all the curves in A have hyperbolic length at most ε0.

The distance between the projections to Hα can be approximated as follows:

Theorem 3.3 (Choi-Rafi-Series, [CRS2]). Fix a positive constant ε0 smaller than
εM. Let α ∈ S and let ρ1, ρ2 ∈ Tε0(X,α). If there exists a measured lamination ν
intersecting α such that

Twρi
(ν, α)�ρi

(α) = O(1)

for i = 1, 2, then

dHα
(Πα(ρ1),Πα(ρ2)) =

∣∣∣∣log �ρ1
(α)

�ρ2
(α)

∣∣∣∣±O(1).

4. Length estimates

In this section and the next section, we introduce length estimates for short
geodesics, following [CRS2]. All the proofs can be found in their paper, and so
we omit the proofs. We see precisely in this section that the hyperbolic length
of a short geodesic is comparable to the largest moduli of maximal flat annuli
and maximal expanding annuli with core homotopic to the geodesic in terms of
quadratic differentials (cf. Theorem 4.1); we analyze the contribution to the length
of a geodesic associated to a subsurface with geodesic boundary (cf. Lemma 4.2).

4.1. Flat and expanding annuli. Let q be a holomorphic quadratic differential
on X and let A be an annulus in (S, q) with piecewise smooth boundary. We say A
is regular if each of the boundary components ∂0, ∂1 is either non-negatively curved
at every point or non-positively curved at every point and if ∂0, ∂1 are q-equidistant
from each other. Note that a piecewise smooth curve is said to be non-negatively
curved at a corner if the interior angle at the corner is at least π and it is said
to be non-negatively curved at a corner if the interior angle at the corner is at
most π. Let κA(∂i) be the integral of curvature of ∂i along the smooth portions,
plus the sum of the interior angles at all the corners. Suppose that A is a regular
annulus with κA(∂0) ≤ 0. We say that A is an expanding annulus if κA(∂0) < 0
and we call ∂0 the inner boundary and ∂1 the outer boundary; according to the
Gauss-Bonnet theorem, we then have κA(∂1) > 0. We say A is a flat annulus if
κA(∂0) = κA(∂1) = 0. A regular annulus A is said to be primitive with respect to q
if it contains no critical points of q in its interior. On account of the Gauss-Bonnet
theorem, every primitive annulus must either be flat or expanding.
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4.2. Modulus of annulus and the length of a short curve. Note that every
simple closed curve α on (S, q) either has a unique q-geodesic representative, or
satisfies that all q-geodesic representatives foliate a flat annulus F (α). Note that
when α has only one q-geodesic representative, F (α) will be thought of as a de-
generate annulus which contains this geodesic alone. Let ∂0, ∂1 be the boundary

components, possibly coincident, of F (α). Let ∂̂i be the q-equidistant curve from

∂i outside of F (α) such that ∂̂i and ∂i bound the largest primitive annulus Ei(α).

It is possible for ∂̂i to coincide with ∂i. By the construction, the interior of Ei(α)
is an expanding annulus with core homotopic to α.

The following theorem holds:

Theorem 4.1. There exists a constant ε0 smaller than εM such that

1

�ρ(α)
� max {ModE0(α),ModF (α),ModE1(α)}

holds for any α ∈ S and for any ρ ∈ T (X) with �ρ(α) < ε0.

A flat or an expanding annulus which achieves the maximum modulus in the
above theorem is said to be dominant.

4.3. Length estimates on subsurfaces. Let (X, ρ) be the surface X with a
hyperbolic metric ρ and let Q be a subsurface with geodesic boundary. Suppose
that ζ is a simple closed geodesic in (X, ρ) that intersects ∂Q transversely and
consider the intersection ζ ∩ Q which is made up of geodesic arcs with endpoints
on ∂Q. We can approximate ζ ∩ Q by piecewise geodesic arcs homotopic to arcs
in ζ ∩Q, which alternately run along arcs perpendicular to ∂Q and parallel to ∂Q.
The length of the parallel portion is determined by the twist of ζ around the curves
in ∂Q, while the portion perpendicular to ∂Q is defined and estimated as explained
below.

Let A be a collection of mutually disjoint simple closed geodesics in (X, ρ). Let
Q be the metric completion of a connected component of X \ A. Note that it is
possible for two distinct boundary components of Q to be identified in S to a single
curve in A, so strictly speaking, Q is not a subsurface. If η is an essential geodesic
arc with endpoints on ∂Q, let ηQ be the shortest arc in Q that is freely homotopic
to η, relative to ∂Q. Hence, ηQ is orthogonal to ∂Q.

The following lemma is a special case of Lemma 7.2 in [CRS2].

Lemma 4.2. Suppose that �ρ(αj) < l for every component αj of ∂Q for some
l > 0. Then there exists a constant K = K(l) such that for any simple closed
geodesic ζ which intersects ∂Q transversely,∣∣∣∣∣∣�ρ(ζ ∩Q)−

⎡
⎣∑

η

�ρ(ηQ) +
∑
j

�ρ(αj)
Twρ(ζ, αj)

2
i(ζ, αj)

⎤
⎦
∣∣∣∣∣∣ ≤ Ki(ζ, ∂Q),

where the first sum is taken over all arcs η in ζ ∩ Q and the second sum is taken
over all j such that αj intersects ζ.

The Bers lemma provides a universal constant L > 0 such that for every ρ ∈
T (X) there is a pants curve system P with the property that �ρ(α) < L for every
α ∈ P. We now consider the case where Q is a totally geodesic pair of pants with
boundary curves α1, α2, α3 of lengths �(αi) < L for i = 1, 2, 3. If the two endpoints
of an arc η in ζ ∩Q lie on αi and αj , then ηQ is the shortest common perpendicular
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between αi and αj . Following Lemma 3.3 in [CRS2], we see that ηQ has length
log(1/�(αi)) + log(1/�(αj))±O(1), where the bound on the error depends only on
L. Therefore the following estimate holds:

(5)
∑
η

�ρ(ηQ) =

3∑
j=1

[
i(ζ, αj) log

1

�ρ(αj)

]
+O (i(ζ, ∂Q)) ,

where the sum is taken over all arcs η in ζ ∩Q.

5. Teichmüller geodesics and lines of minima

Fix a constant ε0 smaller than the Bers constant L so that Theorems 3.2 and 4.1
are valid. For any ρ ∈ T (X), we say a simple closed curve α is extremely short in ρ
if �ρ(α) < ε0. In this section, following [CRS2], we will estimate the length and the
twist parameters of extremely short curves along Teichmüller geodesics or lines of
minima (cf. Theorems 5.3, 5.4, 5.5 and 5.6).

5.1. Lengths and twists along Teichmüller geodesics. For two measured lam-
inations ν+ and ν− which fill up X, let G = {Gt}t∈R be the Teichmüller geodesic of
ν+ and ν−. For each t, let qt be the unique quadratic differential on Gt correspond-
ing to the pair of ν+t and ν−t (cf. §2.3). We say α ∈ S is horizontal if i(ν+, α) = 0
and it is vertical if i(ν−, α) = 0. By the balance time tα of α, we mean the time t
with the property i(ν+t , α) = i(ν−t , α). We adopt the conventions that tα = ∞ if α
is horizontal and that tα = −∞ if α is vertical. Suppose that α is neither horizontal
nor vertical, and set

Dt(α) = e−|t−tα|dα(ν
+, ν−),

where dα(ν
+, ν−) is the relative twist of ν+ and ν− around α defined to be

inf
ρ∈T (X)

(∣∣twρ(ν
+, α)− twρ(ν

−, α)
∣∣) .

Let Ft(α) be a maximal flat annulus of qt with core homotopic to α. At an arbitrary
time t, the equation

ModFt(α) = e−tModF0(α)

holds if α is vertical and the equation is the same except that the right term is
replaced by etModF0(α) if α is horizontal.

The following holds for the exceptional case:

Theorem 5.1. Suppose that α ∈ S is an extremely short curve in Gt which is
neither vertical nor horizontal. If Ft(α) is dominant, then

ModFt(α) � Dt(α).

On the other hand, to measure the growth of the modulus of maximal expanding
annuli Et(α), we make the following definition.

For a subsurface Y , there exists a unique subsurface Ŷ with qt-geodesic boundary
in the homotopy class of Y that is disjoint from the interior of F (α) for each
boundary component α of Y . If Y is not a pair of pants, define λY to be the length
of the qt-shortest non-peripheral simple closed curve contained in Ŷ . If Y is a pair
of pants, define λY to be max {�qt(α1), �qt(α2), �qt(α3)}, where αi, α2, α3 are the

three boundary curves of Ŷ and �qt(αi) is the length of a qt-geodesic representative
of αi for i = 1, 2, 3.
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Then the following holds:

Theorem 5.2. Suppose that α is an extremely short curve in Gt and Y is a thick
component of Gt adjacent to α. Let α̂ be the qt-geodesic representative of α on the
boundary of Ŷ and let Et(α) be a maximal expanding annulus on the same side of

α̂ as Ŷ . If Et(α) is dominant, then

ModEt(α) � log
λY

�qt(α)
,

where �qt(α) is the qt-length of α̂.

Now we set

Kt(α) = max

{
λY1

�qt(α)
,

λY2

�qt(α)

}
.

As a consequence of Theorems 4.1, 5.1 and 5.2, the following theorem holds:

Theorem 5.3. Suppose that α is an extremely short curve in Gt. If α is neither
vertical nor horizontal, then

1

�Gt
(α)

� max {Dt(α), logKt(α)} .

If α is vertical, then

1

�Gt
(α)

� max
{
e−tModF0(α), logKt(α)

}
.

If α is horizontal, the estimate is the same except that the first term is replaced by
etModF0(α).

We need to estimate not only the lengths but also the twist parameters around
short curves:

Theorem 5.4. Suppose that α is extremely short in Gt. Then

TwGt
(ν+, α)�Gt

(α) = O(1) if t ≥ tα,
TwGt

(ν−, α)�Gt
(α) = O(1) if t ≤ tα.

5.2. Lengths and twists along lines of minima. Let L = {Lt}t∈R be the line
of minima of ν+ and ν−. Similar results for lines of minima hold:

Theorem 5.5. Suppose that α is an extremely short curve in Lt. If α is neither
vertical nor horizontal, then

1

�Lt
(α)

� max
{
Dt(α),

√
Kt(α)

}
.

If α is vertical, then

1

�Lt
(α)

� max
{
e−tModF0(α),

√
Kt(α)

}
.

If α is horizontal, the estimate is the same except that the first term is replaced by
etModF0(α).

Theorem 5.6. Suppose that α is extremely short in Lt. Then

TwLt
(ν+, α)�Lt

(α) = O(1) if t ≥ tα,
TwLt

(ν−, α)�Lt
(α) = O(1) if t ≤ tα.

If α is either vertical or horizontal, then TwLt
(ν+, α) = O(1) or TwLt

(ν−, α) =
O(1), respectively.
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5.3. The Teichmüller distance between Gt and Lt. For ρ ∈ T (X) and r > 0,
set

Sr(ρ) = {α ∈ S : �ρ(α) < r} .
Then the following theorems hold:

Theorem 5.7. There exist universal constants ε < ε0 such that for each t,

Sε(Gt) ⊂ Sε0(Lt).

Theorem 5.8. Suppose that ε is the universal constant in the above theorem. Let
X0 be the punctured surface obtained from X by removing all the curves in Sε(Gt)
and replacing the resulting boundary components by punctures. Let Π0 be the map
from T (X) to T (X0) which is the projection defined by forgetting the length and the
twist parameters of Sε(Gt) and keeping the rest of the parameters (cf. §3.3). Then

dT (X0)(Π0(Gt),Π0(Lt)) = O(1).

As a consequence of Theorems 3.2, 3.3, 5.4, 5.6, 5.7 and 5.8, the following formula
holds:

Theorem 5.9. The Teichmüller distance between Gt and Lt is given by

dT (X)(Gt,Lt) = max
α∈Sε(Gt)

∣∣∣∣log �Gt
(α)

�Lt
(α)

∣∣∣∣±O(1),

where ε is the constant in Theorem 5.7. If there are no extremely short curves along
Gt, that is, Sε(Gt) = ∅ for all sufficiently large t, then dT (X)(Gt,Lt) = O(1).

6. Proof of Theorem 1.1

To begin with, following [L], we construct an explicit quadratic differnatial. We
consider the unit square in the plane C with the vertices 0, 1, 1 + i and i. Take
g copies U1, · · · , Ug of the square and g segments σ1, · · · , σg, called slits, from the
origin with the same length 0 < s < 1/2 and with slopes θ1, · · · , θg > 0. For each
1 ≤ i ≤ g, rotating Ui counterclockwise so that σi is vertical, identifing every side
with the opposite side in Ui by a translation and cutting the resulting surface along
σi, we get a once-holed torus Xi. The surface Xi is naturally endowed with a flat
structure. Now glue together along the slits crosswise, namely, the right side of σi

is identified with the left side of σi+1 and the left side of σi is identified with the
right side of σi+1, where σ0 = σg and σg+1 = σ1 (see Figure 2). Let X denote the
resulting surface of genus g. Every flat surface Xi is conformally embedded into
X, and it will be regarded as the subsurface of X. Hence, the surfaces X1, . . . , Xg

give X a quadratic differential with two zeros of order (2g − 2). We normalize the
quadratic differential so that the area is 1, and we denote it by q = q(θ1, . . . , θg).

From now on we make the following assumption (∗):
• all of θ1, . . . , θg are irrational numbers and
• all elements of θi are at least 3 for 1 ≤ i ≤ g.

Note that Lemma 2.1 requires the above assumption.
Let L = L(θ1, . . . , θg) be the lines of minima associated to q = q(θ1, . . . , θg). We

will only consider the forward direction L = {Lt}t≥0.
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Figure 2. Unit squares with slits.

Theorem 1.1 is an immediate consequence of the following theorem:

Theorem 6.1. Suppose that θ1, . . . , θg satisfy the condition (∗) and that θ1 is of
bounded type and θ2 is of unbounded type as continued fractions. Then the line of
minima L(θ1, . . . , θg) does not converge in the Thurston compactification of T (X).

Throughout the proof, we will use the notation �,
∗�, O and Θ appearing in

§2.9. Since we will be dealing mainly with coarse estimates, the constants in the
definition of the notation need not be universal, but they must be independent of
the parameter t.

Proof of Theorem 6.1. Suppose that the line of minima L = {Lt}t≥0 converges to
a projective measured lamination [ν] in PML as t → ∞. By the definition of
convergence in the projective space, there exists a sequence {ct}t≥0 tending to 0
such that ct�Lt

(γ) → i(ν, γ) for any γ ∈ S. Hence, we have

�Lt
(γ1)

�Lt
(γ2)

−→ i(ν, γ1)

i(ν, γ2)

for any γ1, γ2 ∈ S with i(ν, γ2) �= 0. For the Teichmüller geodesic G = {Gt}t≥0

of ν+ and ν−, Lenzhen [L] showed that for any pair (θi, θj) of a bounded type θi
and an unbounded type θj , there exist two sequences tn and sn tending ∞ and
depending only on θj such that

(6) sup
n

�Gtn
(αi)

�Gtn
(αj)

< ∞ and sup
n

�Gsn
(αi)

�Gsn
(αj)

= ∞,

where αi and αj are the simple closed curves on X corresponding to the bottom
edges connecting (0, 0) and (1, 0) in Xi and Xj , respectively. If we prove that (6)
is true for L and that i(ν, αi) �= 0 for some i, then we get a contradiction and the
proof is complete. The former assertion follows from the next lemma and the latter
one follows from Theorem 7.1 appearing in the next section. �

Lemma 6.2. Suppose that θ1, . . . , θg satisfy the condition (∗). If αi is the curve

corresponding to the (1, 0)-curve in Xi, then �Gt
(αi)

∗� �Lt
(αi).

Proof. Fix a constant ε0 smaller than the Bers constant L so that Theorems 3.2
and 4.1 are valid. For simplicity of notation, we write θ = θ1 and α = α1 and set
θ = [a0; a1, a2, · · · ] and pn/qn = [a0; a1, a2, · · · , an].

For each t ∈ R, we consider the torus T θ
t defined by the lattice group〈

Gθ
t (1, 0), G

θ
t (0, 1)

〉
, where Gθ

t is the matrix defined in §2.8. The injectivity radius

rinj(T
θ
t ) at a point of the torus is half of the length of the shortest (q, p)-curve. By
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Figure 3. The expanding annulus Et(σ).

Lemma 2.1, we have q = qn, p = pn for some n and hence, ring(T
θ
t ) = lθt (qn, pn)/2.

Let σ be the curve on X represented by the slit in X1. Then the ring domain Et(σ)
in R2 centered at the midpoint of the slit in X1 with the inner radius se−t/2/2
and the outer radius ring(T

θ
t ) is an expanding annulus embedded into Gt with core

homotopic to σ (see Figure 3). By the geometric definition of extremal length, we
get

(7)
1

ExtGt
(σ)

≥ ModEt(σ) =
1

2π
log

lθt (qn, pn)/2

se−t/2/2
.

From (4), we have

(8)
et/2lθt (qn, pn) = 1√

1+θ2

√
e2t(pn − θqn)2 + (qn + θpn)2

≥ 1√
1+θ2 qn

(
1 + θ pn

qn

)
.

Since the right term of the above inequality goes to ∞ as t → ∞ by the properties
(1), (3), we have ExtGt

(σ) → 0 by (7). From Maskit’s inequality [M], that is,

exp [−�Gt
(σ)/2] ≤ �Gt

(σ)

ExtGt
(σ)

≤ π,

we conclude that the hyperbolic length �Gt
(σ) of σ also tends to zero. Therefore

we deduce that the slit σ is an extremely short curve in Gt for sufficiently large t.
By the Collar Lemma [Bu], all curves with sufficiently short hyperbolic length

are mutually disjoint. The homotopy class of curves σi corresponding to the slits
in Xi are such curves and the other, if any, must be contained in Xi for some i. Let
α1(t) be the unique extremely short curve at Gt contained in X1 if any, otherwise
let α1(t) = α. Let Y1 be the component of X \ [σ], where [σ] is the unique geodesic
representative at Gt in the homotopy class σ, such that Y1 is homotopy equivalent
to X1. Let Y0 be the surface obtained from Y1 by replacing the boundaries to
punctures. Note that Y0 is a once-punctured torus, and that every pants curve
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system is made of only one curve. Suppose that the Teichmüller space T (Y0)
has the Fenchel-Nielsen coordinate associated to the curve α1(t). Let the map
Πt

0 : T (X) → T (Y0) be the projection defined by keeping the length and the twist
parameter of α1(t) and forgetting the rest parameter.

For any t with the condition α1(t) = α, we see dT (Y0)(Π
t
0(Gt),Π

t
0(Lt)) = O(1)

by Theorem 5.8. From the definition of Πt
0 and Wolpert’s lemma (see Lemma 3.1

in [Wo]), we have

�Gt
(α)

�Lt
(α)

=
�Πt

0(Gt)(α)

�Πt
0(Lt)(α)

= Θ(1).

This is the desired conclusion.
Now we assume that α1(t) is the unique extremely short curve contained in X1.

We compute Kt(α
1(t)) appearing in §5.1. By the definition of Kt(α

1(t)), we get
Kt(α

1(t)) = max{�qt(σ)/�qt(α1(t)), 1}, where qt is the quadratic differential corre-
sponding to Gt. For any t ∈ R, there exists n ∈ N such that �qt(α

1(t)) ≥ lθt (qn, pn)
by Lemma 2.1. We conclude from the previous calculation (8) that Kt(α

1(t))
is bounded above. From Theorems 5.3 and 5.5, the reciprocals 1/�Gt

(α1(t)) and
1/�Lt

(α1(t)) are dominated by Dt(α
1(t)). Hence, we have

�Πt
0(Gt)(α

1(t))

�Πt
0(Lt)(α

1(t))
=

�Gt
(α1(t))

�Lt
(α1(t))

= Θ(1).

Applying Minsky’s product region theorem (Theorem 3.2) to Πt
0(Gt) and Πt

0(Lt), we
see dT (Y0)(Π

t
0(Gt),Π

t
0(Lt)) = O(1) by Theorems 3.3, 5.4 and 5.6. From Wolpert’s

lemma, we have

�Πt
0(Gt)(α)

�Πt
0(Lt)(α)

= Θ(1).

Finally, we only need to show that

�Gt
(α)

�Πt
0(Gt)(α)

= Θ(1) and
�Lt

(α)

�Πt
0(Lt)(α)

= Θ(1).

Indeed, suppose that ρ is any hyperbolic metric on X with the properties �ρ(σ) < ε0
and �ρ(α

1(t)) < ε0. We will use the notation [γ] to denote the unique ρ-geodesic
representative homotopic to γ. Set P = Y1 \

[
α1(t)

]
. Note that the completion of P

is a pair of pants. Since [α] is contained in Y1, we get �ρ(α) = �ρ([α] ∩ P ). Setting
�ρ = �ρ([α] ∩ P ) and applying Theorem 4.2, we have∣∣∣∣∣�ρ −

[∑
η

�ρ(ηP ) + �ρ(α
1(t))

Twρ(α, α
1(t))

2
i(α, ∂P )

]∣∣∣∣∣ = O(i(α, ∂P )),

where the sum is taken over all arcs η in αρ ∩ P . Since

∑
η

�ρ(ηP ) = i(α, ∂P )

(
log

1

�ρ(α1(t))
+O(1)

)

by (5), we get

(9)

∣∣∣∣ �ρ
i(α, ∂P )

−
[
log

1

�ρ(α1(t))
+ �ρ(α

1(t))
Twρ(α, α

1(t))

2

]∣∣∣∣ = O(1).
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For δ > 0, let Πt
δ(ρ) be the element in T (X) such that the length parameter of σ

is equal to δ and the rest of the parameters coincide with those of ρ. Because of
�Gt

(α1(t)) = �Πt
δ(Gt)(α

1(t)) by the definition of Πt
δ, we see

(10) log
1

�Gt
(α1(t))

= log
1

�Πt
δ(Gt)(α

1(t))
.

Moreover, because of sGt
(α1(t)) = sΠt

δ(Gt)(α
1(t)), we also see∣∣(twGt

(α, α1(t))− twG0
(α, α1(t))

)
−

(
sGt

(α1(t))− sG0
(α1(t))

)∣∣ ≤ 4

and ∣∣∣(twΠt
δ(Gt)(α, α

1(t))− twG0
(α, α1(t))

)
−

(
sGt

(α1(t))− sG0
(α1(t))

)∣∣∣ ≤ 4

from Lemma 3.1, and hence,

(11)
∣∣∣TwGt

(α, α1(t))− TwΠt
δ(Gt)(α, α

1(t))
∣∣∣ ≤ 8.

Combining (9), (10) and (11), we get

�Gt
(α)

�Πt
δ(Gt)(α)

= Θ(1).

Letting δ → 0, we conclude that

�Gt
(α)

�Πt
0(Gt)(α)

= Θ(1).

Applying the same argument to Lt, we can get the same conclusion for Lt. It

follows that �Gt
(α1)

∗� �Lt
(α1) as required. �

7. The limit set of L
Let ν+ and ν− be the measured laminations corresponding to the vertical fo-

liation F of q and the horizontal foliation G of q, respectively. Since F has the
closed leaf σi which is the closed curve on X corresponding to the slit of the slope
θi, the underlying geodesic lamination of ν+ also has a closed leaf [σi] homotopic
to σi (see [Le]), whereas the transverse measure of ν+ is not supported on [σi].
Let Y1, . . . , Yg, Q be components of X \

⋃g
i=1[σi], where Yi is the component ho-

motopy equivalent to Xi (see Figure 4). Note that Q is the complement of the
completion of Y1 ∪ · · · ∪ Yg and that Q = ∅ when g = 2. Then ν+ can be divided
into sublaminations ν+1 , . . . , ν+g supported on Y1, . . . , Yg, respectively. We write

ν+ = ν+1 + · · ·+ ν+g .
Let L be the line of minima in the previous section and let A(L) be the set

of all accumulation points of L in the Thurston compactification. We call the set
A(L) \L the limit set of L and we denote it by L(L). Since L is proper, L(L) must
be a subset of PML.

The following theorem and corollary hold:

Theorem 7.1. Suppose that θ1, . . . , θg satisfy the condition (∗) and that θ1 is of
bounded type as a continued fraction. Then L(L) is a closed connected subset of the
(g − 1)-dimensional simplex{[

a1ν
+
1 + · · ·+ agν

+
g

]
: ai ≥ 0 for 1 ≤ i ≤ g,

g∑
i=1

ai = 1

}
.
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Figure 4

Corollary 7.2. Under the same condition of Theorem 6.1, if θ2 = · · · = θg, then
[ν+1 ] ∈ L(L). Therefore if g = 2, the limit set L(L) is a segment, one of whose
endpoints is [ν+1 ].

Similar results of the above theorem and corollary are true for the Teichmüller
geodesic associated to Lenzhen’s quadratic differential (see [L]).

Proof of Theorem 7.1. Suppose that [ν] is an accumulation point of L = {Lt}t≥0

in PML. There exist sequences {tn}n∈N tending to ∞ and {cn}n∈N tending to
zero such that

(12) cn�Ltn
(ξ) → i(ν, ξ)

for any ξ ∈ ML.
Since

�Lt
(ν+) ≤ �Lt

(ν+) + e−t�Lt
(ν−) ≤ �ρ(ν

+) + e−t�ρ(ν
−)

for all ρ ∈ T (X) by the definition of Lt, we have �Lt
(ν+) = O(1). We get i(ν, ν+) =

0 from (12) and hence, i(ν, ν+i ) = 0 for all 1 ≤ i ≤ g. Let σi be the closed curve
corresponding to the slit in Xi. Since �Lt

(σi) → 0 as t → ∞, we have i(ν, σi) = 0
from (12). This implies that the geodesic representative [σi] of σi and the underlying
geodesic lamination |ν| of ν do not intersect transversely. Hence,

ν =

g∑
i=1

(
aiν

+
i + biσi

)
+ μ,

where a1, . . . , ag and b1, . . . , bg are non-negative numbers and μ is the maximal
sublamination supported on Q.

It suffices to show that b1 = · · · = bg = 0 and |μ| = ∅. To prove this, we need
to estimate the hyperbolic length of a curve γi across both of σ1 and σi for each
2 ≤ i ≤ g. For instance, take γi as the curve made of α1 followed by αi (see Figure
5). We will use the notation [γi] to denote the unique geodesic in the homotopy
class of γi.
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Figure 5

Figure 6. Half of the pair of pants Pi.

For simplicity of notation, we write �Lt
(·) for �(·). Set mi = �(αi)/2 and ni =

�(σi)/2. Set Pi = Yi \ [αi]. Applying the cosine formula for right-angled hexagons
[Bu] to Pi, we have,

cosh di =
coshmi(1 + coshni)

sinhmi sinhni
,

where di is the length of a common perpendicular between [σi] and [αi] contained
in Pi (see Figure 6). Since mi → ∞ and ni → 0 as t → ∞, we have

coshmi

sinhmi
→ 1,

sinhni

ni
→ 1 and coshni → 1.

Thus, we get

cosh di = 2ε1/ni,

where ε1 → 1. Applying the cosine formula for right-angled pentagons [Bu] to Pi,
we have

cosh gi = sinhmi sinh di,



LINES OF MINIMA WITH NO END IN PML 41

where gi is half of the length of a perpendicular δi between [σi] and itself contained
in Pi. We then have

(13) gi = log(cosh gi + sinh gi) = mi + log(1/ni) + ε2,

where ε2 → 0. Let s(σi) be the twist parameter of σi for Lt. It follows that

2gi ≤ �([γ] ∩ Pi) ≤ 2gi + 2�(σi)|s(σi)|.
We conclude from Lemma 3.1 and Theorem 5.6 that �([γi]∩ Pi) = 2gi +O(1), and
hence, from (13) that

(14) �([γi] ∩ Pi) = �(αi) + 2 log(1/�(σi)) +O(1).

On the other hand, let ηi be the shortest arc inQ which connects [σ1] and [σi]. We

denote the hyperbolic length of ηi by hi. Since the q-geodesic representative Q̂ of Q
is the union of all slits, we have Kt(β) ≤ 1 for all non-peripheral curves β contained
in Q. Since maximal flat annuli of β are degenerate, we have ModF0(β) = 0.
Therefore we conclude that there is no extremely short curve contained in Q by
Theorem 5.5. Note that a thick component of X has a bounded geometry; that is,
the diameter of the thick component is bounded for any hyperbolic metric on X.
This gives

(15) hi = log
1

�(σ1)
+ log

1

�(σi)
+O(1).

It follows that

2hi ≤ �([γi] ∩Q) ≤ 2hi + 2�(σ1)|s(σ1)|+ 2�(σi)|s(σi)|.
We conclude from Lemma 3.1 and Theorem 5.6 that �([γi]∩Q) = 2hi+O(1); hence,
from (15),

(16) �([γi] ∩Q) = 2 log
1

�(σ1)
+ 2 log

1

�(σi)
+O(1).

Since �(γi) = �([γi]∩ P1) + �([γi]∩Q) + �([γ]∩ Pi), combining (14) and (16), we
deduce that

(17) �Lt
(γi) = �Lt

(α1) + �Lt
(αi) + 4

(
log

1

�Lt
(σ1)

+ log
1

�Lt
(σi)

)
+O(1).

Now we claim that

(18)
�Lt

(γi)

�Lt
(α1) + �Lt

(αi)
→ 1.

Indeed, since there is no flat annulus with core homotopic to σi with respect to the
quadratic differential qt corresponding to Gt, the reciprocals of �Gt

(σi) and �Lt
(σi)

are dominated by the terms of Kt(σi) in Theorems 5.3 and 5.5. Hence, we have

(19) log
1

�Lt
(σi)

∗� 1

�Gt
(σi)

.

It follows from Lemma 6.2 that

(20)
log(1/�Lt

(σi))

�Lt
(α1) + �Lt

(αi)

∗� 1/�Gt
(σi)

�Gt
(α1) + �Gt

(αi)
.

Since Q̂ is degenerate and λXi
= O(1), by Lemma 2.1 we see that Kt(σi) = O(et/2),

and hence, that 1/�Gt
(σi) = O(t). Let β1(t) be the Euclidean shortest (q, p)-curve
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in X1 at time t. By Lemma 2.1, we have p = pn and q = qn for some n, where
θ1 = [a0; a1, a2, . . . ] and pk/qk = [a0; a1, · · · , ak]. Again by Lemma 2.1, we see

t ≤ log
pn+1θ1 + qn+1

|qn+1θ1 − pn+1|
.

An easy computation by using the properties (1) and (2) shows that

pn+1θ1 + qn+1

|qn+1θ1 − pn+1|
≤

(
1 + θ1

pn+1

qn+1

)
(an+1 + 2)q2n+1.

Because of the boundedness of {an}n∈N, we must have t = O(log qn). On the other
hand, since the collar around β1(t) is bounded, we have �Gt

(α1) ≥ Θ(i(α1, β1(t))) =
Θ(pn) = Θ(qn). Therefore we deduce that

(21)
1/�Gt

(σi)

�Gt
(α1) + �Gt

(αi)
≤ 1/�Gt

(σi)

�Gt
(α1)

≤ O(log qn)

Θ(qn)
−→ 0.

From (17), (20) and (21), it might be concluded that (18) is valid. It follows
that b1 = bi = 0 and i(μ, γi) = 0 for each 2 ≤ i ≤ g. Since a component of
Q \

⋃g
i=2 ([γi] ∩Q) is a geodesic polygon, it is simply connected and finally we

deduce that μ = ∅.
Because of the continuity of the function R≥0 � t �−→ Lt ∈ T (X), the limit set

L(L) must be closed and connected. �

Proof of Corollary 7.2. It follows from Lemma 6.2 that (6) holds for L. There
exists a sequence {sn}n∈N tending to ∞ and depending only on θ2 = · · · = θg such
that

(22)
�Lsn

(α1)

�Lsn
(αi)

→ ∞

for any 2 ≤ i ≤ g. Let [ν] be an accumulation point of {Lsn}n∈N. By Theorem 7.1,
we see that ν =

∑g
i=1 aiν

+
i for some a1, . . . , ag ≥ 0 with

∑g
i=1 ai = 1. Hence, (22)

shows that ai = 0 for 2 ≤ i ≤ g. Therefore [ν] = [ν+1 ]. �

Remark. Suppose that θ1, . . . , θg satisfy the condition (∗). It follows from (19)
and Wolpert’s lemma that dT (X)(Gt,Lt) goes to ∞. However, the proof of Lemma
6.2 shows that dT (X0)(Π0(Gt),Π0(Lt)) is bounded above. Here X0 is the surface
obtained from X by removing all curves corresponding to the slits and replacing
the boundaries to punctures and Π0 is the forgotten map from T (X) to T (X0).
In general, we are interested in finding a condition when dT (X)(Gt,Lt) is bounded,
where Gt and Lt are induced by an arbitrary quadratic differential (cf. Theorem
5.9).
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