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MAPPING SCHEMES REALIZABLE
BY OBSTRUCTED TOPOLOGICAL POLYNOMIALS

GREGORY A. KELSEY

ABSTRACT. In 1985, Levy used a theorem of Berstein to prove that all hy-
perbolic topological polynomials are equivalent to complex polynomials. We
prove a partial converse to the Berstein-Levy Theorem: given post-critical dy-
namics that are in a sense strongly non-hyperbolic, we prove the existence of
topological polynomials which are not equivalent to any complex polynomial
that realize these post-critical dynamics. This proof employs the theory of
self-similar groups to demonstrate that a topological polynomial admits an
obstruction and produces a wealth of examples of obstructed topological poly-
nomials.
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1. INTRODUCTION

REERERIEEEEIE]

The modern theory of complex rational maps began with the work of Fatou and
Julia during World War I (see [Jull8], [Fat19], and [Fat20]). Their theory (exposited
well in [Bla84]) shows that for f a complex rational function of degree d > 2, the
Riemann sphere splits into two disjoint sets (now known as the Fatou and Julia
sets of f) based on the dynamics of f. In the 1970s, Mandelbrot used computers
to produce remarkable images of these sets and of the separating curves between
them [Man82]. Mandelbrot particularly studied the Julia sets of quadratic complex
polynomials, and he characterized when these sets are connected (this yielded the
famous Mandelbrot set).
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The early 1980s saw an explosion of research in this area. Douady and Hubbard
made important advances in the theory of complex polynomials, especially quadrat-
ics (see [DH82] and [DHS84]). To this day, quadratic polynomials remain the best
understood in this theory (see e.g. [BS02]). However, the work of Bielefeld, Fisher,
and Hubbard on preperiodic polynomials along with the work of Poirier on peri-
odic polynomials have greatly improved our understanding outside the quadratic
case (see [BEH92] and [P0i09]). Non-polynomial rational maps have proved more
difficult to study; most results deal only with those maps with low degree and small
post-critical set (see e.g. [BT00]).

In the 1980s, Douady and Hubbard employed a procedure now known as mating
to combine pairs of quadratic polynomials to produce quadratic rational maps. This
would allow them to apply to rational functions their machinery for polynomials.
Interestingly, they found that mating some pairs of quadratic polynomials does
not produce rational maps, and so the question arose as to when two quadratic
polynomials are ‘mateable’.

To answer the mateablity question, Thurston considered a family of branched
covering maps from the sphere to itself that topologically resemble complex rational
maps whose critical points have finite forward orbits (we call the finite forward
orbits the set of post-critical points). These maps became commonly referred to
as Thurston maps, and Thurston characterized when these maps are equivalent to
complex rational maps by the existence or non-existence of obstructing multicurves
(see Theorem [ZHin this paper) [DH93]. Researchers have also considered topological
polynomials, which are Thurston maps that behave like complex polynomials with
finite post-critical set.

The mateability of post-critically finite quadratic complex polynomials has
since been solved by Rees, and others have contributed to this general area
(see |[Ree86], [Tan92], and [Shi00]). However, we remain interested in Thurston’s
theory partially because of its implications outside of complex dynamics. In fact,
the concepts in the preceding paragraph have analogues in the theory of three-
manifolds. For instance, a Thurston map admitting an obstruction is analogous
to a compact, oriented, irreducible three-manifold having a non-peripheral incom-
pressible torus. For more details regarding this connection, see the survey pa-
pers of McMullen (see [McM91] and [McM94]). Thurston proved his characteriza-
tion and rigidity theorem using Teichmiiller theory, so naturally links exist there
as well.

Much about Thurston obstructions remains mysterious. While producing an
obstruction for a specific example may not be difficult, no one has yet discovered
an algorithm for determining the existence or non-existence of an obstructing mul-
ticurve in the general setting (although Pilgrim has found that if an obstruction
exists, it must be of a canonical form, and recently Selinger has made some inter-
esting advances in this area) (see [Pil01] and [Sel]). The Berstein-Levy theorem
for hyperbolic topological polynomials (see Theorem [Z12]) remains the best result
for the non-existence of an obstruction: If the forward orbit of every critical point
contains a critical point, then the topological polynomial is equivalent to a complex
polynomial [Lev85]. More recently, Kameyama and Pilgrim have established alge-
braic criteria for Thurston equivalence of rational maps, but a general algorithm
remains elusive (see [Kam01] and [Pil03a]).
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Topological polynomials which admit obstructions have not seen much study.
Usually, researchers use Thurston’s characterization to construct complex polyno-
mials using purely topological methods. However, Haissinsky and Pilgrim [HPQ09]
and Bonk and Meyer [BM] have used obstructed topological polynomials to define
metrics on the sphere that are not quasisymmetric to the standard sphere. Such
metrics interest analysts who seek geometric criteria for quasisymmetric equivalence
to the standard sphere. The motivation from this problem comes from Cannon’s
Conjecture (see e.g. [BK02]).

Much about the dynamics of a topological polynomial can be determined by
looking only on how the polynomial acts on the set of its critical and post-critical
points (recall that this is a finite set). We call this the mapping scheme of the
polynomial. If a cycle in the mapping scheme of a polynomial contains a critical
point, then that critical point will be attracting. For this reason, we call such a
cycle an attractor. With this language, we can interpret the Bernstein-Levy result
as: Any polynomial whose mapping scheme has all cycles attractors is equivalent
to a complex polynomial. Naturally, the question arises as to how many non-
attractor cycles (and what kinds) are necessary to support an obstructed topological
polynomial. Our main result serves as a partial converse to the Berstein-Levy
Theorem:

Theorem 1.1. Suppose that a polynomial mapping scheme exhibits one of the
following properties:

(1) at least one (non-attractor) period of length at least two and not containing
critical values,

(2) at least two (non-attractor) periods not containing critical values,

(3) at least two non-attractor periods both of length at least two, or

(4) at least four non-attractor periods.

Then this scheme is realized by a topological polynomial that is not equivalent to
any complex polynomial.

This result covers most of the mapping schemes not satisfying the hypotheses of
the Berstein-Levy Theorem. Our methods work for more mapping schemes than
those explicitly listed in Theorem [[LT} in fact, we can show that most mapping
schemes with three non-attractor periods are realized by topological polynomials
not equivalent to any complex polynomial. We discuss this more in Section [

New tools from the theory of self-similar groups have proved very powerful in the
study of post-critically finite complex rational maps. We use these tools to prove
Theorem [T11

A group of automorphisms of an infinite rooted d-ary tree is said to be self-
similar if the restriction of the action of any group element on the subtree below
any vertex (which is isomorphic to the entire tree) is another element of the group.
This element is called the restriction of the original group element at that ver-
tex. Equivalently, a group is self-similar if it can be generated by a finite-state
automaton.

The prototypical self-similar group is the Grigorchuk group, introduced in 1980
[Gri80]. This group is contracting; that is, if we fix a vertex sufficiently far from
the root of our tree, we will have that the mapping that takes a group element to
its restriction at the fixed vertex is decreasing in terms of the word length of the
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group. Grigorchuk used the contracting property to prove a variety of interesting
results about his group, particularly that it exhibits what were at the time new
types of growth and amenability [Gri84]. The study of self-similar groups grew out
of the power of the techniques Grigorchuk employed.

A decade after Grigorchuk introduced his group, Fabrykowski and Gupta de-
fined their own group with intermediate growth [FG9I]. Bartholdi and Grigorchuk
studied the Schreier graphs of the action of this group on the levels of the tree
and found that these graphs converge to a fractal set [BG00]. This work helped to
inspire Nekrashevych to define the limit set of a contracting self-similar group. He
then related these self-similar limit sets to the fractal Julia sets of post-critically
finite complex rational maps by defining the iterated monodromy group (IMG) of
such a map. The iterated monodromy group encodes the backwards dynamics of ra-
tional and similar maps as the action of lifts of loops with a basepoint on preimages
of that basepoint. Nekrashevych showed that the limit set of the IMG of a rational
map is homeomorphic to the map’s Julia set [Nek05], which is especially interesting
since the Julia set is constructed using the forward dynamics of the map. Earlier,
Pilgrim had also considered a monodromy action by an absolute Galois group on
the set of Belyi polynomials [Pil00].

Iterated monodromy groups have proved to be a rich source of interesting groups.
Grigorchuk and Zuk have studied the properties of IMG(z% — 1), also known as
the Basilica Group (see |GZ02a] and |GZ02b|). Their work, along with a result
of Bartholdi and Virag, shows that this group is an example of a new kind of
amenability [BV05]. Bux and Pérez have studied the properties of IMG(2%+1) and
shown it to have intermediate growth like Grigorchuk’s group [BP06]. Additionally,
the Fabrykowsi-Gupta group is, in fact, an iterated monodromy group of a cubic
polynomial [Nek05].

Recently, Bartholdi and Nekrashevych used the theory of self-similar groups to
tackle questions of Thurston equivalence and Thurston obstructions [BN0OG]. Using
the iterated monodromy groups of topological polynomials satisfying a particular
mapping scheme, Bartholdi and Nekrashevych defined a new self-similar group of
actions of the pure mapping class group on these polynomials and proved that it is
contracting. Since the restriction map on this group leaves the Thurston equivalence
class invariant, the contracting property allowed them to algebraically determine
the Thurston equivalence class of these topological polynomials.

Nekrashevych continued this work to provide a description of topological polyno-
mials and their iterated monodromy groups in terms of twisted kneading automata
[Nek09]. These automata encode all the topological data needed to determine
the Thurston equivalence class of the topological polynomial. Further, every self-
similar group generated by a twisted kneading automaton is isomorphic to the
iterated monodromy group of some topological polynomial. This characterization
allows us to translate topological and dynamical questions about these polynomials
into algebraic questions which we can answer with explicit computations in these
groups.

We utilize this characterization of topological polynomials to prove Theorem
[T and produce many examples of obstructed topological polynomials realizing
these mapping schemes. We determine whether multicurves are obstructions to a
polynomial f by considering the Dehn twists about the curves as elements of the
self-similar group constructed from the iterated monodromy groups of polynomials
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with isomorphic mapping scheme to f. If restriction map acts cyclically on these
Dehn twists, then the multicurve must be an obstruction.

While this result does not provide a complete categorization of mapping schemes
in terms of their realizability by obstructed topological polynomials, we do discuss
some aspects of mapping schemes requiring further study in order to prove such a
characterization.

2. THURSTON EQUIVALENCE OF TOPOLOGICAL POLYNOMIALS

In this section, we give the standard definitions and results regarding Thurston
equivalence of topological polynomials. An interested reader may find a more thor-
ough discussion in [Pil03a].

Definition 2.1. For f:S? — S? a branched cover of the sphere and C the set
of its critical (i.e. branching) points, we define the post-critical set of f to be the
forward orbits of points in C¢. That is:

Pr=J U rw),

weCyn>1
where f°" is the composition of f with itself n times.

If f is post-critically finite (i.e. if Py is a finite set), we say that f is a Thurston
map.

Definition 2.2. A Thurston map is a topological polynomial if there exists some
w € Cf such that f~'(w) = {w} (we will call this point co).

We say that the degree of a topological polynomial is the number of sheets of
the covering.

Definition 2.3. Two Thurston maps f and g are said to be Thurston equiva-
lent (henceforth, simply equivalent) if there exist orientation-preserving homeo-
morphisms ¢g, ¢1 : S? = S? with ¢ (Ps) = ¢1(Pf) = P, that are isotopic relative
to Pr such that ¢of = g¢1. That is, if the following diagram commutes:

(52,P;) 2% (52,P)

I lg
1

(S27Pf) - (527Pg)

In Figure[Il we give diagrams in the style of [BNO6] of two different topological
polynomials. For these diagrams (here and in the rest of this paper), we choose a
basepoint ¢ near infinity and draw a loop around oo in the negative direction. By
passing to a homotopic map, we may assume that the topological polynomial takes
this loop to itself by a degree d mapping (where d is the degree of the polynomial)
which fixes our basepoint . We call this loop the circle at infinity. The point ¢ has
d preimages: {t = tg,t1,...,t4—1}, all on the circle at infinity. The preimages of our
circle at infinity are subpaths of the circle, starting at some ¢; and ending at ;1
(adding mod d).

In Figure [l we include the generators {s1, sa, s3} of m1(S?\ P,t) and their preim-
ages to help demonstrate the mapping. Both topological polynomials fold the hori-
zontal line at the single critical point, which is the preimage of w; (the post-critical
point surrounded by s1). This critical point is periodic under f and preperiodic
under g.
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Ficure 1. Example topological polynomials

To a Thurston map f, we associate a topological orbifold Of which has under-
lying space S? and weight v(z) at x € S? equal to the least common multiple of
the local degree of f over all iterated preimages of x. The Euler characteristic

1
Of)=2-— 1-——
X0 =2- 3 (-
wePy
of this orbifold is always non-positive. If it is negative, we say that the orbifold is
hyperbolic.

Definition 2.4. A simple closed curve v on S?\ P is non-peripheral if both com-
ponents of S?\ 7 contain at least two points in P.

A maulticurve T = {v1,72,...,¥n} 18 a set of non-peripheral simple closed curves
on 5%\ Py that are disjoint and pairwise non-homotopic. We say that a multicurve
T is f-stable if for all v € T', we have that every non-peripheral component of f~1(7)
is homotopic to some curve in I". For I' stable under f, there is an induced map

fr: RT = RT given by:
)
fr(v) = Z

sef T de8 11s

By the Perron-Frobenius Theorem, there is a leading positive real eigenvalue A(fr)
that realizes the spectral radius of fr.
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We can now state Thurston’s characterization and rigidity theorem:

Theorem 2.5 (see [DH93|). A Thurston map f with hyperbolic orbifold is equiva-
lent to a rational function if and only if for any stable multicurve T', A(fr) < 1. In
that case, the rational function is unique up to conjugation by a Mobius transfor-
mation.

Definition 2.6. A stable multicurve I" such that A(fr) > 1 is called an obstruction.

Unfortunately, there is no known algorithm for determining whether a Thurston
map admits an obstruction.
For topological polynomials, we can restate Thurston’s theorem as follows:

Theorem 2.7 (see [BFH92]). A topological polynomial is equivalent to a complex
polynomial if and only if it admits no obstructions. In that case, the complex
polynomial is unique up to conjugation by an affine transformation.

The obstructions to topological polynomials are better understood.

Definition 2.8. Let f be a topological polynomial and I' an obstruction that it
admits. Then a Levy cycle is a set TV = {y0,71,--»¥n—-1} C I such that each
f71(7:) has exactly one non-peripheral component 7;_; homotopic to a curve in
I, 4,1 is homotopic to 7,1, and the map f : ;_1 — 7; has degree 1 (subtracting
mod n).

Theorem 2.9 (see [Lev83]). Let f be a topological polynomial and T an obstruction
that it admits. Then I' contains a Levy cycle.

Note that a Levy cycle need not be stable (as in the definition in [BNOG]).
However, in this paper we will only consider stable Levy cycles, since they are
easier to identify with our method.

The topological polynomial g in Figure [Il admits a Levy cycle consisting of a
single curve I'; as shown in Figure

FI1GURE 2. Example Levy cycle

So a topological polynomial is equivalent to a complex polynomial unless it
admits a Levy cycle. But even for topological polynomials, we do not have an
algorithm to determine whether an obstruction exists for a particular polynomial.
However, some progress has been made.
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Definition 2.10. We say that a topological polynomial f is hyperbolic if for all
w € Cf (recall Cy is the set of critical points), there exists some k& > 1 such that
f*(w) € Cy.

Definition 2.11. We say that a topological polynomial f is periodic if Cy C Py,
and preperiodic otherwise.

Notice that a periodic polynomial is always hyperbolic.
In his thesis, Levy used a result of Berstein to prove the following:

Theorem 2.12 (see [Lev85)]). If f is a hyperbolic topological polynomial, then f
does not admit a Levy cycle, and so f is equivalent to a complex polynomial.

The topological polynomial f in Figure[Ilis periodic, and thus by Berstein-Levy
must be equivalent to some complex polynomial.

3. MAPPING SCHEMES

Here we give the standard definitions for mapping schemes as found in [BT00],
but we also borrow some notation from [Koc07].

Definition 3.1. A polynomial mapping scheme of degree d is a tuple S(C, P, a, v)
where:

e 7/ =CUP is a finite set,

e «:/Z — P is surjective,

e v:Z—Nhasv1({n>2})=0C,
such that the following conditions are satisfied:

e The Riemann-Hurwitz Formula:
>oez(v(z) - 1)

2

Z v(z) <d,

a(z)=z

d= +1,

e Local degrees: Vz € Z,

e Infinity: dz € C, which we will call oo, such that:
a(z) = z,v(z) =d.

We will treat a mapping scheme as a finite directed graph with vertex set Z =
C' U P and for each z € Z, there are v(z) directed edges from z to a(z).

Definition 3.2. A directed cycle in the graph of a mapping scheme is called an
attractor if it contains an element of C.

Definition 3.3. A mapping scheme is hyperbolic if for all z € C, there exists some
k > 1 such that a°*(z) € C (i.e. if every directed cycle is an attractor).

Definition 3.4. A mapping scheme is periodic if C C P and preperiodic otherwise.

Figure Bl shows two example mapping schemes of degree 2. The left one is
hyperbolic and the right one is not.

Definition 3.5. We say that a topological polynomial f realizes a polynomial
mapping scheme S(C, P, o, v) if there exists a bijection 8 : C U P — Cy U Py such
that for all z € CU P, we have f(5(z)) = B(a(z)) and the local degree of f at 5(z)
equals v(z).



52 GREGORY A. KELSEY

wWwy3—=Ww1—Ww w W1 — Wy — W/
XD e oD st

FIGURE 3. Example mapping schemes

Notice that the topological polynomials f and g from Figure [[l realize the map-
ping schemes in Figure [l where s; loops around w; and wy = g~ !(w1) (f realizes
the hyperbolic mapping scheme and ¢ the non-hyperbolic one).

One can easily show that equivalent topological polynomials have isomorphic
mapping schemes.

A result of Thom gives the following:

Theorem 3.6 (see [BT00]). For every polynomial mapping scheme, there is a
topological polynomial which realizes it.

So we can interpret the Berstein-Levy Theorem as a result about mapping
schemes:

Theorem 3.7 (see [Lev85|). A hyperbolic polynomial mapping scheme is realizable
only by topological polynomials that are equivalent to complex polynomials.

In other words, a polynomial mapping scheme with every period being an attrac-
tor (i.e. containing an element of C') cannot be realized by an obstructed topological
polynomial.

It is relatively easy to show that a polynomial mapping scheme with only a single
finite period, and that period having length equal to one, cannot be realized by an
obstructed topological polynomial.

So naturally we ask which other mapping schemes can be realized by obstructed
topological polynomials.

In an unpublished result, Koch found that every unicritical (i.e. #(C\{o0}) =1)
preperiodic polynomial mapping scheme with period length n > 2 is realized by
an obstructed topological polynomial [Koch|. Extending these methods, one could
establish topological arguments for cases (1) and (2) of our main result. However,
we know of no topological constructions for cases (3) or (4).

4. AUTOMATA AND BIMODULES

In this section we give some of the standard definitions and results in the theory
of self-similar groups (see [Nek05] for a complete introduction to this theory) and
introduce some of the key concepts from [Nek(9]. We should note that many in
this area now refer to bimodules as “bisets.” We retain the bimodule terminology
to match the language used in [Nek05] and [Nek09).

For T an infinite, rooted, d-ary tree and v a vertex of the tree, we write T, for
the subtree of T' below v. Note that T, ~ T. For g € Aut(T'), we write g|, for the
action of g from T, to Tj(,)-

Definition 4.1. A faithful action of a group G on a tree T' by automorphisms is
self-similar if for any vertex v € T, the action of g, from T}, to Ty, is equal to
the action of some h € G when we identify T, and Tj,) with the entire tree T

A group with a self-similar action on a tree is said to be a self-similar group.
Equivalently, we can also define a self-similar group as one generated by an au-
tomaton.
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Definition 4.2. An automaton A over an alphabet X is given by a set of input
states A, a set of output states B, and a transition map 7: A x X — X x B.

If 7(a,z) = (y,b), then we write a - © = y - b and use notation y = a(x) and
b = al,. We say that b is the restriction of a at x.

Definition 4.3. We say that an automaton is a group automaton if for every
a € A the map z — a(z) is a permutation of the alphabet (we assume for group
automatons that there exists a trivial state I € A, B such that I-x = z - I for all
z e X).

We represent a group automaton as a labeled directed graph called an abbreviated
Moore diagram with vertex set equal to the states AU B and with a directed edge
from a to b labeled by x if and only if a-x = y - b for some y € X. We also label the
states by the permutations they induce on X. For simplicity, we omit the trivial
state I.

In Figure ] we give an example of the abbreviated Moore diagram of the group
automaton associated with Grigorchuk’s group. This automaton has A = B =
{I,a,b,c,d}, X = {0,1}, and transition function:

0=1-1, 1=0-1,
0=0-a, b-1=1-¢,
c-0=0-a, c-1= ,
d-0=0-1, 1=1-0,

)

(01 0
/]

FIGURE 4. Example abbreviated Moore diagram

A convenient way to describe the action of each of the states of a group au-
tomaton is with wreath recursive notation. For alphabet X = {0,1,...,d — 1}, we
represent a state a by m(alo,ali, ..., ala—1) where the restrictions are as defined
above and 7, is the element of the symmetric group of X induced by the action of
a (i.e. a(xz) = my(x) for all x € X). We will omit 7, when it is trivial (we say such



54 GREGORY A. KELSEY

a state is inactive) and we omit the restrictions if they are all the trivial state I.
Here is the wreath recursive notation for the generators of the Grigorchuk group:

a = (01) b= (a,c) c=(a,d) d=(1,b)

We can think of X* (the set of words in the finite alphabet X) as an infinite,
rooted, d-ary tree (where d is the size of the alphabet). The root vertex is the
empty word, the first level of vertices are the letters of X, and each word w € X*
is adjacent to the d vertices in the level below it of the form wz for z € X. We
present the beginning of the binary tree for X = {0,1} in Figure

0oo 001 010 o011 100 101 110 111
FIGURE 5. The first three levels of the binary tree

When B C F(A) (the free group on the input states A), we have an action of
F(A) on the tree X* by graph automorphisms as follows. For a € A, we have the
action on the word w = zw’ € X* given by a(zw’) = a(x)al.(w’). Notice that
al, € B C F(A) and thus can be written as a word in A*!, so the action of al,
on w' is well defined. The wreath recursion a = m,(alo, al1, ..., alg—1) describes the
automorphism of X* in the following way: 7, gives the action of a on the first level
of the tree, and the restrictions al; describe the actions on the subtrees (which are
isomorphic to the entire tree).

We can compute the wreath recursive notation for the product (as elements of
F(A)) of a,b € A where a = m,(alo,al1,...,ala—1) and b = m(blo, b|1, ..., bla—1) by:

ab = 7,y 0)0lo, @l my (10115 -5 @l (d—1)Dla—1)-

While automata provide nice, compact descriptions for self-similar actions, a
different context makes computations easier. We use algebraic objects called bi-
modules (sometimes called bisets) to encode the automata.

Definition 4.4. For G and H groups, a permutational (G-H )-bimodule is a set
M with a left action of G and a right action of H which commute. A covering
bimodule has free right action with only finitely many orbits. We call a (G-G)-
bimodule simply a G-bimodule.

We say that two (G-H)-bimodules are isomorphic if there exists a bijection be-
tween them that agrees with the actions (that is, a bijective map F' such that for
all g € G,h € H and «x in the domain bimodule we have F(g-x-h) =g - F(x) - h).
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For My a (G1-G2)-bimodule and Mo a (G2-Gs)-bimodule, we may form the
tensor product My ® My which is the (G1-Gs)-bimodule equal to the quotient of
My x My by the equivalence

(1-92) ®x2 = 21 @ (g2 - 22)

for all go € Go,xz1 € My, 22 € My. The actions are defined in the natural way:
g1 (21 ®w2) - g3 = (g1 71) ® (22 - g3) for all g; € G1,93 € Gz, 71 € My, 22 € My,

It is straightforward to show that the tensor product of bimodules is an associa-
tive operation and that the tensor product of covering bimodules is again a covering
bimodule.

For M1 a covering (G-H )-bimodule, a basis of 9 is an orbit transversal X to the
right action. So if X is a basis, every element of 9T can be written uniquely as y - h
for some y € X, h € H. Thus, for every g € G,z € X, we have that there exists
a unique pair y € X,h € H such that g-z = y - h. We write 9®" for the tensor
product of n copies of 9. It is easy to show that if X is a basis of 91, then X" is
a basis for e,

Notice that if we have a covering (G-H)-bimodule 9t with basis X, we may
construct an abstract automaton with set of input states G and set of output
states H over the alphabet X, where for any g € G,z € X and y € X,h € H the
unique pair such that g - =y - h, we set g(z) = y and g|, = h. We call this the
complete automaton for the bimodule. We can similarly define an automaton using
as input states a generating set of GG; we say that such an automaton generates
M. Likewise, given a finite group automaton with B C F(A), we may define the
F(A)-bimodule that it generates via the action on X* described previously.

The bimodule machinery makes easier many computations for these groups. We
will be interested in groups generated by particular kinds of group automata, called
kneading automata. We now develop the terminology necessary to understand these
objects.

Definition 4.5. For A = (a;);cs a sequence of permutations of a finite set X (we
do not use a set of permutations since we wish to allow for repeated elements),
we define the cycle diagram of A to be the oriented 2-dimensional CW-complex
D(A) with 0-cells the elements of X and for every cycle (z1, 22, ...,z,) of every
permutation of A, we attach a 2-cell to the vertices x1, x2, ..., T,, so that their order
around the boundary of the 2-cell matches the order in the cycle. Two different
2-cells do not have any 1-cells in common.

Figure [0 shows three example cycle diagrams. The first is for the permutations
(1234), (12)(34), the second is for the permutations (123),(134), and the third is
for the permutations (12)(34), (14).

1 2 1 2 1 2

4 3 4 3 4 3

FI1GURE 6. Example cycle diagrams
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We say a sequence A = (a;);e; of permutations of a finite set X is dendroid if
its cycle diagram D(A) is contractible. Notice that a dendroid sequence must be
transitive, cannot have any non-trivial cycles appear more than once, and must
have that any two cycles are disjoint or share only one element.

In the examples in Figure [6] the first two are not dendroid, but the third is.

Alternatively, we may define a hypergraph on the vertices X where each cycle of
length at least two defines a hyperedge (i.e. a set containing at least two vertices).
The sequence of permutations is dendroid if and only if this hypergraph is connected
with no cycles.

Definition 4.6. We say that a group automaton with alphabet X, set of input
states A, and set of output states B is dendroid if all three of the following conditions
hold:

(1) The sequence of permutations on X defined by elements of A is dendroid.

(2) For every b € B, there exists a unique pair a € A,z € X such that a-x = y-b
for some y € X.

(3) For every element a € A and every cycle (21, 2, ..., x,) of the action of a
on X, we have that a|,, = I for all but at most one index 1.

Notice that the Grigorchuk automaton in Figure @ is not dendriod becuase it
violates condition (2) above (the state a has two incoming arrows). In Figure [1]
we give two examples of abbreviated Moore diagrams of dendroid automata on the
binary alphabet.

FIGURE 7. Example dendroid automata

If we place a cyclic ordering (ai,as, ...,a,) on the input set of states A of a
dendroid automaton, we get an induced cyclic ordering (by, ba, ..., by, ) on the output
set of states B. For a cyclic ordering (ay, ..., a,) on the input set A of an automaton
acting on the alphabet X with #X = d, then we obtain the induced ordering on the
output set B by computing the restriction of (anan,l...agal)d\z for some z € X.
The choice of x does not affect the cyclic order of the resulting restriction, which
will be a word using every element of B exactly once.

Using the left dendroid automaton in Figure [[] we see that s1S253515283 -0 =
51828381 -0-8189 = 818283+ 1-8180 = 81 -1-8189 = 0-535152. So the induced cyclic
ordering is the same and the original ordering.

In the right dendroid automaton in Figure [ we see that s;sos3sisess -0 =
51598381 - 0+ 8389 = 818983 -1 - 8389 = 81 -1-818380 = 0 - 815359. So the induced
cyclic ordering is the opposite of the original ordering.

The braid group on n strands, B, acts naturally on cyclic orders of n ele-
ments. The action of the generators o; € B, is by (a1,...,a;,ai41,...045)%" =

i1 ajy1 _ —1
(ai,...,aip1,a; ", ..., a,) where a; ™ = a;a;a:41.
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Definition 4.7. A dendroid automaton is called a twisted kneading automaton if
it has cyclically ordered input set A = (a,as,...,a,) and output set B equal to
conjugates of elements of A with induced cyclic ordering (a1, as, ..., a,)* for some
a € B, the braid group on n strands.

Twisted kneading automata with trivial twist are examples of kneading au-
tomata.

Definition 4.8. A group automaton is kneading if it is dendroid with set of output
states B equal to set of input states A.

The automata in Figure [0 are kneading. The left automaton is also twisted
kneading with trivial twist, but the right automaton is not twisted kneading.
In Figure 8 we give examples of twisted kneading automata with non-trivial

o %1)\0@ o1) -

FicURE 8. Example twisted kneading automata

We will refer to a bimodule generated by a (twisted) kneading automaton as a
(twisted) kneading bimodule.

5. NEKRASHEVYCH’S CHARACTERIZATION OF TOPOLOGICAL POLYNOMIALS

In this section we continue to summarize the definitions and results of [Nek09].

For f : S? — S? a topological polynomial with post-critical set Py =
{oo,w1, ..., wy }, let {s;}7_; be a planar generating set of 71 (S?\ Py, t), for t € S%\ Py
the basepoint on the circle at infinity (see Section ). That is, on the closed disc
that is a retraction of S?\ {co}, the generator s; is a simple loop based at t go-
ing around w; in the positive direction, and the loops are cyclically ordered in the
positive direction.

Figure [@ gives three examples of different planar generating sets with the same
set of punctures.

Let t; € f~4(t) = {t = to,t1,...,ta—1}. Define M; to be the (m1(S?\ Py, t) —
m1(S?\ Py, tj))—bimodule of homotopy classes of paths in S?\ Py starting at ¢; and
ending at any point in f~*(¢). The right action of 71(S?\ Py, t;) is by concatenamon
of the loop at ¢; to the beginning of the path, and the left action of 71 (S?\ Py, 1)
is by concatenation of the f-lift of the loop at ¢ to the end of the path.
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FiGUrE 9. Example planar generating sets

Up to isomorphism, 91y does not depend on the choice of basepoints. If we
choose a path from ¢ to t;, we may identify the fundamental groups in the usual
way, and the isomorphism class of the 71(S? \ Pf)-bimodule M does not depend
on the choice of this path. So we will choose j = 0 and so identify the fundamental
groups by the constant path at t = t.

Notice that the right action is free and that two elements of 9t belong to the
same right orbit if and only if they have the same endpoints. So the number of
right orbits equals the degree of f, and the bimodule is covering.

We make a canonical choice for a basis of My, X = {0,1,...,d — 1}. The basis
element k for the orbit associated with the endpoint ¢, is the path in the positive
direction along the circle at infinity from ¢ to t.

A result of Nekrashevych states that the combinatorial data encoded in this
bimodule completely describes the post-critical dynamics of the topological poly-
nomial, up to Thurston equivalence.

Theorem 5.1 (see [Nek09]). The bimodule My defined above is generated by a
twisted kneading automaton, and the twisted kneading automaton associated to the
topological polynomial [ along with the cyclic order (s1, Sa, ..., $p) of the generators
of F, = m1(S? \ Py) uniquely determine the Thurston equivalence class of f.

In fact, these bimodules can be described more explicitly.

For F,, = F(s1, 82, ..., sp) the free group on n generators, define a, ; € Aut(F,,)
by a; ;(s;) = sfj and for all k # 4, a; j(sk) = si. Notice that a; ; and [a; ;, ax ;] are
trivial for all 1 < 4,5,k < n, [a;;,ax,] is trivial for all 4, j, k,[ distinct, and for a
fixed jo we have [],,.,, aij, € Inn(F,). For q : Aut(F,) — Out(F,) the quotient
map, let PXO,, be the image under ¢ of PY, = (a; ;) < Aut(F,). We call PXO,,
the pure symmetric outer automorphism group of the free group of rank n. From
now on, we will abuse notation and write a; ; for its image in Out(F},).

For G a group and o € Aut(G), we define the associated G-bimodule [ to be
the set of expressions « - g for g € G with the actions h; - (a - g) - by, = a - a(hy)gh,.
for all hy, h, € G. 1t is easy to show that for @ € Inn(G) and M any G-bimodule,
[a] ® M ~ M ~ M ® [a], so we can uniquely define the isomorphism class of the
bimodule for a € Out(G).

What Nekrashevych actually showed in the proof of Theorem [l is that the
bimodule 9 is isomorphic to a twisted kneading bimodule of the form M g5 @ [¢]
where Mg () is a kneading bimodule and ¢ € PX0,,. He went on to define the
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PX¥0,-bimodule &; = {[a] ® M; ® [5] | o, € PLO,,}, with the natural left and
right actions. Nekrashevych proved the following:

Proposition 5.2 (see [Nek09]). Every twisted kneading automaton over F, is as-
sociated with some post-critically finite topological polynomial.

We can think of a, 8 € PX0,, as acting on S? \ P and the tensor operation as
functional composition. Figure [0 demonstrates the action of a; ; on S?\ P; and
the planar generating set {s1, ..., s, }.

S; - L
L —

FIGURE 10. Action of a; ;

Lemma 5.3. The action of a;t1,:0i:41 s that of a Dehn Twist about a curve
separating {w;,w;+1} from the rest of Py (w; is the puncture surrounded by s;).

Proof. See Figure [Tl U

- Qi ;
Sit1 s - i,2+1

FIGURE 11. Action of Qi41,iQ4,i+1 by a Dehn twist

Further, we may represent a Dehn Twist about a curve separating {w;, wi1, wi4a}
from the rest of the post-critical set by the word

Qi42,i410i42,i0it+1,iCit1,i4+204,i+20i 541 € PXO,

and so on. Notice that Dehn twists take planar generating sets to planar generating
sets with the same cyclic ordering of punctures.

In this way, we see that the pure mapping class group PMod(S? \ Pf) is a
subgroup of PX0,,. In fact, the P¥XO,-bimodule &, was originally defined by
Bartholdi and Nekrashevych as a PMod(S? \ Py)-bimodule [BN0OG] and later ex-
tended by Nekrashevych [Nek(9].
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The twisted kneading bimodule g5y ® [¢] encodes a topological description of
the preimages of the planar generating set {s;}7_; under the topological polynomial
J. The kneading bimodule M) is generated by a kneading automaton £(f)
determined (up to labels) by the mapping scheme of f, which we will denote by
S(f). The kneading automaton £(f) has a state for each generator s; € m1(S?\ Py).
We have an arrow from state s; to state s; if and only if f(w;) = w;. So the unlabeled
Moore diagram of this kneading automaton is the subgraph of S(f) induced by the
vertices in Py, but with the arrows reversed.

The labels are determined by numbering the lifts of the basepoint t. Recall the
alphabet X = f=1(t) = {0,1,...,d — 1} for d = deg(f). We label the directed edge
from s; to s; by k if w; is contained in the loop that goes from ¢ to t; along the
circle at infinity in the positive direction, then follows the lift of s; starting at ¢y,
and then travels back along the circle at infinity in the negative direction to ¢. The
active states will be those associated with critical values of f. For w; a critical value
of f, we have s;(k) = k' if the f-lift of s; that starts at ¢; ends at tg/.

Notice that the permutations of an active state and the coordinates of the non-
trivial restrictions are related by the type of critical point(s) with which the corre-
sponding critical value is associated.

Lemma 5.4. Let wy be a critical value of topological polynomial f and {wy,ws, ...,
wi} = [ Hwo) N Cy with the local degree of f at w; equal to d; for 1 < i < k.
Then:

(1) The action of the state so in the kneading automaton R(f) will have k
non-trivial cycles, and their lengths will be given by the set {d;}5_,.

(2) If w; € Py, then the label of the arrow from state sg to s; (the state corre-
sponding with w; € Py) will be one of the coordinates on which sy acts by a
cycle of length d;.

(3) Any labels of edges in R(f) from sy to states not associated with critical
points will be of coordinates on which sqg acts trivially.

Proof. These properties follow more or less immediately from the definitions of 91

and R(f).

(1) If sq is a small loop about wy connected by an arc to ¢, then its preimages
about w;, a critical point with local degree d; will be a small loop about w;
with d; arcs connecting it to d; preimages of t. Notice that this will give a
cycle of these d; preimages in S(f).

(2) Continuing as above, notice that one of the paths from ¢ to its preimage,
along the arc to the loop about w;, back along the next arc in the positive
direction to a different preimage of ¢, and then back to ¢ will contain w; in
its interior, and starting at any other preimage will not contain w;.

(3) Unlike in our first observation, if so is a small loop about wy connected by
an arc to t, then its preimage about a non-critical post-critical point w will
also consist of a small loop about w connected by an arc, but to a preimage
of t. Thus, the preimage of sy which starts at this preimage of ¢ (which is
the coordinate on which s¢ will restrict to the state associated with w) also
terminates at this preimage of ¢. (]
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Now a lift of s; might not be homotopic to a generator; it might even surround
multiple post-critical points. Expressing these lifts as elements of F(sq, ..., s,) al-
lows us to determine the twist ¢ € PX0,, associated with the polynomial. This
will not be important to our work, and so we will only give an example (see below)
and refer the reader to [BN0G], [Nek05], and [Nek09] to understand the details of
how to compute the element ¢.

In Figures [[2] and [[3], we give two examples of starting with a topological poly-
nomial (we use f and g from Figure[Il), finding its mapping scheme, and then pro-
ducing the associated kneading automaton. Here we explain how to find ¢ € PX0O3
such that My ~ Mg 5y @ [¢]:

=)

¢ Wi—FwW1—W

s3-L (590 (59)

FiGURE 12. The topological polynomial f, its mapping scheme
S(f), and its kneading automaton K(f)

If we read off the automaton generating 91; from the map f at the top of Figure
2, we get the following wreath recursion:

s1=(01)(s3 57", s18253),
S2 = (Sla I)7
s3 = (82, I).
Notice that this automaton is not kneading or twisted kneading. Let o € Aut(F3)

be the conjugation by s2s3. Since a € Inn(F3), we have that [o] @ My ~ N;. To
compute the automaton generating [o] @ M, we need only conjugate our wreath
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recursion for M by sas3 = (s152,I). This gives us:
= (01)(1, 53),

S = (5?2, I)a

52
s3 = (s5' .I).
This automaton is twisted kneading with kneading automaton £(f) (see the
bottom of Figure [[2) and twist ¢ = ag1a12. The wreath recursion for R(f) is just

the previous one without the conjugations, since we have separated the action of
the twist ¢:

= (01)(T, s3),
s9 = (81, 1),
S3 = (SQ,I).

The reader may wish to check understanding of this process by computing the
twist for ¢ in Figure [I3] (the correct twist is ag 3).

.
2-'—[5)

FiGureE 13. The topological polynomial g, its mapping scheme
S(g), and its kneading automaton £(g)

6. THE QUADRATIC EXAMPLE

We will now describe the bimodule & for deg(f) = 2 and f preperiodic with
preperiod k > 1 and period n > 2. In other words, f will be a topological polyno-
mial realizing the mapping scheme in Figure [[4]



MAPPING SCHEMES REALIZABLE BY OBSTRUCTED POLYNOMIALS 63

Wkt+3_
W42 h
@oo W =W1— W — o — Wi— Wk+41
Wk+n )
\wk—l-n—l/

FIGURE 14. The mapping scheme of a preperiodic quadratic topo-
logical polynomial

For z1%9...T...Th1n € {0,1}FT" such that x), = Tpy, (here 0 = 1 and T = 0),
define My, vo...zp 21t tO De the Fiy,-bimodule generated by the automaton
Rarwo.ap wpir...xns, With states {I,s1,...,s,4n} and alphabet {0,1} defined by:

e 51 = (01),

® Spi1 = (Sgan,Sk) if xx =1 and xgy,, =0, and sg41 = (S, Spn) if zp =0
and Thtn = 1,

o forall1<i<k+n,i#k+1, s41=(s,I)if z; =0, and s;41 = (I,s;) if

See Figure [I] for the abbreviated Moore diagram of this automaton.

Thin-z

Sk+n—1 -

FIGURE 15. Moore diagram of the automaton B 120 B Tl 1 o Thom

The automata Re,y...2, 2041200, With Ty = Tr -, are precisely the preperiodic
binary kneading automata with preperiod k£ > 1 and period n > 2 [Nek05].

Notice that My zy..ap,zrmn.caien = Mtz zmm01. 70, Py the map that
switches 0 and 1, so we will assume xp = 1, 24, = 0 (i.e. that sg11 = (Sgpn, Sk))-

We define the PXOj,-bimodule &, to be the set of all Fj,-bimodules of
the form [o] ® May . o 1 12pi1 . ziin10 @ [B] for z129.. 2411, Tpq1...Tpgn—10 €
{0,1}**" and «, 8 € PXOg,,, with the natural left and right actions. We can
easily compute the action of the generators a;; on the kneading bimodules as
below.
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Proposition 6.1. For 1 < i,j < k + n, we have the following actions of the
bimodules defined by a; ; € PXOy1y, on the bimodules My, zy. .z 11,0141 20pn_105
and by extension on the elements of &y, p,:

[ak+1,1] Q@ My a1 L,Zkq1. Thgn—10 — mzlz2-~mk—10>mk+l-~»mk+n—11
= mﬂ’flxz-u%k—l 1 Zk31- Thyn—10s

[al,kJrl] Q@ Myyay...z_s L,Zkq1. Thgn_10 = My sz _1 1,Zk41 - Thgn-10

® H a271k+n H a’zflk

m,_l— Ti—1=1

= m$112~~-$k—11 Thil--Thin—10

® H a271k+n H azflk

£171— r;—1=0

Fori#k+1,

[aiﬂ] ® mwlw2<~-$'i—2xi—lxi~--$k+n—10 = mwlw2<~-$'i—2$i—lxi~--$k+n—10'
Forj#k+1,

[al,j] ® mtIlIle’k—l1,Ik+1~~l’k+n—10 = m$1962~~$k—11@k+1~~~Ik+n—10

® H Q;—1,5—1

Tj—1=Tj_1

Fori #1,
[ai,k}+1] ® mxlxz...Ii,20mi..‘xk+n_10 = mazlxz‘..zi,ZOmi..‘xk_*_n_lO ® [aifl,k+n]7
[ai7k+1] oY m$1$2~~93i72130i~~Ik+n710 = m$1$2~~'11721wi~~Ik+n710 ® [a’i—lJf]'
Forj#1,
[akJrl,j] (24 mzlzg...mj_QOzj...mk+n,10 = mmlmg.,.zj_rzOzj...karn,lO (24 [ak+n,j71]a
[ak}Jrl,j] ® mzlmg.‘.:L’j,21zj..‘xk+n_10 = mxlxz‘..zjfglzj.‘.:L’k_,_n_lO ® [ak,jfl]‘
Fori,j #£1,k+1,
[a’iJ] ® m$112~~~wi—21j—11i~~~wk+n—10 = mw1w2-'~$i—2wj—llﬂi~~$k+n—107
[a‘id] ® mwlx’z-“wi—ij—lxi-<~wk+n—10 = m$1$2~--$i—2xj—1xi~--$k+'rL—10 ® [ai—l,j—l .
Proof. This follows from direct computation.
For example, the first computation is for [ary1,1] ® May oo 11,2001 2ptn_10-
Notice that in the kneading automaton generating Mz, vy. .2p_11,2541...2000_10 WE
have s = (01), k41 = (Sktn> Sk)- S0 87Y 1 = (01) - (Skgn, 5%) - (01) = (Sk, Sk1n). SO

the resulting bimodule is My, 4y 2 10,2441...204n_11, SinCe the coordinates of the
restrictions of s have switched. As we noted above, this bimodule is isomorphic

to Meraz.. zn 117051 Frrn 10
Another example: [a; 1] ® My, 4. @207 T g 10 (for i # 1). Here we have
_ _ Sk41 __ —1 —1 _
si = (8i-1,1) and spq1 = (Skin,5k)- S0 8, = (815,55 ) (8i-1, 1) (Skn> Sk) =
(s;*4",I). Since none of the coordlnates have Changed the kneading sequence
remains unaltered, but we have replaced s;_; with s M, so we gain the twist
@i—1 k+n- Thus, our resulting bimodule is mmm,.,mi%oﬁ,‘,mm_lo ® [ai—1 k4n). O

n
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Fix f and recall that the PXOj,-bimodule & is the set of all F,-bimodules
of the form [a] ® My ® [3] where «, § € PXOy.r, with the natural PXOj., right
and left actions.

Proposition 6.2. For f a preperiodic quadratic topological polynomial with prepe-
riod length k > 1 and period length n > 2, then &, , = & .

Proof. By Theorem[B.1] 91 is isomorphic to My, . oy 1,0441..z0pn_10@[@] for some
2129 h_ 11, T 1. Thpn_10 € {0,1}*F" and some ¢ € PXOy,. By Proposition
[6.11, the left action of PXOy.,, is transitive on the basis of kneading bimodules.
Thus, the two bimodules are equal. O

Now for 1 <1 < n, define v; € PXOy4,, by:

Vi = Qk+ik+i—10k+ik+i—2---Qk+i k+1Ak+i k+nAk+i k+n—1---Qk+i k+i+1-

So for n = 2, we would have:

Y1 = Ak41,k4+2,
Y2 = Ak42,k+1-

For n = 3, we would have:

Y1 = Ak4-1,k+30k+1,k+25
V2 = Qk42,k4+10k42,k+3,
V3 = Ak+4+3,k+20k+3,k+1-

For n = 4:

Y1 = Ok41,k4+40k+1,k+30k+1,k+2,
V2 = Qk4-2,k+10k+2 k+40k4+2,k+3)
V3 = Ok4-3,k4+20k+3 k+1Ak+3,k+4,
V4 = Ok44,k4+30k+4,k+20k+4,k+1-

Notice that the product ¥ = v,vn,_1...7271 acts on S2\ Py by a Dehn Twist
about a simple closed curve I' that separates the points {wg1, ..., Wg4n} from the
rest of P¢. That is, I separates the period of the post-critical set from the preperiod
and oco. Since k > 1 and n > 2, the curve I' is non-peripheral.

Lemma 6.3. For g a pre-periodic quadratic topological polynomial with preperiod
length k > 1 and period length n > 2 and v € PX.Ok,, acting by a Dehn twist Tp
about a simple closed curve T that separates the period {wgi1,...,wk+n} from the
rest of the post-critical set, if [Y] @ My ~ M, Q [y], then T is a g-stable Levy cycle
of length 1, and g is not equivalent to any complex polynomial.

Proof. First notice that both the bimodules [y] ® M, and M, ® [y] are twisted
kneading since M, is twisted kneading and Dehn twists preserve the cyclic ordering
of coordinates (this also follows from the fact that a toplogical polynomial composed
with a Dehn twist yields another topological polynomial). By [y] ® 9, ~ M, @ [7]
we have Tt o ¢ homotopic to g o Tr, so ¢g(I') must be homotopic to I' and g must
map it by degree 1. Notice also that the other component of g~!(T") is peripheral
about the point wg. Thus, I' is a g-stable Levy cycle of length 1 for g. (Il
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Using the computations given in Proposition [6.I] we can verify the following
lemma:

Lemma 6.4. For any x;...x5-1 € {0, 1}k_1, we have

(1] @My, zr_11,00...00 = May . zp_11,00...00 D [Ynl,

and for 1 <i<n,

i) @ Moy 2 11,00...00 = My 20 11,00...00 @ [Yie1]-

Proof. This follows directly from Proposition a

We are now ready to state our first result.

Theorem 6.5. For f a pre-periodic topological polynomial of degree 2 with prepe-
riod length k > 1 and period length n > 2, then there exists a topological polynomial
g which has the same mapping scheme as f, but is not equivalent to any complex
polynomial.

Proof. Pick a planar generating set {s1, ..., Sp4n}. Let s be as defined earlier and
let My ~ Mg(s) @ [¢] be the twisted kneading bimodule representation of My as in
Theorem 5.1l We have that Mgsy = Ma, 21 10001..200n_s0 fOr some z; € {0,1}
(in fact, z122...25—11(Zk41..-Tr1+n—10) is the kneading sequence of f in the sense of
[BS02]).

By Proposition .1, there exists o € PXOgy, such that [a] @ Mgy =
mzlmzkillyomoo, where the I; are as in mﬁ(f) Let mo = mm1...zk711,0...00 =
[Ck] ® mﬁ(f).

Define 8 € PXOypn by B = ¢~ v, 1Vn_2...71 where the ~; are as in Lemma
[64 Notice that [o] @ M, @ [B] = Mo @ [Yn—1Vn—2---11]-

Recall v = ypYp—1...71. By Lemma [64] we have that [y] ® My = My ®

[’Y?L—I'Yn—2-~-717n]-
Notice that

M@ ([a] @My @ [B]) = 7] © Mo @ [Yn—17n—2.-71]
= Mo @ [Yn-1Yn—2--71Vn] @ [Yn—1Yn—2.-M]
= Mo ® [Yn-1Yn-2--71] ® [7]
= (o] @My @ [B]) ® [7].

In 971y, we have that

2
(81.-8n)° 0 =81...8 * 1 - SpnSkt1--Sktn—1

=0- 51.-.SkSk+nSk+1---Sk4+n—1-

Let 9, be the bimodule [a] @M @8] = Mo R [Yn—1Yn—2---71]. In M, we have the
same induced cyclic ordering except that it now has the appropriate conjugations
for the braid action that first takes sx41 to fall between sgy, and sy (this is the
action of 71), then takes si1o to fall between siy1 and s; (action of ¥2), and so on
through sgin—1-
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So M, is a twisted kneading bimodule, and by Proposition there exists a
topological polynomial g whose associated bimodule is 9,. Notice that P; = Py
and that the mapping schemes of these two topological polynomials are the same.
While the labels of the period are all 0 and of the preperiod are all 1 in the Moore
diagram of £(g), they might not be in the Moore diagram of K(f).

So we have that [y]@M, = M,®[7], where v acts on Sa\ P, by the Dehn twist Tt
about a non-peripheral simple closed curve I' that separates the period of P, from
the rest of P;. By Lemma[6.3] g is not equivalent to any complex polynomial. [J

This yields the following corollary, which is also a consequence of Koch’s result:

Corollary 6.6. Fvery quadratic mapping scheme with preperiod length k > 1 and
period length n > 2 is realized by a topological polynomial that is not equivalent to
any complex polynomial.

Recall that by Berstein-Levy (and an easy additional observation), every qua-
dratic mapping scheme not meeting the hypotheses of Corollary can only be
realized by topological polynomials that are equivalent to complex polynomials.

7. PROOF OF THE MAIN RESULT

The proof of Theorem only uses the fact that the topological polynomial
is quadratic to produce the basis of kneading bimodules Mz, . 2, _ 1.2 41 .20 pn_10-
For arbitrary degree d > 3, we will not be able to produce an explicit basis in this
way. However, we establish a few conditions on the mapping scheme when we can
replicate the argument from Section

We will show the existence of a kneading bimodule that acts for our mapping
scheme as My did in the proof of Theorem In order for the bimodule to play
this role, the kneading automaton that generates it needs to have:

(1) the states associated with the post-critical points inside the Levy cycle must
restrict to each other all in the same coordinate,

(2) any pair of these same states must not share any other coordinates with
non-trivial restrictions,

(3) the permutations of these states must not interact with the non-trivial
restrictions, and

(4) the induced cyclic ordering on the generating set matches the twists from
the Yi-

We need (1) so that we can cycle the a; ; and v; as in Lemma We need (2)
so that we do not pick up any extra generators while cycling through. We need (3)
to guarantee that the presence of active states does not disturb the two previous
properties. Finally, we need (4) to guarantee that our resulting bimodule is twisted
kneading.

In the case of a period of length at least two which has no critical values (in some
sense, a period which is strongly not an attractor), the proof follows very similar
lines to the quadratic case. For a period containing critical values, there needs to
be sufficiently many critical values outside the period so that their associated states
can act on the non-trivial restriction coordinates, so that the states associated with
the critical values in the period can act trivially on these coordinates. The following
proposition precisely defines “sufficiently many” for a given period.



68 GREGORY A. KELSEY

Proposition 7.1. For S = S(C, P,«a,v) a polynomial mapping scheme of degree d
with Q = {w1, ...,wn} C Z\ C such that a(Q) = Q and

#a ' D\ Q) < > (v(z) — 1),
z€C\{oo},a(z)¢Q2
then there exist kneading automata for S such that the states sq = {s1,...,8n}
associated with € have all of the following properties:

(1) the arrows from states in sq to other states in sq are labeled by 0,

(2) the arrows from states in sq to states not in sq have pairwise disjoint labels
from {1,...,d — 1},

(3) the sets of labels on which the states in sq act non-trivially are pairwise
disjoint, and

(4) for all 1 < 4,5 < n,i # j, state s; acts trivially on any letter labeling an
arrow leaving s;.

Proof. Choose a planar generating set for 7 (5% \ P). Since S is a polynomial
mapping scheme, there exists some topological polynomial f realizing it. Let K(f)
be the kneading automaton of f. In its Moore diagram, we will relabel some
of the arrows leaving the states sq = {s1, ..., sp} associated with Q and redefine
the actions of possibly all of the active states to produce the Moore diagram of a
kneading automaton K with the desired properties.

First, relabel all arrows within sg by 0. Notice there are no arrows entering sq
from outside it (since a(2) = Q).

Second, since

£ @\ S W) -1,

z€C\{oo},a(z)¢Q2

we have that

Yo @D\ Y w(z) - ),

2¢Q,a(z)eN z€C\{oo}

which by the Riemann-Hurwitz Formula gives us

Z v(z) <d-1

2€Q,a(z2)eQ

Thus, the number of arrows entering €2 in S is at most d—1. Redefine the actions of
the states in s so that the sets on which they act non-trivially are pairwise disjoint
(note that we can do this by the above calculation). As required by Lemma [5.4]
label any arrows from sq to states associated with critical points by an appropriate
letter on which the originating state acts non-trivially. As for the remaining arrows
leaving sq, notice by the calculation above there are enough letters remaining in
{1,...,d — 1} so that these may be labeled from this set so that these labels are
pairwise disjoint with each other and with the non-trivial actions.

Notice that states sq in our new automaton now fit the requirements listed in
the statement of the proposition. However, since we redefined some of the actions,
we may need to redefine the actions of the states not in sq in order to ensure that
our automaton is dendroid.

Let k£ be the number of critical values of S not in . Let #(y be the hypergraph
with vertices {0, 1, ...,d — 1} and hyperedges defined by the actions of the states in
sq. We will redefine the actions of the k active states outside of sq one-by-one by
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considering their resulting hypergraphs Hi, Ha, ..., Hr. We will think of H,_; as a
sub-hypergraph of H,;.

First, define the actions of these active states so as to connect the partial hyper-
graph induced by the hyperedges of H, without adding cycles. By our assumption

that
#e @\ < Y, @),
zeC\{oo},a(z)¢Q2
we will add more edges than we already have in H, so this will eventually yield
a hypergraph H;, where the partial hypergraph induced by the hyperedges is con-
nected. Continue redefining the actions of the active states so as to maintain this
property and not create cycles.

By a standard result in combinatorics (see e.g. Proposition 4 in Chapter 17 of
[Ber73]), a connected hypergraph with no cycles on d vertices with m hyperedges
containing the vertices {F;}1*, obeys the formula:

m
Z(#Ei —1)=d-1.
i=1

This, of course, is exactly the Riemann-Hurwitz Formula in our setting. There-
fore, we may redefine the actions of all k active states so that the final hypergraph
Hj, is connected (notice that every vertex lies in some hyperedge) and contains no
cycles. In other words, the sequence of permutations defined by our automaton is
dendroid. Note that we may need to redefine the restrictions of these active states
to preserve property (2) of Lemma .4

Let & be this automaton. Notice that £ is dendroid by construction. Further,
since its input and output sets are equal (as they were in R(f)), it is kneading.

|

Lemma 7.2. For S = S(C,P,a,v) a polynomial mapping scheme of degree d
meeting the hypotheses of Proposition [[1l, g a topological polynomial realizing S
with the kneading automaton guaranteed by Proposition [L1l, and v € PXO4p\ (o0}
acting by a Dehn twist Tr about a curve I' separating 0 (as in the proposition) from
the rest of P, if [y| @ My ~ M, @ [7], then T is a g-stable Levy cycle of length 1
and g is not equivalent to any complex polynomial.

Proof. As in Lemma [6.3 note that since v acts by a Dehn twist, it preserves the
induced ordering of M, and we have Tt o g homotopic to g o Tr. So ¢g(I') must be
homotopic to T' and g must map it by degree 1. By property (2) of the kneading
automaton £(g) from Proposition [ZI] every component of g~1(T) except I itself is
peripheral. Hence, I is a stable Levy cycle of length 1 for g. ]

Our main result follows from the above proposition using the argument of the
previous section.

Theorem 1.1. Suppose that a polynomial mapping scheme exhibits one of the
following properties:

(1) at least one (non-attractor) period of length at least two and not containing
critical values,

(2) at least two (non-attractor) periods not containing critical values,

(3) at least two non-attractor periods both of length at least two, or

(4) at least four non-attractor periods.
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Then this scheme is realized by a topological polynomial that is not equivalent to
any complex polynomial.

Proof. Let S be the mapping scheme satisfying one of the cases.

(1) S has one period of length at least two not containing critical values.

Let Q = {w1,wa,...,wn} be the period given (with a(w;) = w;+1 and
alwy) = wy) and let P = {oo,wr,...,wm}. Choose a planar generating
set {s1,...,8m} such that s; loops around w;. By the Riemann-Hurwitz
Formula, C \ {co} has at most d — 1 elements. So € has at most d — 1
arrows incoming (and none outgoing) in the mapping scheme S. Thus,
we may apply Proposition [[.I} let 9y be the bimodule generated by the
kneading automaton K given by this proposition.

For 1 <i < n, define

Vi = Qi 1G4 5—2---C 105 n Q4 n—1-+-Qj 41

and v = Y Yn—1..-v21 (similar to the ; in Lemma [6.4] but reducing all the
indices by k).

Consider [v;] ® My. First, we have [a; ;4+1] ® My. Now, we do not know
the full wreath recursions for the states s; and s;y1; however, we do know
they are inactive and that s;lo = s;—1 and s;11]0 = s;. So s, "'|p = si° ;.
Further, since none of the other arrows from these two states share labels
with each other, the wreath recursions do not share non-trivial coordinates
besides the one we have already considered. Thus, the only twist produced
is a;—1,;, and the kneading bimodule remains unchanged.

We may repeat the above argument for the rest of v;, and we find that
[v:] @ Mo = [@i,i—14 2.0 105 nQin—1-..Gi i+1] @ Mo

=Mo @ [@i—1,i—20i—1,i—-3---Qi—1,n@Qi—1,n—10i—1,n—2---Ci—1,i]

=My @ [yi-1]-
So [1i] @My = MWy @ [vi—1] and [y1] @ My = Mo ® [75] just as in the lemma
and for the exact same reasons.

Consider the induced ordering by 91y on the generating set as follows:
(Sme-Sn4151--50)%0 = (Spee-Sptr151---50)  1Spme8ps1 -0+ 8,515, 1. Just
as in Theorem [6.5] this rearrangement of {s1, ..., s, } is consistent with the
action of v, _1...72y1. We will get the action of some other g € PX0,, on
the rest of the cyclic order. Notice that ~,_1...72y1 and 8 commute since
they act on disjoint coordinates (in fact, v and S commute).

Set M, = My @ [Yn—1Vn—2.-715]. This is a twisted kneading bimod-
ule, so let g be the topological polynomial uniquely determined by this
twisted kneading bimodule and this planar generating set. Notice that g

has mapping scheme S.
As before in the proof of Theorem [6.5] we have that

[V ® My = [YaYn-1--71] ® Mo ® [Yn—1.-715]
=My ® [Yn—1--71Y] ® [n-1--M0]
= Mo ® [Yn—1..m] ® [v8]
= Mo @ [Yn-1.-10] @ [7] = My @ [7].
By Lemma [[.2] we are done.
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S has two periods not containing critical values.

By (@), we need only consider when we have wy,ws € P such that «
fixes both and neither are critical values. Let P = {00, wy,ws, w3, ..., W }-
Choose a planar generating set {si, ..., S } with s; looping around w;.

By the Riemann-Hurwitz Formula, in S there are at most d—1 arrows in-
coming to Q = {w1,ws} from outside the set (there are no outgoing arrows).
So by Proposition[T.1] there exists a kneading automaton £ consistent with
S with the properties outlined in the statement of the proposition.

We consider the induced ordering of automaton £ by (sm...535251)d 0=
(sm...535251)‘1’15%..53 -0 - s981. So this portion of the cyclic order will
remain unchanged. Let g € PX0,, act consistent with the remainder of
the above calculation on {ss, ..., Sy, }.

Let I" be a simple closed curve separating €2 from the rest of P. Note that
I' is non-peripheral. Let <, v1,72 be defined by v1 = a1.2,72 = ag,1,7 =
Y271 Note that v acts by a Dehn twist about the curve I', and that g and
7 commute.

Let the bimodule generated by the kneading automaton K with twist
B be M,. Let g be the unique topological polynomial determined by the
(twisted) kneading bimodule 9, and the planar generating set {s1, ..., sm, }.
Notice that g has mapping scheme S.

Since s1|p = s1 and sa|p = s2 in M, and s; and s, share no other non-
trivial restrictions, we have that (a1 2] @9y, = MR [a1 2] and [az1]@M, =
My @ [ag,1]. Thus, [7] @ M, = M, ® [y], and we may apply Lemma [[.2
S has two non-attractor periods both of length at least two.

Let Qy and Q5 be the two periods in question. For ¢ = 1,2, let p;, =
#(a™1(Q;) \ ;). We may assume p; < py. Notice that

#a () \ ) =p1 <p2 < > (v(z) —1).

z€C\{oo},a(2)¢

So Proposition [Z.1] applies to = Q.

Now proceed as in (), with the additional observation that the actions
of the states associated with critical values do not affect the conjugations,
since all the non-trivial actions of a single state are disjoint from the non-
trivial actions and restrictions of all the other states associated with .

S has four non-attractor periods.

Let €4 be the union of two of the non-attractor periods, and 25 be the
union of the other two. By the same argument as above in (@), we may
assume that = € satisfies the hypotheses of Proposition [Tl

If © is the union of two periods both of length one, then proceed as in (2I),
with the additional observation that the actions of the states associated with
critical values do not affect the conjugations, since all the non-trivial actions
of a single state are disjoint from the non-trivial actions and restrictions of
all the other states associated with €.

If not, consider a period of length greater than one in €2 and proceed as

in ([3). O
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8. TOPOLOGICAL POLYNOMIALS ADMITTING DIFFERENT OBSTRUCTIONS

While our proofs explicitly construct a single obstructed polynomial realizing a
particular mapping scheme, we can easily extend the ideas to produce many more
obstructed polynomials realizing the same set of mapping schemes.

The simplest way to do so is by pre-composing with Dehn twists about the ob-
struction ' (as noted in [BNOG]). That is, changing the twisted kneading bimodule
from 9M, to M, ® [v!] for any [ € Z. The proof that T is a Levy cycle of length 1
still holds.

See Figure [I6 for a topological polynomial produced by our proof, Figure [I'7] for
this example twisted as in the previous paragraph with [ = 1, and Figure [I§ for
l=-1.

t
FiGURE 16. The obstructed topological polynomial g
gor
ﬁ.
i

_'I?L-(J =t

FIGURE 17. The obstructed topological polynomial g o «y

This method can also produce topological polynomials obstructed by Levy cycles
of length greater than 1.

Theorem 8.1. For S a polynomial mapping scheme of degree d with a single finite
critical point, whose post-critical set contains a period of length n > 2 which does
not contain any critical values, and 1 <1 < n,l < d such thatl divides n, then there
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1

F1GURE 18. The obstructed topological polynomial g o vy~

exists a topological polynomial g which realizes S and admits a Levy cycle of length
l, but does not admit a Levy cycle consisting only of a single curve surrounding the
period in question.

Proof. Let k = 7. Let Q = {wi,ws, ...,w, } be the period given with a(w;) = wit
for 1 <i<n-—kand a(wp—gti) = wit1 for 1 < i < k, and a(w,) = w;. Let
P = {oo,wq,...,wn} such that for n < ¢ < m, a(w;) = w;—1 (note this is not
our usual convention). Choose a planar generating set {s1, ..., s, } so that s; loops
around w; in the positive direction.

Let f be a topological polynomial realizing S. As in the proof of Proposition
[[1l we create a kneading automaton by copying £(f) and changing some of the
labels on arrows leaving the period (). Instead of labeling all the arrows within the
period by 0, we cycle through the labels {0, 1,...,1 — 1} in the following way:

The arrows leaving Qy = {w1,ws, ...,wr } (but staying within Q) are labeled by
0. The arrows leaving 0 = {wjy1,...,war} are labeled by 1. We continue in this
way, labeling the arrows leaving Q; = {wix41,...,wei+1)r} (but staying within the
period Q) by i for 0 <4 <[ —1.

Additionally, we label all the arrows in the pre-period by any label iy such that
I —1<iy <d-1, and define the action of the active state to be (0igl...d — 2).
Define the bimodule generated by this kneading automaton to be 9.

Define v; ; € PXOp, for 0 <i <1 —-1,1<j <k by

Yi,g = Qik+j,ik+j—1Qik+j,ik+j—2--Qik+35,ik+1Fik+j,(i4+1)k Qik+7j,(i+1)k—1-+-Qik+j,ik+j+1-

Let v = Yi,kVi,k—1---Y4,1, and Y = Yi—1Yi—2---Y170-
So, for example, if n =4 and [ = 2, we would have:

Y0,1 = Q1,2
Y0,2 = 2,1,
71,1 = a3,4,
V1,2 = Q4,3,

Yo = 02,1412,

Y1 = (4,303 4-
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Another example: if n =9 and [ = 3, we would have:

Y0,1 = 1,301,2,
Y0,2 = Q2,102,3,
70,3 = 3,203 1,
V1,1 = Q4,604,5,
71,2 = Q5,405,6,
V1,3 = A6,506,4,
V2,1 = Q7,9078,
V2,2 = a8,708,9,

V2,3 = Q9,809,7,
which gives

Yo = @3,203,102,102,301,301,2-
Y1 = 06,506,405,405,604,604,5,

Y2 = Q9,809,708 708,907 9047 8.

Notice that for i1 # i2, we have [y, j,, Vis.j») trivial.

Define I to be the multicurve {T'y,...,I;_1}, where I'; is a non-peripheral simple
closed curve separating €; from the rest of P;. Notice that 7; acts by a Dehn twist
about I';.

Consider [vy; ;] ®9,. By construction, all the states associated with post-critical
points in €2; pairwise share exactly one non-trivial restriction coordinate: . So we
have that [%J‘]@mo = 93?0@[%;11]'] forl <i<li-—1, [’70J]®9ﬁ0 = 9ﬁ0®['yl,1,j,1],
and [yo,5] ® My = Mo @ [y1-1,1]. Thus, [1;] @ My = My @ [y;-1] for 1 < <1 -1,
and

[Yo] ® Mo = Mo @ [Vi—1,k—1Vi—1,k—2--VI—1,1Yi—1,k)-
Define
My =Mo @ [Vi—1,k—1V—1,k—2---VI=1,1]-
We consider the induced ordering of 9%y in a more complicated way than usual:
(sm...snﬂsn,k,l...sn...83ksk+1...Skal...sk,lsk)d -0
= (Sm...sn+18n7k71...Sn...SSkSkJrl...Skal...Sk;flsk)d_l

190 * SnSn—k41--Sn—25n_1
= (sm...sn+1sn,k,1...sn...53ksk+1...szksl...sk,lsk)dfz

‘18- -8n+15nSn—k+41---Sn—25n—1
= (SymeeSnt15n—k—1--Sner-S3ES k41 52k 51 Sk_15k) >

©2:51852...858m---Sn415nSn—k+1---Sn—285n—1

=0-8Sp-9k---Sn—k---5152.--8kSm - -Sn+15nSn—k+1---Sn—285n—1-

So the changes in the induced ordering of 9y match the action of 71 k1
V—1,k—2--Y—1,1 O {Sp_kt1,..., S}, and M, is twisted kneading.
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Notice that for 1 < i <[ —1, we have [v;] ® M, = M, @ [y;—1]. Further, for
1 =0,
[Y0] ® Mg = Mo @ [Vi—1,k—1Vi—1,k—2--Vi—1,1V=1,k] D [Vi—1,k—1--Vi-1,1]
=Mo @ [Vi—1,6-1--Y1-1,1] ® [Vi-1]
= Emg ® [71—1]-

Since M, is twisted kneading, let g be the unique topological polynomial deter-
mined by the bimodule 9, and the planar generating set {s1, ..., s, }, notice that
¢ has mapping scheme S. By the above computation, g takes each curve I'; to I';11
(adding mod [) by a degree 1 map. Further, we see by the labeling of our kneading
automaton that the components of g=*(I';) not labeled by i are all peripheral. So
the multicurve I' is a g-stable Levy cycle of length .

We leave to the reader the verification that the simple closed curve surrounding
the entire period is not an obstruction. ([l

For example, both the topological polynomials g and f in Figures [[9 and 20 are
quadratic with a preperiodic mapping scheme with preperiod length one and period
length four. However, while g admits a Levy cycle of length one (not pictured), f
only admits a Levy cycle of length two, shown in Figure 20 with its inverse images.

FIGURE 19. An obstructed topological polynomial with Levy cycle
of length one

9. OPEN PROBLEMS

While there exist many polynomial mapping schemes that fall outside the
purview of both Theorem [[LI] and the Berstein-Levy Theorem, in many of these
cases we may still apply Proposition [Z1] to show the existence of obstructed topo-
logical polynomials realizing the mapping scheme. For example, relatively few map-
ping schemes with exactly three non-attractor periods do not meet the hypotheses
of Proposition []] even if they do not meet the conditions of Theorem [T

However, there do exist non-hyperbolic mapping schemes for which Proposition
[Tl does not apply. For instance, mapping schemes which have only a single period
(say of length at least two), and that period contains all the critical values.

Open Problem 1. What can we say about mapping schemes for which no Q C
Z \ C satisfies the conditions of Proposition [[II?
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F1GURE 20. An obstructed topological polynomial with Levy cycle
of length two

Even the single period example mentioned above seems more subtle than the
cases we have addressed in this paper. For instance, consider the two schemes in
Figure 211

AN

00y) Wo=—% w1 w3 =— Wx
Wy
/ W:’i\
00 Wo=—*% w1 w2

o
I

Wh
FI1GURE 21. Two mapping schemes outside the scope of our results

These mapping schemes are identical in every sense that we have used to distin-
guish those realizable by obstructed polynomials from those not realizable. How-
ever, notice in Figure 22] that for the second scheme we may avoid the issues that
arise with having all the critical values in the only period by considering a Levy
cycle of length greater than 1.

Somehow, the relative position of the critical values within this period affects the
mapping scheme’s realizability by obstructed topological polynomials. It seems that
one could combine the ideas of Theorem [BJ] with the treatment of critical values
in Proposition [Z1] to gain some ground within this class of mapping schemes.
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FIGURE 22. An obstructed topological polynomial outside the
scope of our results

Open Problem 2. How does the relative position of critical values within a non-
attractor period of a mapping scheme affect the scheme’s realizability by obstructed
topological polynomials?

However, it remains unclear how to prove the (probable) non-realizability of the
remaining mapping schemes. Nekrashevych proved a criterion for the equivalence to
a complex polynomial for topological polynomials whose associated twisted knead-
ing bimodule has trivial twist. It would be interesting to extend this criterion and
connect it with the work here.

Open Problem 3. Can we employ the PX0O,-bimodule theory of Nekrashevych
to prove the non-realizability of mapping schemes by obstructed topological poly-
nomials?

We have only produced stable Levy cycles for polynomials. Perhaps we could
use the machinery of this paper to find non-stable Levy cycles for some of these
unclassified schemes. Instead of showing that the bimodule [y] restricts to itself
under M,, we would need to show that a particular product of powers of Dehn
twists restricts to a different particular multitwist (these extra powers and twists
coming from the other non-peripheral preimages of the Levy cycle). While the
bimodules certainly still make these computations straightforward, one would need
a systematic way to determine which multitwists to consider.

Open Problem 4. Can we extend these results if we consider non-stable Levy
cycles?

Also, while we have demonstrated that certain mapping schemes are realizable
by obstructed topological polynomials, for most of these mapping schemes we have
only produced obstructed topological polynomials with Levy cycles of length 1.

Open Problem 5. Extend this method to produce more examples of topological
polynomials admitting Levy cycles of length greater than 1.

Even for obstructed topological polynomials with Levy cycles of length 1, it is
not clear if our method constructs all such polynomials.
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Open Problem 6. Do there exist topological polynomials realizing these mapping
schemes and admitting Levy cycles of length 1 other than those given in this paper?

Further, we have not attempted to determine when these various examples of
obstructed topological polynomials are equivalent. A result like that for the qua-
dratic polynomials with preperiod length 1 and period length 2 in [BN0O6] would be
interesting, even if only for preperiodic quadratic polynomials.

Open Problem 7. What are the Thurston equivalence classes of these obstructed
topological polynomials?

Also related to our results is Nekrashevych’s conjecture that the bimodule & is
sub-hyperbolic (see [Nek09]). If this conjecture is true, then the various elements
represented by <y in our proofs have finite order in the faithful quotient of the action.

Open Problem 8. What are the orders of the obstructing elements in the faithful
quotient of PX0,, by the self-similar action?
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