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Abstract. After fixing a marking (V,W ) of a quasi-Fuchsian punctured torus
group G, the complex length λV and the complex twist τV,W parameters define
a holomorphic embedding of the quasi-Fuchsian space QF of punctured tori
into C2. It is called the complex Fenchel-Nielsen coordinates of QF . For
c ∈ C, let Qγ,c be the affine subspace of C2 defined by the linear equation

λV = c. Then we can consider the linear slice Lc of QF by QF ∩ Qγ,c

which is a holomorphic slice of QF . For any positive real value c, Lc always
contains the so-called Bers-Maskit slice BMγ,c defined in [Topology 43 (2004),
no. 2, 447–491]. In this paper we show that if c is sufficiently small, then Lc

coincides with BMγ,c whereas Lc has other components besides BMγ,c when
c is sufficiently large. We also observe the scaling property of Lc.

1. Introduction

The quasi-Fuchsian space QF of once punctured tori can be embedded in C2 =
{(λ, τ )} by the complex Fenchel-Nielsen coordinates (cf. [5, 9, 15, 16]). By varying
the complex twist τ and keeping the complex length λ being fixed as a positive real
value c, we can define the linear slice Lc ⊂ C of QF . In this paper we investigate
the global properties of Lc realized in the complex plane. To state our results,
recall that Lc has a component containing the open interval (2,+∞) which was
studied in [5] and also in [7, 15]. In this paper we call this component the standard
component and the others non-standard. We will show the following.

Theorem 5.1. There exists some positive constant c0 such that for any c satisfying
0 < c < c0, Lc coincides with the standard component.

Theorem 6.1. There exists some positive constant c1 such that for any c satisfying
c > c1, Lc contains non-standard components.

In section 7, we also consider the scaling property of Lc.

Corollary 7.3. Linear slice has an asymptotic scaling constant.

See Figure 1 for theorem 5.1 and Figures 2 and 3 for theorem 6.1 and corollary
7.3. The parameters used in the figures are explained in 4.1.
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Let us describe some historical background of our subject. A marked quasi-
Fuchsian punctured torus group G is a free marked two generator discrete subgroup
of PSL2(C) such that the commutator of the generators is parabolic, and the
regular set Ω consists of two non-empty simply connected invariant components
Ω±. Quasi-Fuchsian space QF is the space of marked quasi-Fuchsian punctured
torus groups modulo conjugation in PSL2(C). The convex core C/G has two
boundary components ∂C±/G each of which is a once-punctured torus and admits
an intrinsic hyperbolic structure making it a pleated surface.

In their seminal paper [5], L. Keen and C. Series defined the Bers-Maskit slice
BMμ,c for a fixed measured lamination μ and c > 0, as the subset of QF on which
the bending lamination of ∂C−/G and μ belong to the same projective class and
the length of μ in ∂C−/G is equal to c. By using their theory of pleating coor-
dinates, they showed that BMμ,c is simply connected. J. Parker and J. Parkko-
nen also studied these slices for the case where μ is a rational lamination (they
call them the λ-slices), and considered a generalization of I. Kra’s plumbing con-
struction and degeneration of BMμ,c to the Maskit slice M (cf. [15]). The first
author and J. Parkkonen further studied BMμ,c; they showed that the boundary
of BMμ,c is a Jordan curve which is cusped at a countable dense set of points
(cf. [7]). In this paper we study the outside of BMμ,c in Lc and its scaling
property.

This paper is organized as follows. In section 2 we will review the basic notions
of the quasi-Fuchsian space QF of once punctured tori and its pleating varieties
following [5]. The complex Fenchel-Nielsen coordinates of QF will be introduced
in section 3, and we will define the main subject of this paper, the linear slice Lc

of QF in section 4. In sections 5 and 6 we will study connected components of Lc

and prove our main theorems. In the last section we will observe the asymptotic
self-similarity of Lc.

2. The quasi-Fuchsian space QF and rational pleating varieties

2.1. Punctured torus groups and their pleating data.

2.1.1. Marking. Let S be an oriented once-punctured torus. Any pair of simple
closed loops on S that intersect exactly once are free generators of π1(S). Let
(α, β) be such an ordered pair of free generators, chosen so that their commutator
αβα−1β−1 represents a positively oriented loop around the puncture. The ordered
pair (α, β) is called a marking.

2.1.2. QF and F . A punctured torus group is a discrete subgroup G ⊂ PSL(2,C)
that is the image of a faithful representation ρ of π1(S) such that the image of
the loop around the puncture is parabolic. If (α, β) is a marking of S, and if
A = ρ(α), B = ρ(β), then the commutator K = ABA−1B−1 is parabolic and the
ordered pair (A,B) = (ρ(α), ρ(β)) is called a marking of G.

The group G is quasi-Fuchsian if the regular set Ω(G) consists of two non-empty
simply connected invariant components Ω±(G). The limit set Λ(G) is topologically
a circle. Quasi-Fuchsian space QF is the space of marked quasi-Fuchsian punctured
torus groups modulo conjugation in PSL(2,C); it has a holomorphic structure
induced from the natural holomorphic structure of SL(2,C).
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Let R(π1(S)) be the set of PSL(2,C)-conjugacy classes of representations ρ of
π1(S) such that the image of the loop around the puncture is parabolic. Consid-
ering the compact open topology on R(π1(S)), Minsky showed that the closure of
QF in R(π1(S)) is equal to D(π1(S)), the set of punctured torus groups modulo
conjugation in PSL(2,C) (cf. [13]).

Fuchsian space F is the subset of QF such that the components Ω± are round
disks. It is canonically isomorphic to the Teichmüller space of marked conformal
structures on S.

The quotients Ω±(G)/G are punctured tori with conformal structures, and hence

also with orientations inherited from Ĉ; we assume that the orientations of Ω+(G)/G
and S agree, whereas those of Ω−(G)/G and S are opposite.

A point q ∈ QF represents an equivalence class of marked groups in PSL(2,C).

We choose once and for all a triple of distinct points in Ĉ and let G = G(q) denote
the representative normalized so that the repelling and attracting fixed points of A
and the fixed point of K are equal to the fixed triple points in Ĉ. If it is clear from
the context, for readability, we suppress the dependence on q.

2.2. Simple closed curves.

2.2.1. Enumeration. Denote by C(S), the set of free unoriented homotopy classes
of simple closed non-boundary parallel curves on S. As is well known, this set can
be naturally identified with Q̂ = Q ∪ ∞. One way to see this is as follows; let L
denote the integer lattice m + in,m, n ∈ Z ⊂ C. Topologically, S is the quotient
of the punctured plane Ci = C− L by the natural action of Gi = 〈Â, B̂i〉 ≡ Z2 by
the horizontal and vertical translations. A straight line of rational slope in C− L
projects onto a simple closed curve on the marked punctured torus Si = Ci/Gi,
and the projection of all lines of the same rational slope with the same orientation
are homotopic. We denote the unoriented homotopy class obtained by projecting
the line of slope −q/p by [L(p/q)]. Relative to our choice of marking, [L(p/q)] is
in the homology class of α−pβq or αpβ−q on Si, where α, β are projections of the
horizontal and vertical lines corresponding to Â, B̂ respectively. Setting 1/0 = ∞,

we obtain that the map Q̂ → C(S) defined by p/q 
→ [L(p/q)] which is well defined
and bijective. The reason for the choice of convention that [L(p/q)] corresponds
to α−pβq, is the following; if we identify the Teichmüller space Teich(S) of once
punctured tori with the upper half plane H, then one can easily compute that the
boundary point p/q ∈ R̂ is the point where the extremal length of curves in the
class [L(p/q)] has shrunk to zero.

2.2.2. Special word Wp/q. Suppose that ρ : π1(S) → G ⊂ PSL2(C) is a quasi-
Fuchsian punctured torus group, marked as usual by generators A = ρ(α), B =
ρ(β). We denote the unique geodesic in the homotopy class of ρ([L(p/q)]) in H3/G
by γp/q. In particular, for q ∈ QF , γp/q(q) represents the corresponding geodesic

in H3/G(q).

For each p/q ∈ Q̂, we can find an explicit word Wp/q in the marked generators
〈α, β〉 of π1(S) representing [L(p/q)] as follows. The words are generated from the
initial data

W0/1 = β, W1/0 = α−1

by the formula

W(p+r)/(q+s) = Wr/sWp/q,
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whenever p/q < r/s and ps − qr = −1. We denote by Wp/q(q) the corresponding
special word in G(q).

2.3. Rational pleating varieties.

2.3.1. The pleating loci. We are now ready to discuss the convex hull boundary
and the pleating locus. Let q ∈ QF and let G = G(q) be the corresponding
marked quasi-Fuchsian group with the regular set and the limit set Ω(G),Λ(G)
respectively. The 3-manifold H3/G is homeomorphic to S × (0, 1). The surfaces
Ω(G)/G at infinity form the boundary S × {0, 1}. Let ∂C(G) be the boundary
of the hyperbolic convex hull of Λ(G) in H3; it is clearly invariant under the
action of G. The nearest point retraction Ω(G) → ∂C(G), defined by mapping
x ∈ Ω(G) to the unique point of contact with ∂C(G) of the largest horoball in
H3 centered at x with interior disjoint from ∂C(G), can easily be modified to a
G-equivariant homeomorphism. We denote two connected components of ∂C(G)
corresponding to Ω±(G) by ∂C±(G) respectively. Thus each component ∂C±(G)/G
is topologically a punctured torus. (In the special case in which G is Fuchsian,
∂C(G) is a flat plane whose two sides serve as a substitute for the two components
∂C±(G).)

∂C±(G)/G are pleated surfaces in H3/G. More precisely, there are complete
hyperbolic surfaces S±, each homeomorphic to S, and maps f± : S± → H3/G,
such that every point in S± is in the interior of some geodesic arc which is mapped
by f± to a geodesic arc in H3/G, and such that f± induce isomorphisms π1(S) →
G. Further, f± are isometries onto their images with the path metric induced
from H3 (cf. [17]). The bending or pleating locus of ∂C±(G)/G consists of those
points of S± contained in the interior of one and only one geodesic arc which is
mapped by f± to a geodesic arc in H3/G. For G non-Fuchsian, the pleating loci are
geodesic laminations, meaning that they are unions of pairwise disjoint simple closed
geodesics on S±. We denote these laminations by | pl±(q)|, and usually identify such
a lamination with its image under f± in H3/G. A geodesic lamination is called
rational if it consists entirely of closed leaves. We concentrate on the special case in
which at least one of the pleating loci is rational in this sense. Since the maximum
number of pairwise disjoint simple closed curves on a punctured torus is one, such
a lamination consists of a single simple closed geodesic and is therefore of the form
γp/q(q) for some p/q ∈ Q̂.

2.3.2. Rational pleating varieties and hyperbolic loci. Given p/q ∈ Q̂, we set

P±
p/q = {q ∈ QF : |pl±(q)| = γp/q(q)} and Pp/q = P+

p/q ∪ P−
p/q.

We call these sets the p/q-pleating varieties.

For any p/q ∈ Q̂, consider the trace TrWp/q of the special word Wp/q associated
to p/q defined in 2.2.2. For q ∈ R(π1(S)), we may consider the function Tp/q(q) =
TrWp/q(q) as a rational function on R(π1(S)). We define the hyperbolic locus of
Tp/q to be the set

Hp/q = {q ∈ R(π1(S)) : Tp/q(q) ∈ R, |Tp/q(q)| > 2}.

Then the next result is fundamental (cf. Proposition 22 in [5]).

Proposition 2.1. Pp/q ⊂ Hp/q. �
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3. The complex Fenchel-Nielsen coordinates of QF
3.1. The complex length of a loxodromic element. The complex translation
length λM ∈ C/2πiZ of M ∈ PSL(2,C) is given by the equation

(3.1) ±TrM = 2 coshλM/2,

where TrM is the trace of M and we choose the sign so that �λM ≥ 0.
The complex length is invariant under conjugation by Möbius transformations

and has the following geometric interpretation, provided M is not parabolic; let x
be a point on the axis AxM of M and let v̄ be a vector normal to AxM at x.
Then �λM is the hyperbolic distance between x and M(x) and 
λM is the angle
mod 2π between M(v̄) and the parallel transport of v̄ to M(x), measured facing the
attracting fixed point M+ of M . In particular, if M is loxodromic, then �λM > 0
and if M is purely hyperbolic, then in addition 
λM ∈ 2πZ.

For q ∈ QF and γ ∈ C(S), we denote the element in the group G(q) representing
γ by W (q). Because the trace is a conjugation invariant, the complex translation
length λW (q) depends only on q and is independent of the normalization of G(q).
We want to define the complex length λγ(q) = λW (q) as a holomorphic function on
QF with values in C, not C/2πiZ. To do this, we choose the branch that is real
valued on F . Since λγ �= 0 on QF , this choice uniquely determines a holomorphic
function λγ : QF → C. From now on, the term “complex length” will always refer
to this branch.

We remark that �λγ(q) is the hyperbolic length of γ in H3/G(q).

3.2. The complex Fenchel-Nielsen coordinates. The complex Fenchel-Nielsen
parameters were introduced in [9, 16] as a generalization to QF of the classical
Fenchel-Nielsen coordinates for Fuchsian groups. Here we briefly summarize the
main points as applied to the case of a punctured torus S.

Let G = 〈A,B〉 be a marked quasi-Fuchsian punctured torus group constructed
from a pair of marked generators α, β of π1(S) as described in 2.1. The complex
Fenchel-Nielsen coordinates (λA, τA,B) for G = 〈A,B〉 are obtained as follows; the
parameter λA ∈ C/2πiZ is the complex translation length of the generator A =
ρ(α), or equivalently the complex length λα. The twist parameter τA,B ∈ C/2πiZ
measures the complex shear when the axis AxB−1AB is identified with the axis
AxA by B. More precisely, if the common perpendicular δ to AxB−1AB and AxA
meets these axes in points Y,X respectively, then �τA,B is the signed distance from
X to B(Y ) and 
τA,B is the angle between δ and the parallel translate of B(δ)
along AxA to X, measured facing towards the attracting fixed point of A. The
conventions for measuring the signed distance and the angle are explained in more
detail in [4].

As shown in [15, 9, 4], given the parameters λA, τA,B, and fixed a normalization,
one can explicitly write down the matrix generators for a marked two generator
group G(λA, τA,B) ⊂ PSL(2,C) in which the commutator [A,B] is parabolic as
follows:

A =

(
cosh(λ2 ) cosh(λ2 ) + 1

cosh(λ2 )− 1 cosh(λ2 )

)
,

B =

(
cosh( τ2 ) coth(

λ
4 ) − sinh( τ2 )

− sinh( τ2 ) cosh( τ2 ) tanh(
λ
4 )

)
.
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This group may or may not be discrete. The matrix coefficients of G depend
holomorphically on the parameters. The construction thus defines a holomorphic
embedding of QF into a subset of C/2πiZ ×C/2πiZ, in which Fuchsian space F
is identified with the image of R2.

We want to lift this to an embedding into C2. In 3.1 we discussed how to lift
the length function λA on QF to a holomorphic function on C. We can similarly
lift the twist parameter τA,B by specifying that it will be real valued on F .

On F , the real valued parameters λA, τA,B reduce to the classical Fenchel-Nielsen
parameters lA, tA,B defined by the above construction with λA the hyperbolic trans-
lation length lA of A and τA,B the twist parameter tA,B .

3.3. Rational quakebends and pleated surfaces. Clearly, the complex Fenchel-
Nielsen coordinates can be made relative to any marking V,W of G. As described in
detail in section 5 of [4], for fixed λ ∈ R+ and τ ∈ C, the complex Fenchel-Nielsen
coordinates relative to V,W determines a pleated surface ψ : D → H3. We review
this process.

Write V for the set of all lifts of the simple closed curve γ corresponding to V to
D. Since γ is simple, V consists of a set of pairwise disjoint geodesics in D, namely
the axis of V and all of its conjugates under G(λ,�τ ). These axes in V partition
D into pieces Pi. The map ψ is defined in such a way that ψ is an isometry on
each axis in V and on each closed piece Pi. Let x, y ∈ D − V and let β be an
oriented geodesic from x to y. Let P0, P1, ..., Pk be the pieces cut in order by β,
that meet along axes α1, α2, ..., αk ∈ V . Orient αi so that, in D, Pi−1 lies to the
left of αi and Pi to the right. Let Xi = β ∩ αi and let v̄i, w̄i be tangent vectors
to ψ(Pi−1 ∩ β) and ψ(Pi ∩ β) at ψ(Xi), oriented in the direction inherited from
β, so that v̄i points out of ψ(Pi−1) and w̄i points into ψ(Pi). Let v̄′i, w̄

′
i be the

projections of v̄i, w̄i onto the directions orthogonal to the image of the bending axis
at ψ(Xi). Then 
τ is the angle from v̄′i to w̄′

i measured facing along ψ(αi). We
embed D in the hyperbolic ball model B3 of H3 as the equatorial plane such that
the origins in D and in B3 coincide. We arrange that the axes of V and WVW−1

in G(λ,�τ ) lie in the boundary of a piece P0 contained in D. We then choose ψ to
be the identity on P0. We set Dγ(λ, τ ) = ψ(D) for the image of the pleated surface
in B3. Then ψ induces the group isomorphism ψ∗ : G(λ,�τ ) → G(λ, τ ) satisfying
that ψ(g(z)) = ψ∗(g)(ψ(z)) for g ∈ G(λ,�τ ) and z ∈ D.

The next proposition explains the relation between ψ and the bending locus of
∂C−(G(q)) for q ∈ QF .

Proposition 3.1. For q ∈ QF , let (λ, τ ) be the complex Fenchel-Nielsen coordi-
nates relative to marked generators (V,W ) of G(q), and let γ be the simple closed
curve corresponding to V . Assume that V is purely hyperbolic and let ψ : D → H3

be the pleated surface defined above. Then ψ is a homeomorphism if and only if
| pl±(q)| = γ.

Proof. First suppose that ψ is a homeomorphism. Then the boundary of Dγ(λ, τ )
is Λ(G(q)). Dγ(λ, τ ) divides H3 into two domains; one of which is convex, hence
contains C(G(q)). Moreover, Dγ(λ, τ ) contains the axis of V and all of its conjugates
in G(q), and the complement of them consist of totally geodesic pieces. Therefore,
it is one of the components of ∂C(G(q)) (cf. section 7.1 in [4]).

Next suppose that | pl±(q)| = γ. Then ∂C±(G(q)) consists of the axis of V and
all of its conjugates in G(q), and totally geodesic pieces. The stabilizer subgroup
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of each totally geodesic piece is conjugate to the Fuchsian subgroup 〈V,WVW−1〉.
Therefore we can construct the pleated surface satisfying Dγ(λ, τ ) = ∂C±(G(q)),
which implies that ψ is a homeomorphism. �

3.4. Rational quakebend planes. Let (λV , τV,W ) ⊂ C2 be the complex Fenchel-
Nielsen coordinates relative to marked generators (V,W ) of G, and let γ be the
simple closed curve corresponding to V . Assume that V is purely hyperbolic and
let c be the hyperbolic length of γ in H3/G.

We denote the slice {(c, τ ) ∈ C2 |τ ∈ C} by Qγ,c and call it the rational quake-
bend plane.

Clearly, Qγ,c meets F along the earthquake path (cf. [5]). The quakebend pa-
rameter τ is a holomorphic coordinate on Qγ,c.

On Qγ,c, the quakebend parameter τ and TrW are related by

TrW = 2 coth(
c

2
) cosh(

τ

2
).

On Qγ,c, TrW is a holomorphic function of τ , branched at τ = 2πin (n ∈ Z) (see
figure 5.1 in [15]). When TrV is real, QF ∩Qγ,c is contained in the strip

{τ ∈ C | − πi < 
τ < πi}

from the argument in 3.3. TrW takes the right half strip

{τ ∈ C | �τ > 0, −πi < 
τ < πi}

conformally onto the right half plane C+ minus the interval (0, 2 coth( c2 )] where
the interval {τ ∈ C | �τ = 0, −1 < 
τ < 1} in the imaginary axis is folded at the
origin by TrW and its image is (0, 2 coth( c2 )]. We remark that QF ∩ Qγ,c is also
periodic under the action of the Dehn twist (A,B) 
→ (A,AnB), and symmetric
under the holomorphic involution τ 
→ −τ .

4. The linear slice Lc

4.1. Definition. For q ∈ R(π1(S)), a marked group G(q) = 〈A,B〉 modulo con-
jugation in PSL(2,C) is uniquely determined by TrA,TrB and TrAB. In fact,
ignoring marking, G(q) modulo conjugation in PSL(2,C) is determined only by
TrA and TrB (more precisely, the pair (TrA,TrB) determines a marked group
〈A,B〉 or 〈A,B−1〉 modulo conjugation in PSL(2,C)). As an application of the
Jorgensen’s theory on the combinatorial structure of the Ford domain of a punc-
tured torus group, there is an algorithm roughly answering whether G(q) is a geo-
metrically finite discrete group or not from the data (TrA,TrB) (cf. [1]). Especially
fixing TrA = c, then we can use this algorithm to draw the picture of

Dc = {TrB ∈ C+ | G(q) = 〈A,B〉 is a geometrically finite discrete group}.

We call this set the discrete locus. Let Qγ,c be the rational quakebend plane in the
complex Fenchel-Nielsen coordinates relative to the corresponding marked genera-
tors (A,B) of G where we assume that c = λA(q) is real. The linear slice Lc in
the right half plane C+, which is the image of QF ∩Qγ,c under TrB. Because QF
is open in C2 in complex Fenchel-Nielsen coordinates and TrB is an open map on
Qγ,c, Lc is open in C+. Then from the definition of Dc and Lc, Lc is a subset of
the interior of Dc.
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Proposition 4.1. The interior of Dc is equal to Lc.

Proof. It is enough to show that any point q0 of Dc, not contained in Lc is a
boundary point of Dc. First suppose that G(q0) is not a free group. Then some
word, say g(q0) is trivial in G(q0). Then applying the Jorgensen’s inequality for
the subgroup H(q0) generated by g and K = [A,B], we can see that if we take a
small neighborhood U of q0, for any point q of U except q0, H(q) is not discrete
which means that G(q) is also indiscrete. Therefore q0 is an isolated point of Dc.
Next, suppose that G(q0) is free, hence a geometrically finite non-quasi-Fuchsian
punctured torus group. Then it must be a cusp (cf. [13]). Hence there is some
word, say g(q) which is parabolic in G(q0). Since Tr g is a holomorphic function
of TrB, it is an open map; hence, there is a path in the TrB-plane starting from
q0 such that on this path, g is elliptic. Therefore, this path is outside of Dc. This
implies that q0 is a boundary point of Dc. �

From this result, we can see Lc as the interior Dc and study them experi-
mentally. Figures at the end of this paper, drawn by the second author, show
computer-generated linear slices revealing some global properties. The black region
corresponds to the discrete locus. In the first picture, TrA is fixed at 2 and TrB
ranges in the square of width 4 centered at TrB = 2 so that we see the familiar
picture of the Maskit slice. By setting TrA = 2.5, we get the second picture. In
Figures 2 and 3, the value of TrA is fixed at 8 and 100, respectively, while chang-
ing the ranges of TrB. The width of the squares are 16, 32, 128 and 128, 2560,
12800, respectively. We can clearly see the “rough self-similarity” of the pictures
between Figures 3 and 5 and between Figures 6 and 8, which we will discuss in
section 7.

4.2. Connected components of Lc.

Proposition 4.2. For any c > 0, Lc has a component containing an open interval
(2,+∞).

Proof. There exists a component in QF ∩ Qγ,c containing F ∩ Qγ,c the real line
which is periodic under the action of the Dehn twist B 
→ AnB and symmetric
under τ 
→ −τ (cf. [5, 15], see also [11]). Then its image under TrB is the required
component. �

This component is called the BM-slice in [5] and also called the λ-slice in [15]. In
this paper we call this component of Lc the standard component, and call the other
components the non-standard components if they exist. Because of the existence
of the standard component which contains the critical value of TrB, if there is a
non-standard component, it is a conformal image of a component of QF ∩ Qγ,c

under the map TrB. Therefore, we can consider that Lc describes the picture of
QF ∩Qγ,c. The next result shows that topologically every component is a disk.

Proposition 4.3. Each component of Lc is simply connected.

Proof. This is a consequence of a result of McMullen [11] that QF is disk convex
in R(π1(S)); that is, for any continuous map f : Δ → R(π1(S)) whose restriction
to the unit disk Δ is holomorphic, f(∂Δ) ⊂ QF implies f(Δ) ⊂ QF . �

Remark 4.4 (The Maskit slice). If we consider the limiting case where c = 0, we
can no longer consider the complex Fenchel-Nielsen coordinates. But by using TrB,



LINEAR SLICES OF THE QUASI-FUCHSIAN SPACE OF PUNCTURED TORI 97

we can realize the part of the boundary of QF defined by the condition that A is
parabolic. Then the standard component defined above corresponds to the so-called
Maskit slice M (cf. [3]).

5. Non-existence of non-standard components

5.1. Otal’s result.

Theorem 5.1. There is some positive constant c0 such that for any c satisfying
0 < c < c0, Lc coincides with the standard component.

This is an immediate consequence of the following result due to J. P. Otal [14].

Theorem 5.2 (cf. corollaire 9.1 in [14]). There exists a positive constant c0 such
that for a marked quasi-Fuchsian punctured torus group G(q) and V ∈ G(q) rep-
resenting a simple closed geodesic γ in H3/G(q), if V is purely hyperbolic and the
hyperbolic length λγ(q) of γ is less than c0, then γ is a bending locus of ∂C(G(q)).

Following the proof of proposition 9 in [14], we will give a proof of theorem 5.2
to estimate c0 in the next subsection 5.2.

Suppose that γ is not the bending locus of ∂C(G(q)). Then the pleated surface
ψ is not a homeomorphism by proposition 3.1. Let H be a Fuchsian subgroup
〈V,WVW−1〉 where (V,W ) is a marking of G(q). Denote the totally geodesic
plane whose boundary ∂D contains Λ(H) by D ⊂ H3. Let P be the convex hull of
Λ(H) in D ⊂ H3. Then g(P ) is the convex hull of Λ(gHg−1) in g(D) ⊂ H3. Now
we have a following claim.

Proposition 5.3. If the pleated surface ψ is not a homeomorphism, then there
exists g ∈ G(q) such that P and g(P ) intersect transversally in the axis of V .

To show this proposition, we need two lemmas.

Lemma 5.4. For g ∈ G(q), gHg−1 ∩H is a trivial or cyclic subgroup generated by
gV g−1. �

Lemma 5.5. For g ∈ G(q), Λ(gHg−1) ∩ Λ(H) is empty or has fixed points of
gV g−1.

Proof. H and gHg−1 are Fuchsian subgroups of a quasi-Fuchsian group G(q). From
a theorem of Suskind (see theorem 3.14 in [10]),

Λ(gHg−1) ∩ Λ(H) = Λ(gHg−1 ∩H).

Hence, it concludes the proof by using lemma 5.4. �

Now we can show proposition 5.3. Since we assume that ψ is not a homeo-
morphism, there exists g ∈ G such that the interior of P and the interior of g(P )
intersect transversally. Then from lemma 5.5, Λ(gHg−1) ∩ Λ(H) is empty. There-
fore, the axis of V cuts g(P ) transversally. �

Now we assume that c0 is smaller than the Margulis constant. Then the interior
of g(P ) cut the Margulis tube T with radius r along the axis of V transversally.
Hence now we have a geodesic disk Δ = T ∩ g(P ) on g(P ).
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Lemma 5.6. The hyperbolic area of Δ is bigger than 4π sinh2(r/2).

Proof. If g(P ) intersects the axis of V orthogonally, then Δ is a hyperbolic disk of

radius r; hence, the hyperbolic area of it is 4π sinh2(r/2). If g(P ) intersects the
axis of V non-orthogonally, then Δ contains a hyperbolic disk of radius r; hence,
the hyperbolic area of Δ is bigger than 4π sinh2(r/2). �

Now we can give a proof of theorem 5.2. By the Margulis lemma, Δ projects
into the image of g(P ) in H3/G(q) injectively, whereas the image of g(P ) in H3/G
has its hyperbolic area 2π since it is the isometric image of a punctured cylinder.
Therefore, if the hyperbolic length of γ in H3/G(q) is sufficiently small, we can

take a radius r of the Margulis tube T satisfying 4π sinh2(r/2) ≥ 2π, which is a
contradiction. This concludes the theorem. �

5.2. A lower bound of c0. Following [12], we have a formula of the radius of a
Margulis tube.

Proposition 5.7 (cf. theorem in section 3 of [12]). For q ∈ QF , assume that
V ∈ G(q) representing a simple closed geodesic γ in H3/G(q), which is purely

hyperbolic. If the hyperbolic length λγ of γ satisfies coshλγ <
√
2, then there is a

Margulis tube with radius r satisfying

sinh2(r) =
1

2

(√
3− 2 coshλγ

coshλγ − 1
− 1

)
.

�

The inequality 4π sinh2(r/2) ≥ 2π and the above formula give us a lower bound
of c0.

Corollary 5.8. cosh−1 48+5
√
2

49 ≈ 0.493 ≤ c0. �

6. Existence of non-standard components

Theorem 6.1. There is some positive constant c1 such that for any c satisfying
c > c1, Lc contains non-standard components.

To prove this theorem, we use the Earle slice E of punctured tori studied in [6, 8].
This idea is due to Raquel Diaz. We review notation of E (cf. [8]). The Earle slice
E of QF is the set of G(q) = 〈A,B〉 satisfying the following symmetry; there exists
an elliptic element of order 2 such that EAE = B. Then E is a holomorphic slice
of QF and considering the conformal structure of Ω+(G(q))/G(q), it is naturally
isomorphic to the Teichmüller space of punctured tori. Any element of E can be
represented by the following matrices in SL(2,C) of the form A = Ad, B = Bd, d ∈
C− {0}, where

Ad =

⎛
⎝ d2+1

d
d3

2d2+1

2d2+1
d d

⎞
⎠ , Bd =

⎛
⎝ d2+1

d − d3

2d2+1

− 2d2+1
d d

⎞
⎠ .

The complex parameter d gives a holomorphic embedding of E into the right half
plane C+ and we assume that E is embedded in C+. Then E contains the positive
real line R+ which is the Fuchsian locus E ∩F of E . Put C+

d′ = {d ∈ C+|� d > d′}.
To show theorem 6.1, we need lemmas.
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Lemma 6.2. There is a positive constant d0 such that for any d′ > d0, the hyper-
bolic locus H2/1 of T2/1(d) = TrW2/1(d) satisfies

(H2/1 −R+) ∩C+
d′ �= ∅.

Proof. We remark that W2/1 = A−2B. Then we can check our claim by direct
calculation. �

Lemma 6.3. There is a positive constant d1 such that the 2/1-pleating variety P2/1

satisfies

P2/1 ∩ E ⊂ C+ −C+
d1
.

Proof. In [8], it is shown that Pp/q ∩ E is equal to two components of Hp/q −R+

terminating to the unique critical point of TrWp/q on R+ (cf. theorem 5.1 in [8]).
Then we can check our claim by direct calculation. �

Lemma 6.4 (cf. [6]). There is a positive constant d2 such that

C+
d2

⊂ E .
�

Now we can prove theorem 6.1. There is a positive constant c1 such that for
any c > c1, there is d ∈ E such that the word A−2B is purely hyperbolic and
λW2/1

(d) = c, but d is not contained in P2/1. This concludes the theorem. �

Remark 6.5. To estimate c1, we need to know the size of the round disk contained
in E tangent to the boundary ∂E of E at the origin (see [6]).

Comparing with the results in sections 5 and 6, we have the following conjecture
supported by numerical experiences by the second author.

Conjecture 6.6. There exists a unique c0 such that Lc coincides with the stan-
dard component for any c ≤ c0, while Lc contains infinitely many non-standard
components for any c > c0.

7. Scaling property of Lc

In the final section we will study the self-similar phenomena of Lc which we can
observe from figures of Lc in this paper. First we remark that Lc has analytic
automorphisms coming from Dehn twists.

Proposition 7.1. (A,B) ∈ Lc implies (A,AnB) ∈ Lc for all n ∈ Z.

Proof. The automorphism of G defined by (A,B) 
→ (A,AnB) is a Dehn twist along
A which preserves QF and Qγ,c. �

The next result is easy to prove, but it induces the asymptotic self-similarity of
Lc.

Proposition 7.2.

lim
n→∞

TrAnB

TrAn−1B
= TrA ·

1 +
√
1− ( 2

TrA )2

2
,

which is the attractive fixed point of the map TrA− 1
z .
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Figure 1. Maskit slice (left) and TrA = 2.5 slice (right)

Figure 2. TrA = 8 linear slices with ranges 16 (left), 32 (center),
and 128 (right)

Figure 3. TrA = 100 linear slices with ranges 128 (left), 2560
(center), and 12800 (right)

Proof. The following trace identity is well known:

TrAnB = TrA · TrAn−1B − TrAn−2B.

Divide both sides by (TrA)n and put xn := TrAnB
(TrA)n . Then we have

xn = xn−1 −
1

(TrA)2
xn−2.
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Moreover, put yn := xn

xn−1
, then

yn = 1− 1

(TrA)2
1

yn−1
.

Finally, put zn := TrA · yn, then

zn = TrA− 1

zn−1
.

Since A is purely hyperbolic, the linear fractional transformation

w = TrA− 1

z

is also purely hyperbolic; hence, all points besides the repelling fixed point of A

converge to the attracting fixed point of A, TrA · 1+
√

1−( 2
TrA )2

2 . From the above

arguments, zn = TrAnB
TrAn−1B converges to this point. �

Corollary 7.3. Linear slice has an asymptotic scaling constant TrA· 1+
√

1−( 2
Tr A )2

2 .
�

Remark 7.4. When A tends to be parabolic,

lim
n→∞

TrAnB

TrAn−1B
= 1,

which relates to the fact that the Maskit slice is invariant under translations.

Remark 7.5. Even if A is loxodromic, Lc has this scaling property. Hence, we can
also see that figure 10 in [11] also has such scaling property.
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