
CONFORMAL GEOMETRY AND DYNAMICS
An Electronic Journal of the American Mathematical Society
Volume 16, Pages 103–123 (April 16, 2012)
S 1088-4173(2012)00238-X

INVARIANT RELATIONS

FOR THE BOWEN-SERIES TRANSFORM

VINCENT PIT

Abstract. Consider the Bowen-Series transform T associated with an even
corners fundamental domain of finite volume for some Fuchsian group Γ. We
prove a generic invariance result that abstracts Series’ orbit-equivalence theo-
rem to families of relations on the unit circle. Two applications of this result are
developed. We first prove that T satisfies a strong-orbit equivalence property,
which allows to identify its hyperbolic periodic orbits with primitive hyperbolic
conjugacy classes of Γ. Then, we show thanks to the invariance theorem that
the eigendistributions for the eigenvalue 1 of the transfer operator of T with
spectral parameter s ∈ C are in bijection with smooth bounded eigenfunctions
for the eigenvalue s(1− s) of the hyperbolic Laplacian on the quotient D/Γ.

1. Introduction

Let D be the Poincaré disk model for the hyperbolic space of constant curvature
−1, and let Γ be a Fuchsian group of finite covolume that admits a fundamental
domain D that is not a compact triangle. In the classical article [BS79], Bowen and
Series associated a transformation T mapping the unit circle S1 to itself (where S1

is seen as the boundary at the infinity of the hyperbolic space) with any such fun-
damental domain that satisfies the technical even corners property. This so-called
Bowen-Series transform has three important properties: it naturally preserves a
finite Markov partition of the circle in intervals (Ik), it acts in a piecewise man-
ner by a finite family of generators of Γ, and it is orbit-equivalent to the Fuchsian
group Γ.

Theorem 1.1 (Series). Let x, y ∈ S
1. Then

∃g ∈ Γ, y = g(x) ⇔ ∃p, q ≥ 0, T p(x) = T q(y).

This article aims to revisit this property and its consequences in the setting of
finite covolume Fuchsian groups.

The orbit-equivalence property translates the combinatorics given by the Markov
partition preserved by T to relations between points of S1. We will prove that
the arguments leading to this property can be extended to prove that families of
relations of S1 that satisfy some regularity and consistency conditions and that are
invariant under T are actually invariant under the whole group Γ. With a suitable
choice for the family of relations, this will show, in particular, that T satisfies a
strong orbit-equivalence property, in that the exponents p and q that appear in the
orbit-equivalence theorem can be chosen to be locally constant.

Received by the editors December 7, 2011.
2010 Mathematics Subject Classification. Primary 37D40; Secondary 37C30, 58C40.

c©2012 American Mathematical Society
Reverts to public domain 28 years from publication

103



104 VINCENT PIT

Theorem 4.2. Let γk[x] be the isometry by which acts the k-th iterate of the
Bowen-Series transform in a neighbourhood of x. For every x ∈ S1 and g ∈ Γ,
there exist p, q ≥ 0 such that

γp[x] = γq[g(x)]g.

This theorem will allow us to completely describe the periodic orbits of T by
mapping them exactly to conjugacy classes of isometries of Γ.

Theorem 5.3. There is a bijection between:

• the hyperbolic periodic orbits of T ,
• the conjugacy classes of primitive hyperbolic isometries of Γ.

The accuracy of the invariance theorem will ensure that we have a precise cor-
respondence where all hyperbolic isometries appear as periodic orbits of T .

The invariance theorem has a seemingly unrelated application to the spectral
theory of the transfer operator associated with the Bowen-Series transform T . For
any parameter s ∈ C, it is a linear operator that acts on the space E of functions
mapping S

1 to C whose restriction to every interval Ik of the Markov partition
preserved by T is continuously differentiable on some open neighbourhood of the
closure of Ik. It is given by

Ls : φ ∈ E �→

⎛
⎝y �→

∑
T (x)=y

φ(x)

|T ′(x)|s

⎞
⎠ .

Generalizing a result of Pollicott from [Pol91], we will show that the eigendistribu-
tions of Ls that are smooth enough are exactly the Helgason boundary values of
eigenfunctions of the Laplacian on the finite volume quotient D/Γ.

Theorem 6.6. For every s ∈ C such that 0 < �(s) ≤ 1, there is an isomorphism
between:

• the space of linear functionals ν that can be written as the weak derivative
of a �(s)-Hölder function and that satisfy

∀φ ∈ E, 〈ν,Lsφ〉 = 〈ν, φ〉,
• the space of smooth bounded Γ-invariant eigenfunctions of the hyperbolic
Laplacian in D for the eigenvalue s(1− s).

It is given by ν �→ (z �→ 〈ν, P s(z, .)〉) where P s(z, x) is the Poisson kernel.

2. Preliminaries

Let Γ be a Fuchsian group of finite covolume, and D a (finite volume) funda-
mental domain for its action on the hyperbolic space D.

We will denote by S the set of its sides and by V the set of its vertices in
D = D ∪ ∂D. We will always assume that D is a geodesically convex polygon. In
that case, since Γ is geometrically finite, n = card S = card V is finite. Every
side s ∈ S can be paired with another side t ∈ S by some isometry γs such that
γs(s) = t, γt(t) = s and γs = γ−1

t . Note that a side is allowed to be paired with
itself, in which case γs is an elliptic isometry of Γ of order 2 whose center is the
midpoint of the side s. Since D is convex, {γs | s ∈ S} generates Γ.

Pick v ∈ V . There are exactly two sides lv, rv ∈ S that contain v, where lv
(respectively, rv) is the left side (respectively, right side) of the fundamental domain
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at v. Put differently, the angle of the corner subtended by the fundamental domain
at v and going from rv to lv is non-negative. γrv will be commonly shortened as
γv.

There is exactly one other vertex l(v) ∈ V (respectively, r(v)) that lies on lv
(respectively, rv) and is different from v. Since the left (respectively, right) side at
v is the right (respectively, left) side as l(v) (respectively, r(v)), we have that

rl(v) = lv and lr(v) = rv.

This implies that the two applications r : V → V and l : V → V are permutations
of V that are inverse of each other, i.e. l = r−1. Moreover, γlv and γv can be
expressed as

γlv = γl(v) and γrv = γv = γr(v).

Since γv sends the endpoints of rv and lv onto endpoints of other sides of the
fundamental domain, the applications

σ : V → V
v �→ γv(v)

and
τ : V → V

v �→ γl(v)(v)

are well defined. Using the fact that γv and γlv are conformal and cannot map
D onto itself, it is easy to see that γv(rv) and γlv (lv), which are sides of D that
respectively go through σ(v) and τ (v), must be given by

(1) γv(rv) = lσ(v) and γlv (lv) = rτ(v).

Thanks to inverse relation for side-pairing isometries, this means that

γ−1
v = γlσ(v) and γ−1

lv
= γrτ(v).

Specializing the relation γlσ(v)γv = id on the vertex v, we get that σ and τ are

permutations of V that are inverse of each other, i.e. σ−1 = τ . Moreover, equation
(1) restricted to the vertex different from v gives that

τr = lσ.

σ being a permutation, we call pv the order of the vertex v ∈ V under the action
of σ. If v is an inner vertex (that is, v ∈ V ∩ D), we denote by qv the order of the
stabilizer of v in Γ. qv > 1 if and only if Γ contains a primitive (i.e. that are not a
non-trivial power of another isometry) elliptic isometry of center v and order qv.

We have already seen that the (γv)v∈V generates Γ. As for the relations of the
group, they are encoded in the σ-orbits:

Proposition 2.1. For every v ∈ V ∩ D,(
γσpv−1(v) . . . γv

)qv = id.

Proof. C =
{
v, . . . , σpv−1(v)

}
is a cycle of length pv on the boundary of D. If θ is

the sum of the angles subtended by D at each point of C, theorem 9.3.5 of [Bea83]
shows that qvθ = 2π. However, γ = γσpv−1(v) . . . γv fixes v and hence acts as a
rotation of center v and of angle θ. This means that γ is of order qv. �

For every v ∈ V ∩ D, define

Nv = {g geometrical geodesics | v ∈ g and ∃γ ∈ Γ, γ(g) ∈ S}
and let nv = card Nv and mv = 2nv. Since g ∈ Nv �→ γv(g) ∈ Nσ(v) is a bijection,
v �→ nv is constant on the σ-orbits.
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Figure 1. The permutations σ, τ , l and r

In order to properly define the Bowen-Series transform, we need to assume an
additional condition on the fundamental domain D, called the even corners condi-
tion: we require that no geodesic of any Nv crosses the interior of D. Note that
there are relatively few fundamental domains that satisfy this condition: theorem
9.4.5 from [Bea83] implies that for p ∈ D outside from a set of measure 0, the
Dirichlet domain of Γ based at p has exceptional cycles of length 3, which forbids
it from being even corners. However, given the signature of a Fuchsian group, it
is possible to find a group with this signature and a fundamental domain for this
group that satisfies the even corners condition. This construction is developed in
[BS79].

We label (a0v, . . . , a
mv−1
v ) the endpoints in S

1 of the geodesics of Nv, numbered
anticlockwise starting from the endpoint of lv directed from v towards l(v). With
this notation, lv (respectively, rv) directed from v to l(v) (respectively, r(v)) is
parameterized by (anv

v , a0v) (respectively, (a
nv−1
v , amv−1

v )). Thanks to the even cor-
ners condition, we know that the triangle (anv−1

v , v, anv
v ) is vertically opposite to

the fundamental domain at v, which ensures that

anv−1
v = a0r(v) and anv

v = a
ml(v)−1

l(v) .

Since γv is conformal, its action on the akv must preserve their ordering

γv(a
k
v) = ak+1

σ(v) and γv(a
k
r(v)) = ak−1

l(σ(v)).

When v is a cusp, we artificially set nv = 3 so that a1v = a2v = a3v = a4v = v. Note

that in this case the relation γv(a
k
v) = ak+1

σ(v) is not satisfied. With this convention,

the reunion A =
{
akv

∣∣ v ∈ V and k ∈ [[0 ; mv − 1]]
}
of all the endpoints is always a

finite set, even in the non-compact case.
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Figure 2. Endpoints akv around an inner vertex v

We will also need an additional condition on the fundamental domain to ensure
that these endpoints are correctly separated at the infinity.

Proposition 2.2. Suppose that D is not a compact triangle. Pick v ∈ V and let
w = r(v). Then

anw−1
w ∈

]
amv−2
v ; anw

w

]
.

Proof. If anw−1
w ∈

[
anv−1
v ; amv−2

v

]
and nw ≥ 3, then a1w ∈

[
anv−1
v ; amv−2

v

[
and

geodesics (v, amv−2
v ) and (w, a1w) must cross at some z ∈ D. In that case, the

compact triangle (v, w, z) is a copy of a fundamental domain, which is impossible.
The only possible alternative is nw = 2 and anw−1

w = amv−2
v , but that would

mean that D is a triangle with a cusp and right angles at v and w, which is also
impossible. �

We can now define the Bowen-Series transforms. Let

ILv =
]
anv
v ; a

nr(v)

r(v)

]
and IRv =

[
anv−1
v ; a

nr(v)−1

r(v)

[
.

Note that (ILv )v∈V and (IRv )v∈V are partitions of S1 in intervals. The left and right
Bowen-Series transforms are given by

TL : S
1 → S

1

x ∈ ILv �→ γv(x)
and

TR : S
1 → S

1

x ∈ IRv �→ γv(x).

Now, the only endpoints of A that lie in ILv (respectively, IRv ) are of the form akv
or akr(v), so A is stable under TL (respectively, TR). This means that the partition

(ILk ) (respectively, (I
R
k )) of S1 in intervals half-open on the left (respectively, right)

and delimited by the points of A is a Markov partition for TL (respectively, TR)

TL(I
L
j ) ∩ ILk �= ∅ ⇒ ILk ⊂ TL(I

L
j ) and TR(I

R
j ) ∩ IRk �= ∅ ⇒ IRk ⊂ TR(I

R
j ).

It is well known that TL and TR are eventually expansive at any point of S1 that
is not a cusp of the fundamental domain.

From this point, we will only focus on the right Bowen-Series transform, and
T, (Iv) will be used instead of TR, (I

R
v ). By symmetry, all the following results are

also true for the left Bowen-Series transform.
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3. Invariance theorem

Let I be the set of all right half-open intervals of S1, which is the image of all
intervals [a; b[ ⊂ [0; 2π[ by t �→ exp(it). Note that S1 ∈ I since S1 = exp(i [0; 2π[).
The group Γ naturally acts on the left on I by γ([a; b[) = [γ(a); γ(b)[.

Let Z be a set on which Γ also acts on the left, and F a map from I × Z onto
C. If I ∈ I and γ ∈ Γ, we say that F satisfies property I(I, γ) when

∀z ∈ Z, F (I, z) = F (γ(I), γ(z)).

The main theorem of this section states that if F satisfies the finite number of
properties I(Iv, γv) where (Iv, γv) are given by the Bowen-Series coding, as well
as some technical conditions, then it satisfies I(I, γ) for every I ∈ I and γ ∈ Γ.
This generalizes the orbit-equivalence property to invariance relations for F . In
the following, we will apply this theorem twice with suitable choices for Z and F :
first with Z = S1 × Γ for proving theorem 4.2, and later with Z being the space of
continuously differentiable functions on S

1 for the proof of theorem 6.6.

Theorem 3.1. Suppose that F : I× Z → C satisfies the four following properties:

(i) (Additivity for contiguous intervals): If I, J ∈ I are contiguous and disjoint,
then ∀z ∈ Z, F (I � J, z) = F (I, z) + F (J, z).

(ii) (Continuity): If (bn) is an increasing sequence of points in ]a; b[ that con-
verges towards b, then ∀z ∈ Z, lim

n→+∞
F ([a; bn[ , z) = F ([a; b[ , z).

(iii) (Inclusion): For every pair (I, γ) such that F satisfies I(I, γ), F also sat-
isfies I(J, γ) for all J ∈ I, J ⊂ I.

(iv) (Bowen-Series invariance): F satisfies I(Iv, γv) for every v ∈ V .

Then F satisfies I(I, γ) for every (I, γ).

When F satisfies properties (i), (ii) and (iii), we say that (F (., z))z∈Z is a family
of relations. These conditions do not imply that (F (., z))z∈Z is a family of measures
because they must satisfy the additivity property only for contiguous intervals and
not for generic disjoints intervals.

The sketch of the proof is as follows: the inclusion property ensures that we
only need to prove that F (S1, z) = F (S1, γ(z)) for every z and γ, but since (γv)v∈V

generates Γ it is actually sufficient to show that F (S1, z) = F (S1, γv(z)) for every
z and vertex v. By the additivity property, one way to get this relation is to find a
finite partition (Ii) of S

1 such that I(Ii, γv) is satisfied for every i. We then remark
that since γlσ(v) = γ−1

v ,

F (γlσ(v)(Ilσ(v)), γlσ(v)(z)) = F (Ilσ(v), z) = F (γvγ
−1
v (Ilσ(v)), γvγ

−1
v (z))

so property I(Ilσ(v), γlσ(v)) implies property I(γlσ(v)(Ilσ(v)), γv). It is then enough
to prove that I(I, γv) is true for the two intervals obtained when you remove Iv and
γlσ(v)(Ilσ(v)) from the circle, which is done by induction thanks to the continuity
and inclusion properties, but also to the group relations encoded at every inner
vertex of the fundamental domain.

Recall that Iv =
[
anv−1
v ; a

nr(v)−1

r(v)

[
for the (right) Bowen-Series coding. Let

Av =
[
anv−1
v ; anv

v

[
and Bv =

[
anv−2
v ; anv−1

v

[
, so that γl(v)(Av) = Bτ(v). Those

intervals Av and Bv are empty if and only if v is a cusp, and they fill the gaps left
by Iv and γlσ(v)(Ilσ(v)) in the sense that

S
1 = Iv � γlσ(v)(Ilσ(v)) �Bv � Ar(v).
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Av is an interval that faces the fundamental domain, to which two natural gen-
erators γv and γl(v) are associated. Since Av ⊂ Iv, and thanks to the inclusion
property, we already know that F satisfies I(Av, γv). We will start by proving that
F also satisfies I(Av, γl(v)) for every v ∈ V .

Let ν(v) = rσnv−1(v). This is a permutation of V : if rσnv−1(v) = rσnw−1(w),
then v = σnw−1−(nv−1)(w). This implies that v and w are then on the same σ-orbit,
so nv = nw and then v = w.

Denote by gv the product γσnv−2(v) . . . γv, so that gv(v) = lν(v). When v is not
a cusp,

(2) gv(a
nv
v ) = amv−1

σnv−1(v) = a
nν(v)

ν(v) and likewise gv(a
0
v) = a0ν(v).

Let κv be the smallest nonnegative integer k such that νk(v) is a vertex at the
infinity of the fundamental domain (or ∞ if there is no such k).

For all v ∈ V , we define by induction a sequence (xp
v)p≥0 of points of S1:

• If v is a cusp, then: ∀p ≥ 0, xp
v = v.

• If v is not a cusp, then x0
v = anv−1

v and ∀p ≥ 0, xp+1
v = g−1

v (xp
ν(v)).

Lemma 3.2. If p ≥ κv, then xp
v = anv

v .

Proof. Let p = q+κv with q ≥ 0. In order to make the notation easier to follow, let
κ = κv and vj = νj(v) for every nonnegative integer j. Since v = v0, v1, . . . , vκ−1

are inner vertices by minimality of κ, we can apply κ times the recurrence relation
to xp

v and

xp
v = xq+κ

v = g−1
v (xq+κ−1

v1 ) = . . . = g−1
v . . . g−1

vκ−1
(xq

vκ).

However, vκ is a cusp, so xq
vκ = vκ = a

nvκ
vκ and then xp

v = g−1
v . . . g−1

vκ−1
(a

nvκ
vκ ). Now

recall that vκ−1 = ν−1(vκ) is not a cusp, so relation (2) gives

xp
v = g−1

v . . . g−1
vκ−2

g−1
vκ−1

(a
nν(vκ−1)

ν(vκ−1)
) = g−1

v . . . g−1
vκ−2

(a
nvκ−1
vκ−1 ).

By repeating this argument for vκ−2, . . . , v1, we finally get that xp
v = anv

v . �

Lemma 3.3. If 1 ≤ p < κv, then xp
v ∈

]
xp−1
v ; anv

v

[
.

Proof. We prove this by induction over p ≥ 1. First, since κv > 1, v and ν(v) are
both inner vertices. Hence, proposition 2.2 gives that

x1
v = g−1

v

(
a
nν(v)−1

ν(v)

)
∈ g−1

v

( ]
amv−2
lν(v) ; a

nν(v)

ν(v) = amv−1
lν(v)

[ )
=

]
anv−1
v = x0

v; a
nv
v

[
.

Now take p such that 2 ≤ p < κv. Since 1 ≤ p − 1 < κv − 1 = κν(v), we get

xp−1
ν(v) ∈

]
xp−2
ν(v); a

nν(v)

ν(v)

[
by induction. However, v is not a cusp, so

xp
v = g−1

v (xp−1
ν(v)) ∈ g−1

v

( ]
xp−2
ν(v); a

nν(v)

ν(v) = amv−1
lν(v)

[ )
=

]
xp−1
v ; anv

v

[
. �

Lemma 3.4. lim
p→+∞

xp
v = anv

v .

Proof. If κv < ∞, the xp
v is stationary at anv

v as soon as p ≥ κv. In that case, the
(xp

v)p≥0 sequence does converge towards anv
v .

Now suppose that κv = ∞, i.e. νj(v) is not a cusp for every j ≥ 0. The previous
lemma shows then that (xp

v)p≥0 is an increasing sequence that stays in a non-trivial
interval

]
anv−1
v ; anv

v

[
of S1, hence it must converge to some ξv ∈

]
anv−1
v ; anv

v

]
. We

only have to prove that ξv = anv
v .
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Since ν is a permutation of V , there exists rv > 0 minimal such that νrv(v) = v.

Note Gv = gνrv−1 . . . gν(v)gv. Thanks to relation (2), gv(a
nv
v ) = a

nν(v)

ν(v) so we get by

induction Gv(a
nv
v ) = anv

v . Likewise, we can also see that Gv(a
0
v) = a0v. And since

gv(x
p+1
v ) = xp

ν(v), we have gv(ξv) = zν(v) when p goes to infinty; hence Gv(ξv) = ξv.

If ξv �= anv
v , Gv must fix three distinct points of S1, so it has to be the identity.

In that case Gv(x
0
v) = x0

v = anv−1
v , but on the other hand Gv(x

0
v) = xrv

v must lie
in

]
xrv−1
v ; anv

v

[
following lemma 3.3. This is impossible since this interval does not

contain anv−1
v . �

In a similar fashion, we define (ypτ(v))p≥0 = (γl(v)(x
p
v))p = (γ−1

τ(v)(x
p
v))p that

satisfies:

(a) y0v = anv−2
v ,

(b) ∀p ≥ κv, y
p
v = anv−1

v ,
(c) ∀p < κv, y

p
v ∈

]
yp−1
v ; anv−1

v

[
,

(d) lim
p→+∞

ypv = anv−1
v .

For every p ≥ 0, let Ap
v =

[
anv−1
v ;xp

v

[
and Bp

τ(v) = γl(v)(A
p
v) =

[
anv−2
τ(v) ; ypτ(v)

[
.

Lemma 3.5. ∀v ∈ V, ∀z ∈ Z, ∀p ≥ 0, F (Ap
v, z) = F (Bp

τ(v), γl(v)(z)).

Proof. We start by noting that additivity for contiguous intervals implies that

∀z ∈ Z, F (∅, z) = F (∅ � ∅, z) = F (∅, z) + F (∅, z).
Then F (∅, z) = 0 for every z ∈ Z. If v is a cusp, then Ap

v = Bp
τ(v) = ∅ for every p,

as τ (v) is also a cusp. We can now suppose that v is an inner vertex, and we will
prove the equality in that case by induction over p ≥ 0.

If p = 0, B0
τ(v) = ∅ = γl(v)(A

0
v) and the equality holds because F (∅, z) = 0.

Now suppose that the equality holds for some p ≥ 0 and for every z ∈ Z, v ∈ V .
Fix z ∈ Z. Since γσj−1(v) . . . γv(A

p+1
v ) ⊂ Iσj(v) for every 0 ≤ j ≤ nv − 2, the

inclusion property yields

F (γσj−1(v) . . . γv(A
p+1
v ), γσj−1(v) . . . γv(z)) = F (γσj(v) . . . γv(A

p+1
v ), γσj(v) . . . γv(z))

thus we get by transitivity that

F (Ap+1
v , z) = F (γσnv−2(v) . . . γv(A

p+1
v ), γσnv−2(v) . . . γv(z)) = F (gv(A

p+1
v ), gv(z)).

This last interval can be split in two

gv(A
p+1
v ) = gv(

[
anv−1
v ;xp+1

v

[
) =

[
amv−2
lν(v) ;xp

ν(v)

[
=

[
amv−2
lν(v) ; a

nν(v)−1

ν(v)

[
�Ap

ν(v).

Denote by Llν(v) this first interval; as it is contiguous to Ap
ν(v), we get by additivity

that
F (Ap+1

v , z) = F (Llν(v), gv(z)) + F (Ap
ν(v), gv(z)).

However, since Llν(v) ⊂ Ilν(v) on one hand, and by induction on the other hand,

F (Ap+1
v , z) = F (γlν(v)(Llν(v)), γlν(v)gv(z)) + F (γlν(v)(A

p
ν(v)), γlν(v)gv(z)).

We can now put those two contiguous intervals back together in

γlν(v)(Llν(v)) � γlν(v)(A
p
ν(v)) = γlν(v)gv(A

p+1
v ) = γσnv−1(v)gv(A

p+1
v )

and in the end we get

(3) F (Ap+1
v , z) = F (γσnv−1(v)gv(A

p+1
v ), γσnv−1(v)gv(z)).
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Figure 3. Scheme of the core of the induction

On the other hand, γlτj(v) . . . γlτ(v)(B
p+1
τ(v)) ⊂ Ilτj+1(v) for every 0 ≤ j ≤ nv − 2,

so the inclusion property gives that

F (γlτj(v) . . . γlτ(v)(B
p+1
τ(v)),γlτj(v) . . . γlτ(v)γl(v)(z))

= F (γlτj+1(v) . . . γlτ(v)(B
p+1
τ(v)), γlτj+1(v) . . . γlτ(v)γl(v)(z))
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whose first and last terms are

(4) F (Bp+1
τ(v), γl(v)(z)) = F (γlτnv−1(v) . . . γlτ(v)(B

p+1
τ(v)), γlτnv−1(v) . . . γlτ(v)γl(v)(z)).

However, since γlσ(v) = γ−1
v for any vertex v, γlτj(v) = γlσmv−j(v) = γ−1

σmv−j−1(v)

and

γlτnv−1(v) . . . γl(v) = γ−1
σnv (v) . . . γ

−1
σmv−1(v) = (γσmv−1(v) . . . γσnv (v))

−1.

The group relation encoded in the σ-orbit of v gives that γσmv−1(v) . . . γv = 1, so

γlτnv−1(v) . . . γl(v) = (γσmv−1(v) . . . γσnv (v))
−1 = γσnv−1(v) . . . γv = γσnv−1(v)gv.

Finally,

F (γlτnv−1(v) . . . γlτ(v)(B
p+1
τ(v)),γlτnv−1(v) . . . γlτ(v)γl(v)(z))

= F (γσnv−1(v)gv(A
p+1
v ), γσnv−1(v)gv(z))

which implies F (Ap+1
v , z) = F (Bp+1

τ(v), γl(v)(z)) thanks to relations (3) and (4). �

Lemma 3.6. If F satisfies I(Iv, γv) for every v, then it also satisfies I(Av, γl(v))
for every v,

∀v ∈ V, ∀z ∈ Z, F (Av, z) = F (Bτ(v), γl(v)(z)).

Proof. Since lim
p→+∞

xp
v = anv

v and lim
p→+∞

ypτ(v) = anv−1
τ(v) , the continuity property of

F ensures that for every v ∈ V and z ∈ Z,

F (Av, z) = lim
p→+∞

F (Ap
v, z) = lim

p→+∞
F (Bp

τ(v), γl(v)(z)) = F (Bτ(v), γl(v)(z)). �

Lemma 3.7. If F satisfies I(Iv, γv) for every v, then it also satisfies I(S1, γv) for
every v,

∀v ∈ V, ∀z ∈ Z, F (S1, z) = F (S1, γv(z)).

Proof. Fix z ∈ Z and v ∈ V . Recall that γlσ(v) = γ−1
v .

We can split S1 = Iv � cIv with cIv = γ−1
v (Ilσ(v)) � Bv � Ar(v), where all those

intervals are contiguous. By applying the additivity property, we get that

F (S1, z) = F (Iv, z) + F (γ−1
v (Ilσ(v)), z) + F (Bv, z) + F (Ar(v), z).

Likewise, S1 = Ilσ(v) � cIlσ(v) with
cIlσ(v) = γv(Iv) �Blσ(v) � Aσ(v), so

F (S1, γv(z)) = F (Ilσ(v), γv(z)) + F (γv(Iv),γv(z))

+ F (Blσ(v), γv(z)) + F (Aσ(v), γv(z)).

However, since F satisfies I(Ilσ(v), γlσ(v) = γ−1
v ) and I(Iv, γv),

F (Ilσ(v), γv(z)) = F (γ−1
v (Ilσ(v)), z),

F (γv(Iv), γv(z)) = F (Iv, z).

As for the two last terms, lemma 3.6 gives that

F (Blσ(v), γv(z)) = F (Aσlσ(v), z) = F (Ar(v), z),

F (Aσ(v), γv(z)) = F (Bτσ(v), γlσ(v)γv(z)) = F (Bv, z).

Hence F (S1, z) = F (S1, γv(z)). �
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We can now finish the proof of the theorem. By lemma 3.7, F satisfies I(S1, γv)
for every v. Since (γv)v∈V generates Γ, F also satisfies I(S1, γ) for every γ ∈ Γ.
The inclusion property finally gives that F satisfies I(I, γ) for every I ⊂ S

1, I ∈ I

and γ ∈ Γ.

4. Strong orbit-equivalence

Recall that T acts on each interval Iv by an isometry γv ∈ Γ. If x is some point
of S1 and k ≥ 0, we define by induction γk[x] ∈ Γ by{

γ0[x] = id,
γk+1[x] = γk[T (x)]γv whenever x ∈ Iv.

γk[x] is the element of Γ by which T k acts in a neighbourhood of x half-open on
the right. It is easy to check that it satisfies the following properties.

Lemma 4.1. If x ∈ S1 and p, q ≥ 0:

(i) γk[x](x) = T k(x);
(ii) γp+q[x] = γp[γq[x](x)]γq[x].

By applying the invariance theorem of the previous section with a suitable choice
for the space Z and the pairing function F , we will prove that T actually satisfies
a strong orbit-equivalence property, in that the elements of the group Γ that can
be read along the orbits of T satisfies themselves to the orbit-equivalence property.
This result appears as a brief remark in [Mor97].

Theorem 4.2. For every x ∈ S1 and g ∈ Γ, there exist p, q ≥ 0 such that

γp[x] = γq[g(x)]g.

If we specialize this relation in x, we get that T p(x) = T q(g(x)), which is the
very statement of Series’ theorem.

Note that this strong orbit-equivalence property is not directly implied by Series’
theorem, as the exponents p and q that appear in its statement depend not only on
g but also on the base point x. The strong orbit-equivalence property is actually
equivalent to saying that p and q can be chosen in Series’ theorem as being locally
constant on a half-open interval that contains x.

Lemma 4.3. Let x ∈ S
1 and h ∈ Γ. Then, for every g ∈ Γ,

(∃p, q ≥ 0, γp[x] = γq[h(x)]h) ⇔
(
∃p, q ≥ 0, γp[g(x)] = γq[h(x)]hg

−1
)
.

Proof. We equip Z = S1 × Γ with the left action of Γ given by

g � (x, h) = (g(x), hg−1).

For (x, h) ∈ Z and I ∈ I, we define

F (I, (x, h)) =

{
1 if x ∈ I and ∃p, q ≥ 0, γp[x] = γq[h(x)]h,

0 otherwise.

F clearly satisfies to the inclusion and additivity properties for contiguous inter-
vals. This is also the case for the continuity property because when (bn) goes to b
increasingly, x ∈ [a; b[ if and only if there is an N such that x ∈ [a; bn[ for every
n ≥ N . In order to apply theorem 3.1, we only have to check that

∀v ∈ V, F (γv(Iv), (γv(x), hγ
−1
v )) = F (Iv, (x, h)).
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First suppose that F (Iv, (x, h)) = 1, i.e. x ∈ Iv and there are p, q ≥ 0 such that

γp[x] = γq[h(x)]h. Let y = γv(x) = γ1[x](x) ∈ γv(Iv) and h̃ = γv � h = hγ−1
v , so

that h̃(y) = h(x). Then it comes

γp[y] = γp[γv(x)]γvγ
−1
v = γp+1[x]γ

−1
v

= γ1[γp[x](x)]γp[x]γ
−1
v

= γ1[γq[h(x)]h(x)]γq[h(x)]hγ
−1
v

= γq+1[h(x)]hγ
−1
v = γq+1[h̃(y)]h̃.

Thus we do have F (γv(Iv), γv � (x, h)) = F (γv(Iv), (y, h̃)) = 1.

Inversely, suppose that F (γv(Iv), γv � (x, h)) = F (γv(Iv), (y, h̃)) = 1, i.e. y lies

in γv(Iv) and there are p, q ≥ 0 such that γp[y] = γq[h̃(y)]h̃. Then x = γ−1
v (y) ∈ Iv,

h = h̃γv, h̃(y) = h(x) and

γp+1[x] = γp[γ1[x](x)]γ1[x] = γp[y]γv = γq[h̃(y)]h̃γv = γq[h(x)]h.

Hence F (Iv, (x, h)) = 1.
Theorem 3.1 then gives that F (S1, (x, h)) = F (S1, g � (x, h)) for every g and

(x, h). With noticing that (g � h)(g(x)) = hg−1g(x) = h(x), this gives exactly the
statement of the lemma. �

Now, as we always have γ0[x] = id = γ0[id(x)]id, this lemma shows that there
exist p, q ≥ 0 such that γp[g(x)] = γq[id(x)]idg

−1 = γq[x]g
−1. If we swap p and q,

we get the strong orbit-equivalence relation. The proof of the theorem is finished.
The orbit-equivalence property allows us to precisely describe the preimages

of periodic points. Let Per(T ) be the set of T -periodic points on the circle. If
y ∈ Per(T ), we denote by

T (y) =
{
x ∈ S

1
∣∣ ∃p ≥ 0, T p(x) = y

}
the set of its preimages. A preimage of a periodic point is called a pre-periodic
point.

Proposition 4.4. y ∈ Per(T ) if and only if T (y) = Γy. In that case, the preimages
of y are dense in S

1.

Proof. Let y ∈ Per(T ), and k > 0 its period. First, if x ∈ T (y), then y = T p(x)
for some p, hence x = γp[x]

−1(y) ∈ Γy. Inversely, if x = γ(y) with γ ∈ Γ, then by
Series’ orbit-equivalence theorem there exist p, q ≥ 0 such that T p(γ(y)) = T q(y).
Since p, q can be replaced by p+ 1, q+ 1, we can assume that k divides q, in which
case T q(y) = y. Then T p(γ(y)) = y and x = γ(y) ∈ T (y).

Now if T (y) = Γy, then T (y) = γ1[y](y) ∈ Γy is also a preimage of y: there is a
p ≥ 0 such that T p+1(y) = T p(T (y)) = y. Hence y ∈ Per(T ).

Finally, Γy = T (y) is a closed Γ-invariant non-empty subset of S1, so it must
contain the whole limit set, which is S1 for a group of finite covolume. �

5. Periodic orbits of T and conjugacy classes

of hyperbolic isometries

We will now use the strong orbit-equivalence theorem to prove that hyperbolic
periodic orbits of T are in bijection with conjugacy classes of primitive hyperbolic
isometries of Γ.
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Recall that Per(T ) is the set of T -periodic points. We can equip Per(T ) and Γ
with two equivalence relations

∀(x, y) ∈ Per(T )2, x ∼ y ⇔ ∃γ ∈ Γ, γ(x) = y,

∀(g, h) ∈ Γ2, g ∼ h ⇔ ∃γ ∈ Γ, γgγ−1 = h.

The equivalence classes for ∼ in Per(T ) are exactly the periodic orbits of T .

Lemma 5.1. Let x, y ∈ Per (T ). x ∼ y if and only if x and y are on the same
periodic orbit.

Proof. Suppose that x and y are T -periodic points, and that there exists a g ∈ Γ
such that g(x) = y. Since y is periodic, x = g−1(y) ∈ Γy is a pre-periodic point of
y; hence, by proposition 4.4 there is a p ≥ 0 such that T p(x) = y. As y is a forward
image of the periodic point x, they are on the same periodic orbit. Inversely, if
x and y are on the same periodic orbit, y = T p(x) = γp[x](x) for some p, where
γp[x] ∈ Γ. �

We then define

Φ : Per(T ) → Γ,
x �→ γp(x)[x] where p(x) > 0 is the period of x.

Φ is compatible with those relations.

Lemma 5.2. Let x, y ∈ Per (T ). If x ∼ y, then Φ(x) ∼ Φ(y).

Proof. If x, y ∈ Per (T ) are ∼-equivalent, then by lemma 5.1 they are on the same
orbit, so they share the same period k = p(x) = p(y) and there exists p ≥ 0 such
that y = T p(x). Denote by g = Φ(x) = γk[x] and h = Φ(y) = γk[y]. We get that

γp[x]g = γp[γk[x](x)]γk[x] = γp+k[x] = γk[γp[x](x)]γp[x] = γk[y]γp[x] = hγp[x].

Hence g and h are conjugated by γp[x] ∈ Γ. �

Let Per(T ) (respectively, Γ) be the set of equivalence classes for the relation ∼
in Per(T ) (respectively, Γ). Following lemma 5.1, Per(T ) can be identified with the
set of periodic orbits of T . Lemma 5.2 ensures that Φ induces a well-defined map
Φ : Per(T ) → Γ.

From all the periodic points of Per(T ), we denote by

Per(T )+ =
{
x ∈ Per(T )

∣∣ Φ(x) = γp(x)[x] is a hyperbolic isometry of Γ
}

the set of hyperbolic periodic points of T . Because T is expansive outside from
the cusps of the fundamental domain, and that cusps can only be fixed by para-
bolic isometries, the elements of Per(T )+ consist only of repulsive fixed points of
hyperbolic isometries.

Since any conjugate of a hyperbolic element is also hyperbolic, lemma 5.2 shows
that Per(T )+ is stable for the equivalence relation ∼ in Per(T ). This implies that

the set Per(T )+ of equivalence classes for ∼ in Per(T )+ is a well-defined subset of

Per(T ). It can be identified to the set of hyperbolic periodic orbits of the transfor-
mation T .

Denote by H(Γ) ⊂ Γ the set of hyperbolic primitive isometries of Γ. Likewise,
since g ∈ Γ is primitive and hyperbolic if and only if γgγ−1 is primitive and hy-
perbolic for every γ ∈ Γ, the equivalence classes for ∼ in H(Γ) coincide with the
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conjugacy classes in Γ. Hence H(Γ) is a well-defined subset of Γ composed of all
the conjugacy classes of hyperbolic primitive isometries of Γ.

We can now state the main theorem of this section.

Theorem 5.3. Suppose that Γ is a Fuchsian group of finite covolume that admits
an even corners fundamental domain D that is not a compact triangle, and let T
be the associated Bowen-Series transform. Then the map

Φ : Per (T )+ → H(Γ)

x �→ Φ(x)

is a bijection.

We shall first prove that Φ really maps to conjugacy classes of primitive elements.

Lemma 5.4. If x ∈ Per(T ), then Φ(x) is primitive.

Proof. Suppose that T k(x) = x where k = p(x) > 0 is the (minimal) period of x,
and that Φ(x) = γk[x] = gn with g primitive. Because T is eventually expansive,
γk[x] cannot be the identity, and neither can g. Since γk[x] fixes x and differs from
id, g must also fix x, and theorem 4.2 implies that there are p, q ≥ 0 such that
γp[x] = γq[x]g. Moreover, we must have p �= q since g �= id. At the cost of possibly
swapping p and q, changing g into g−1 (which is still primitive) and n into −n, we
can assume that p > q.

Let r = p− q > 0 and y = γq[x](x). Since we have

γr[y] = γp−q[γq[x](x)]γq[x]γq[x]
−1 = γp[x]γq[x]

−1 = γq[x]gγq[x]
−1.

γr[y] is primitive as a conjugate of g, and fixes γq[x](x) = y. Hence, y ∈ Per(T )
and y ∼ x, and lemma 5.1 implies that x and y are on the same T -orbit, which
means that the period of y is also k. As T r(y) = y, r must be a multiple of k; but
the fact that γr[y] is primitive implies that necessarily r = k. Thus,

γq[x]g = γr[y]γq[x] = γk[γq[x](x)]γq[x] = γk+q[x] = γq[γk[x](x)]γk[x] = γq[x]γ
n

and n = 1. �
As Φ(x) must be hyperbolic when x ∈ Per(T )+, this proves that Φ sends Per(T )+

into H(Γ). We shall now prove that Φ is injective on Per(T )+.

Lemma 5.5. Suppose that x, y ∈ Per (T )+ are such that Φ(x) = Φ(y). Then x = y.

Proof. Let g1 = Φ(x) and g2 = Φ(y). As Φ(x) = Φ(y), there exists some h ∈ Γ such
that g1 = h−1g2h. However, x is the repulsive fixed point of g1, so this conjugacy
relation implies that h(x) must be the repulsive fixed point of g2; y already plays
this role, so one must have y = h(x) and then x ∼ y. �

Finally, we only have left to prove that Φ is surjective.

Lemma 5.6. For every g ∈ H(Γ), there exists x ∈ Per (T )+ such that Φ(x) = g.

Proof. Let x be the repulsive fixed point of g. By theorem 4.2, one can find p, q ≥ 0
such that γp[x] = γq[x]g. Because g �= id, p �= q. We shall first prove that p > q.

Otherwise, r = q − p > 0, and if z = γp[x](x) we get

γp[x] = γq−p[γp[x](x)]γp[x]g = γr[z]γp[x]g

which means that γr[z] = hg−1h−1 with h = γp[x]. In particular, γr[z] fixes z and is
hyperbolic (as a conjugate of the hyperbolic isometry g−1), so z ∈ Per(T )+. Then
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z must be the repulsive fixed point of γr[z], and thanks to the conjugacy relation
this implies that h−1(z) = x must be the repulsive fixed point of g−1, but this
contradicts the fact that x is already repulsive for g.

We know then that r = p− q > 0. If z = γq[x](x), we get

γq[x]g = γp[x] = γp−q[γq[x](x)]γq[x] = γr[z]γq[x],

hence γr[z] = hgh−1 with h = γq[x]. We now see that γr[z] fixes z = h(x) and
is hyperbolic, so z ∈ Per(T )+. Moreover, the period of z must be r since γr[z] is
primitive as a conjugate of g primitive, which means that Φ(z) = γr[z] ∈ g. �

6. Eigendistributions of the transfer operator

As stated in the introduction, the transfer operator Ls associated with T is
defined for s ∈ C by

Ls : φ ∈ E �→

⎛
⎝y �→

∑
T (x)=y

φ(x)

|T ′(x)|s

⎞
⎠

with E being the space of functions

E =
{
φ : S1 → C

∣∣ ∀k, φ/Ik ∈ C1(Ik)
}

where (Ik) is the finite Markov partition preserved by T , and C1(I) denotes the space
of complex-valued functions defined on the interval I that are the restriction of a
continuously differentiable function defined on an open neighbourhood of I. Since
the set of all the endpoints of the intervals Ik is stable under T , and because the
action of the isometries on the boundary is smooth, this space is naturally preserved
by Ls. Note that the set of functions on S1 that are C1 on the neighbourhood of
every Iv (where (Iv) is the partition on which T is defined) is not stable under Ls.

In this section, we will study the eigendistributions of this operator for the
eigenvalue 1, i.e. the linear functionals ν acting on E that satisfies

∀φ ∈ E, 〈ν,Lsφ〉 = 〈ν, φ〉.

In [Pol91], Pollicott has shown that when the quotient D/Γ is compact, the
parameters s ∈ C such that the eigenspace of Ls for the eigenvalue 1 is non-null
are exactly the s for which there is a non-zero solution of Δf = s(1 − s)f that is
Γ-invariant, where Δ is the hyperbolic Laplacian in D. The proof uses the fact that
Ls can be seen in that case as a trace-class operator acting on the sum of spaces
of functions on S1 which are analytic on a fixed neighbourhood of each interval Ik.
The Fredholm determinant of Ls can then be related to the Selberg zeta function of
Γ. This argument no longer holds when Γ is cofinite because T may have indifferent
fixed points that prevent us from building such neighbourhoods.

First consider the bare hyperbolic space, without any Fuchsian group. We de-
note by Eλ the space of smooth eigenfunctions of the hyperbolic Laplacian for the
eigenvalue λ, Ee

λ those of which grow at most exponentially in the hyperbolic radius,
and D′(S1) the space of distributions over S1. Following [Hel81], we can associate
to every f ∈ Eλ with λ = s(1− s) two linear functionals Df,s and Df,1−s acting on
S
1 and named the Helgason boundary values of f . Moreover, if f ∈ Ee

λ, then Df,s

and Df,1−s are distributions over S1. The stunning point is that we can recover f
from its Helgason boundary value by testing it against the Poisson kernel P s(z, x).
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Theorem 6.1 (Helgason).

Ps : D′(S1) → Ee
s(1−s)

ν �→ z �→ 〈ν, P s(z, .)〉

is an isomorphism of Banach spaces, with inverse f �→ Df,s.

There are two ways for constructing the Helgason boundary values: the classical
approach decomposes f in a sum of spherical harmonics with coefficients (an)n∈Z

and define 〈Df,s, φ〉 =
∑

n∈Z
anφ̂(n) where φ̂(n) is the n-th Fourier coefficient of

φ. However, Otal also noted that this distribution can be written as the limit of
the integral of the Poisson bracket {f, P s} on circles with increasing radius, which
allows to translate the fact that f is invariant by some isometry γ in terms of Df,s.

We now choose some additional notation. Eb
λ will denote the space of smooth

bounded functions of Eλ, Λα will represent the space of α-Hölder functions over
[0; 2π[ that map 0 to 0, and Λ1

α will be the space of linear functionals ν than can be
written as weak derivatives of functions from Λα, i.e. such that there exists some
g ∈ Λα for which

∀φ ∈ C1(S1), φ̃(t) = φ(eit), 〈ν, φ〉 = φ̃(2π)g(2π)− φ̃(0)g(0)−
∫ 2π

0

φ̃′(t)g(t)dt.

Otal proved in [Ota98] that every Helgason boundary value of smooth bounded
eigenfunctions with spectral parameter s can be seen as the weak derivative of a
function of Λ�(s).

Theorem 6.2 (Otal). Suppose that 0 < �(s) ≤ 1. Then

Ps : Λ1
�(s) → Eb

s(1−s)

ν �→ z �→ 〈ν, P s(z, .)〉

is an isomorphism of Banach spaces, with inverse f �→ Df,s.
More precisely, if ν is the weak derivative of D ∈ Λα with �(s) ≤ α ≤ 1, and if

f = Ps(ν), then

∀z ∈ D, |f(z)| ≤ C(s)‖D‖αe−(α−�(s))d(0,z)

where C(s) is a constant that only depends on s and ‖D‖α is the α-Hölder norm
of D.

As a side note, this theorem’s estimate implies that the Helgason boundary
value associated with a smooth bounded Γ-invariant eigenfunction of the hyper-
bolic Laplacian for the spectral parameter s, 0 < �(s) < 1, is the derivative of a
continuous function that is exactly �(s)-Hölder, no more, no less.

Corollary 6.3. Suppose that 0 < �(s) < α ≤ 1. Let ν ∈ Λ1
α. If Ps(ν) is a smooth

bounded Γ-invariant eigenfunction of the Laplacian for the eigenvalue s(1−s), then
ν = 0.

Proof. Following Otal’s theorem, f(z) = Ps(ν)(z) uniformly converges to 0 when |z|
grows. Since Γ is non-elementary, it contains some non-trivial non-elliptic element
γ. Pick any w ∈ D. Then f(γn(w)) = f(w) for every n, where |γn(w)| is arbitrarily
large. As such, f(w) = lim

n→+∞
f(γn(w)) = 0. �
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We now suppose that 0 < �(s) ≤ 1. Denote by Df,s the �(s)-Hölder function

associated with Df,s. If φ ∈ C1(S1), by identifying φ with its lift φ̃, one can write

〈Df,s, φ〉 = φ(2π)Df,s(2π)− φ(0)Df,s(0)−
∫ 2π

0

∂φ

∂x
(x)Df,s(x)dx.

If I = [a; b[, this formula allows us to extend Df,s to C1(I) by

(5) ∀φ ∈ C1(I), 〈Df,s, φ�I〉 = φ(b)Df,s(b)− φ(a)Df,s(a)−
∫ b

a

∂φ

∂x
(x)Df,s(x)dx.

This new definition is compatible with the disjoint union of contiguous intervals, in
the sense that:

Proposition 6.4. If c ∈ I = [a; b[ and φ ∈ C1(I), then

〈Df,s, φ�I〉 = 〈Df,s, φ�[a;c[〉+ 〈Df,s, φ�[c;b[〉.
This ensures that we can extend Df,s to piecewise C1 functions over S

1 by lin-
earity. In particular, this distribution can be extended to the space E on which Ls

acts.
We now consider a Fuchsian group Γ such that D/Γ has finite volume and pos-

sesses an even corners fundamental domain D that is not a compact triangle. Propo-
sition 4 from [LT08] tells us how we can express the γ-invariance of f in terms of
its Helgason boundary value.

Proposition 6.5. If f ∈ Eb
s(1−s) satisfies f ◦ γ = f for some γ ∈ Γ, then

∀I ∈ I, ∀γ ∈ Γ, ∀φ ∈ C1(I),

〈
Df,s,

φ ◦ γ−1

|γ′ ◦ γ−1|s�γ(I)
〉

= 〈Df,s, φ�I〉.
Denote by Eb

λ(Γ) the space of functions of Eb
λ that are invariant under the action

of Γ. Any linear functional ν ∈ Λ1
�(s) can be extended to E thanks to relation (5).

The main result of this section states that eigendistributions of the transfer
operator for the eigenvalue 1 that lie in Λ1

�(s) are exactly Helgason boundary values

of smooth bounded eigenfunctions of the hyperbolic Laplacian on D/Γ.

Theorem 6.6. Suppose that Γ is a Fuchsian group of finite covolume that admits
an even corners fundamental domain D that is not a compact triangle. Ls is the
transfer operator with spectral paramater s ∈ C for the Bowen-Series transform
associated with D. For every s ∈ C such that 0 < �(s) ≤ 1, ν �→ Ps(ν) is an
isomorphism between:

• the space of linear functionals ν ∈ Λ1
�(s) that satisfy

∀φ ∈ E, 〈ν,Lsφ〉 = 〈ν, φ〉,
• the space Eb

s(1−s)(Γ) of smooth bounded Γ-invariant eigenfunctions of Δ for

the eigenvalue s(1− s).

The reverse implication is the easiest, and is actually the generalization to the
finite covolume case of proposition 7 from [LT08]. Let f ∈ Eb

s(1−s)(Γ) and ν = Df,s.

By theorem 6.2, ν ∈ Λ1
�(s) and proposition 6.5 gives us that

∀v ∈ V, ∀φ ∈ C1(Iv),

〈
Df,s,

φ ◦ γ−1
v

|γ′
v ◦ γ−1

v |s
�γv(Iv)

〉
= 〈Df,s, φ�Iv〉.
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Hence,

〈Df,s, φ〉 =
∑
v∈V

〈Df,s, φ�Iv〉 =
∑
v∈V

〈
Df,s,

φ ◦ γ−1
v

|γ′
v ◦ γ−1

v |s
�γv(Iv)

〉

=
∑
v∈V

〈Df,s,Ls(φ�Iv)〉 = 〈Df,s,Ls(φ)〉.

We will now prove the direct implication with the help of the invariance theorem.
Pick ν ∈ Λ1

�(s) and denote by f its image by Ps. We already know that f ∈ Eb
s(1−s),

so we only have to prove that f is Γ-invariant.
Let Z = C1(S1) equipped with the left action of Γ given by

∀γ ∈ Γ, ∀φ ∈ Z, γ.φ =
φ ◦ γ−1

|γ′ ◦ γ−1|s .

Note that if I is an interval of S1 and φ ∈ Z, then φ�I ∈ C1(I). Then we define

F : I× Z → C

(I, φ) �→ 〈ν, φ�I〉.
The condition I(I, γ) translates to

∀φ ∈ Z, 〈ν, φ�I〉 =
〈
ν,

φ ◦ γ−1

|γ′ ◦ γ−1|s�γ(I)
〉
.

Since γv is bijective, there is at most one preimage by T in each interval Iv, and
then

∀φ ∈ Z, 〈ν, φ�Iv〉 = 〈ν,Ls(φ�Iv)〉 =
〈
ν,

φ ◦ γ−1
v

|γ′
v ◦ γ−1

v |s
�γv(Iv)

〉
.

This means that I(Iv, γv) is satisfied for every v ∈ V . Moreover, using the fact
that ν is the weak derivative of a continuous function, it is easy to check that F
is continuous and additive for contiguous intervals. We shall now prove that F
satisfies the inclusion property. This is ensured by the following lemma.

Lemma 6.7. Let ν be the weak derivative of a continuous function g defined over
S1. Let I ∈ I be a half-open interval of S1 and γ ∈ Γ. Suppose that

∀φ ∈ Z,

〈
ν,

φ ◦ γ−1

|γ′ ◦ γ−1|s�γ(I)
〉

= 〈ν, φ�I〉.
Then, for every J ∈ I, J ⊂ I,

∀φ ∈ Z,

〈
ν,

φ ◦ γ−1

|γ′ ◦ γ−1|s�γ(J)
〉

= 〈ν, φ�J 〉.
Proof. Note I = [a; b[. For every φ ∈ C1(S1) and c, d ∈ I, c < d, we have on one
hand

〈ν, φ�[c;d[〉 = φ(d)g(d)− φ(c)g(c)−
∫ d

c

∂φ

∂x
(x)g(x)dx

and on the other hand〈
ν,

φ ◦ γ−1

|γ′ ◦ γ−1|s�γ[c;d[
〉

= φ(d)
g(γ(d))

γ′(d)s
− φ(c)

g(γ(c))

γ′(c)s

−
∫ γ(d)

γ(c)

∂

∂x

(
φ ◦ γ−1

(γ′ ◦ γ−1)s

)
(x)g(x)dx
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where this last integral can be rewritten as∫ γ(d)

γ(c)

∂

∂x

(
φ ◦ γ−1

(γ′ ◦ γ−1)s

)
(x)g(x)dx =

∫ d

c

γ′(x)
∂

∂x

(
φ ◦ γ−1

(γ′ ◦ γ−1)s

)
(γ(x))g(γ(x))dx

=

∫ d

c

∂

∂x

(
φ

γ′s

)
(x)g(γ(x))dx

=

∫ d

c

∂φ

∂x
(x)

g(γ(x))

γ′(x)s
dx

+

∫ d

c

φ(x)
∂

∂x

(
1

γ′s

)
(x)g(γ(x))dx.

Let δ(x) =
g(γ(x))

γ′(x)s
− g(x) and λ(x) =

∂

∂x

(
1

γ′(x)s

)
(x)g(γ(x)). Subtracting those

two relations, we can write〈
ν,

φ ◦ γ−1

|γ′ ◦ γ−1|s�γ[c;d[
〉
− 〈ν, φ�[c;d[〉

= φ(d)δ(d)− φ(c)δ(c)−
∫ d

c

∂φ

∂x
(x)δ(x)dx−

∫ d

c

φ(x)λ(x)dx.

We will now prove that δ is continuously differentiable over R. For c = a and
d = b, one gets that

φ(b)δ(b)− φ(a)δ(a)−
∫ b

a

∂φ

∂x
(x)δ(x)dx =

∫ b

a

φ(x)λ(x)dx.

Pick c ∈ ]a; b[ and ε > 0. One can construct an increasing function φε ∈ C1(I) such
that φε = 0 on [a; c− ε] and φε = 1 on [c; b]. If we specialize the previous relation
for this φε, we get for ε sufficiently small that

(6) δ(b)−
∫ c

c−ε

∂φε

∂x
(x)δ(x)dx =

∫ b

a

φε(x)λ(x)dx.

For every x ∈ [a; b] , lim
ε→0

φε(x) = �[c;b](x) hence, by Lebesgue’s dominated conver-

gence theorem, we get that

lim
ε→0

∫ b

a

φε(x)λ(x)dx =

∫ b

c

λ(x)dx.

On the other hand, since

∫ c

c−ε

∂φε

∂x
(x)dx = φε(c)− φε(c− ε) = 1 and

∂φε

∂x
(x) ≥ 0,

∣∣∣∣
∫ c

c−ε

∂φε

∂x
(x)δ(x)dx− δ(c)

∣∣∣∣ =
∣∣∣∣
∫ c

c−ε

∂φε

∂x
(x)(δ(x)− δ(c))dx

∣∣∣∣
≤

∫ c

c−ε

∂φε

∂x
(x)|δ(x)− δ(c)|dx.

If α > 0, then since δ is continuous (because g is continuous) there is ε0 > 0 such
that for every x that satisfies |x− c| < ε0, |δ(x)− δ(c)| < α. Now for any ε < ε0,∣∣∣∣

∫ c

c−ε

∂φε

∂x
(x)δ(x)dx− δ(c)

∣∣∣∣ ≤ α

∫ c

c−ε

∂φε

∂x
(x)dx = α.
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Hence, lim
ε→0

∫ c

c−ε

∂φε

∂x
(x)δ(x)dx = δ(c). Taking the limit in (6), one finally gets that

δ(b)− δ(c) =

∫ b

c

λ(x)dx.

Thus δ is C1 over I and: ∀x ∈ I, δ′(x) = λ(x).
Now we get back to our previous computation for c < d,

〈
ν,

φ ◦ γ−1

|γ′ ◦ γ−1|s�γ[c;d[
〉
− 〈ν, φ�[c;d[〉

= φ(d)δ(d)− φ(c)δ(c)−
∫ d

c

∂φ

∂x
(x)δ(x)dx−

∫ d

c

φ(x)
∂δ

∂x
(x)dx

= φ(d)δ(d)− φ(c)δ(c)−
∫ d

c

∂

∂x
(φδ) (x)dx = 0

which proves the lemma. �

F then satisfies all four hypotheses of the invariance theorem, which ensures that
I(S1, γ) is true for every γ ∈ Γ,

∀γ ∈ Γ, ∀φ ∈ Z, 〈ν, φ〉 =
〈
ν,

φ ◦ γ−1

|γ′ ◦ γ−1|s

〉
.

As P s(γ(z), x) =
P s(z, γ−1(x))

|γ′ ◦ γ−1(x)|s , this means for f = Ps(ν) that for every γ ∈ Γ,

f(γ(z)) = 〈ν, P s(γ(z), .)〉 =
〈
ν,

P s(z, γ−1(.))

|γ′ ◦ γ−1|s

〉
= 〈ν, P s(z, .)〉 = f(z).

Hence, f is Γ-invariant, and this concludes the proof of the theorem.
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