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SOME SPECTRAL APPLICATIONS

OF McMULLEN’S HAUSDORFF DIMENSION ALGORITHM

K. GITTINS, N. PEYERIMHOFF, M. STOICIU, AND D. WIROSOETISNO

Abstract. Using McMullen’s Hausdorff dimension algorithm, we study nu-
merically the dimension of the limit set of groups generated by reflections
along three geodesics on the hyperbolic plane. Varying these geodesics, we
found four minima in the two-dimensional parameter space, leading to a rig-
orous result why this must be so. Extending the algorithm to compute the
limit measure and its moments, we study orthogonal polynomials on the unit
circle associated with this measure. Several numerical observations on certain
coefficients related to these moments and on the zeros of the polynomials are
discussed.

1. Introduction

Curtis McMullen introduced in [12] a very efficient algorithm for the computa-
tion of the Hausdorff dimension of the limit set Λ∞ of general conformal dynam-
ical systems. Taking as our dynamical system a group Γ = Γg0,...,gk generated
by reflections along k + 1 geodesics in the Poincaré unit disk D, we study the
limit set Λ∞ ⊂ S1 = ∂D and the (unique) limit measure μ supported on it. In
this article, we study two spectral aspects of the group, its limit set and its limit
measure.

The first spectral aspect arises from the intimate connection between dimH(Λ∞)
on the one hand, and, on the other, the bottom of the spectrum of the Laplacian in
the infinite-area hyperbolic surface S, defined as the double cover of the quotient
D/Γ ([3], Ch. 14; [25]). In particular, we study the Hausdorff dimensionD(d0, d1, d2)
of a group Γg0,g1,g2 parameterised by three distances d0, d1 and d2 with d0+d1+d2 =
d. Despite our initial expectation that the global minimum of D is attained only
in the symmetric configuration d0 = d1 = d2 (centre of triangle in Figure 1),
numerical computations gave us three other points (open circles), where this global
minimum is attained. This can be explained via a particular symmetry in the
distance parameters, which we subsequently proved rigorously in Proposition 4.2.
Moreover, our numerical results suggest that D ≥ 1/2 whenever di = 0 for some
i and that the global maxima of D is attained when either di = d or di = dj =
d/2 (filled circles in Figure 1). The interplay between the group Γg0,g1,g2 and the
associated hyperbolic surface S is crucial to arrive at the spectral results. (See also
[1, 17] for further studies of Laplace eigenvalues on families of hyperbolic surfaces.)
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Figure 1. Four minima (open circles) and 6 maxima (filled cir-
cles) of D(d0, d1, d2). Barycentric coordinates subject to d0 + d1 +
d2 = d; see §4.2 for details.

The second spectral aspect arises in connection with a family of unitary matri-
ces called CMV matrices and orthogonal polynomials on the unit circle (OPUCs);
see [18, 19] for an encyclopaedic reference. As discovered by Cantero, Moral and
Velázquez [5], the multiplication operator f(z) �→ zf(z) is represented in a suitable
basis for L2(S1;μ) by a semi-infinite pentadiagonal matrix bearing their names
which can be regarded as the unitary analogue of a Jacobi matrix or a discrete
Schrödinger operator. The characteristic polynomial of the k × k simple trunca-
tion of this CMV matrix is a polynomial Φk(z) that forms an orthogonal set in
L2(S1;μ). As do their real counterparts, Φk(z) satisfy a recurrence relation (31),
whose complex coefficients αk are known as Verblunsky’s coefficients.

One example considered by McMullen in [12] is the case of three symmetric
geodesics g0, g1, g2 in D, dubbed the “symmetric pair of pants”. As the opening
angle θ of each geodesic varies from 0 to 2π/3, the limit measure μθ describes a
continuous transition from an atomic measure supported at three points to the
absolutely continuous Lebesgue measure on S1. Extending McMullen’s algorithm,
we computed (approximations to) the measure μθ and its associated moments.
These are then used to study the zeros of certain “paraorthogonal” polynomials
Φk(z;β), which are the k×k unitary truncations of the CMV matrix depending on
a parameter β. Among our numerical observations, we found that the Verblunsky
coefficients are all negative and are monotonic in θ (cf. Figure 8). We also observed
that the zeros of the paraorthogonal Φk(z;β) tend to cluster together near the gaps
of suppμθ and they are in some sense monotone in β (cf. Figure 10).

Finally, we note that a different algorithm for the calculation of the Hausdorff
dimension was introduced in [7]. Baragar [1] also described an algorithm for the cal-
culation of the Hausdorff dimension of three geodesics g0, g1, g2 with two distances
equal to zero, for which McMullen’s algorithm is not applicable.

The rest of this paper is structured as follows. For the reader’s convenience,
we first recall basic facts about hyperbolic reflection groups in §2.1 and describe
McMullen’s symmetric example in §2.2. Descriptions of McMullen’s Hausdorff di-
mension algorithm and its extension follow in Section 3. In Section 4, we prove a
symmetry property of the Hausdorff dimension D(d0, d1, d2) and present our nu-
merical computation of D. Section 5 describes our numerical observations related
to OPUCs and CMV matrices, after a brief review of the known theory.
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2. Hyperbolic reflection groups

2.1. Limit sets and limit measures. Let D = {z ∈ C : |z| < 1} denote the
Poincaré unit disk with its hyperbolic distance function d(·, ·) [2, §7.2]. Geodesics
are circular Euclidean arcs, meeting the boundary S1 = ∂D perpendicularly. Let
Cg denote the Euclidean circle representing the geodesic g, i.e. g = D ∩ Cg. Then
the hyperbolic reflection in g agrees with the restriction (to the unit disk) of the
Euclidean reflection in the circle Cg.

Let g0, . . . , gk be k+1 geodesics with corresponding Euclidean circles C0, . . . , Ck

and closed disks D0, . . . , Dk ⊂ C such that Cl = ∂Dl. We assume that the geodesics
are not nested, i.e. the disks D0, . . . , Dk are pairwise disjoint. To this setting, we
associate the discrete group Γ = Γg0,...,gk generated by the reflections ρl in the
geodesics gl. Γ acts on D by hyperbolic isometries. This action extends to the
boundary S1, and the limit set of Γ is given by Λ∞(Γ) = Γ · p ∩ S1 (which is
independent of p ∈ D). If we have at least three geodesics, the limit set Λ∞(Γ) ⊂ S1

has a Cantor-like structure. This can be seen as follows: We refer to the disks
D

(0)
l = Dl as the primitive cells or cells of generation zero. Let ρl be the Euclidean

reflection in Cl. The cells of generation one are given by ρs(D
(0)
l ) with s �= l. Every

primitive cell D
(0)
l contains k cells of generation one. The cells of generation two

are obtained by reflecting all cells of generation one in all primitive circles in which
they are not contained. Repeating this operation, we obtain successive generations
of cells and a nested structure, where every cell of generation n ≥ 1 has a unique
parent (of generation n − 1) and precisely k children (of generation n + 1). If
An denotes the union of all cells of generation n, we recover Λ∞(Γ) ⊂ S1 as the
intersection

⋂
n≥1 An.

A Γ-invariant conformal density of dimension δ ≥ 0 is a measure μ supported
on Λ∞(Γ) satisfying, for all γ ∈ Γ and all continuous functions f : S1 → C,

(1)

∫
S1

f(z) dμ =

∫
S1

f ◦ γ(z) |γ′(z)|δ dμ,

where γ′ denotes the ordinary derivative of γ : S1 → S1 with respect to the an-
gle metric in radians. This means that μ behaves like a δ-dimensional Hausdorff
measure.

Many properties of conformal densities can be derived from the following explicit
construction, due to Patterson [15] and Sullivan [23, 24]. Let Γ0 ⊂ Γ be the index-
2 subgroup of orientation-preserving isometries (compositions of an even number
of reflections) and let gs(x, y) =

∑
γ∈Γ0

e−sd(x,γy). Then there exists a critical

exponent δ(Γ), independent of x, y ∈ D, such that gs(x, y) is convergent for s > δ(Γ)
and divergent for s < δ(Γ). Since Γ0 is geometrically finite, gs(x, y) diverges also
at s = δ(Γ) [14, Thm. 9.31]. Let

(2) μs =
1

gs(y, y)

∑
γ∈Γ0

e−sd(x,γy)δγy,

where δz denotes the Dirac measure at z. By Helly’s theorem, there are weak limits
of μsj for certain sequences sj ↘ δ(Γ) and, due to the divergence at the critical

exponent, each such weak limit is supported on the boundary S1. For the following
results we refer to [14, Ch. 9] or to the original articles by Patterson and Sullivan.
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Theorem 2.1. Let Γ0 be the index-two subgroup of Γ = Γg1,...,gk , μs as defined in
(2), and δ(Γ) be the critical exponent. Then

(i) every weak limit of μs is supported on Λ∞(Γ);
(ii) every weak limit at x = 0 satisfies the transformation rule (1) and is there-

fore a Γ-invariant conformal density;
(iii) for x = y = 0, all weak limits are probability measures;
(iv) there is only one conformal density μ of dimension δ(Γ), up to scaling;
(v) the conformal density μ of dimension δ(Γ) has no point masses;
(vi) the critical exponent coincides with the Hausdorff dimension of Λ∞(Γ).

Henceforth, we refer to the unique conformal probability density μΓ of dimension
δ(Γ) as the limit measure of the hyperbolic reflection group Γ.
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Figure 2. The geodesics for SPP with θ = 110◦. The primitive
[red in the online version] geodesics are of the same size, as are
generation-1 [blue] ones, but not higher-generation [green] ones.
Note the 6-fold symmetry.

2.2. McMullen’s “Symmetric Pair of Pants”. We now introduce the “Sym-
metric Pairs of Pants” from [12]. This example, henceforth SPP, will be important
in Section 5 below. For θ ∈ (0, 2π/3), let g0, g1, g2 be three symmetrically placed
geodesics with end points e±iθ/2zj for j = 0, 1, 2, where zj = e2πi (2j+1)/6 [the
largest/red geodesics in Figure 2]. For brevity, we denote the corresponding re-
flection group by Γθ, and the corresponding limit set and limit measure by Λ∞(θ)
and μθ, respectively. It is clear from the construction that Γθ respects the 6-fold
symmetry generated by z �→ z̄ and z �→ e±2πi/3z. A graph of the corresponding
Hausdorff dimension θ �→ δ(Γθ) = dimH(Λ∞(θ)) can be found in [12, Figure 3]. The
family of limit measures {μθ}0<θ<2π/3 represents a continuous transition (via sin-

gular continuous measures) from the purely atomic measure μ0 := 1
3 (δz0 +δz1 +δz2)

to the Lebesgue probability measure μ2π/3 with dμ2π/3 := dφ/(2π).
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Proposition 2.2. Let θn, θ ∈ [0, 2π/3] and θn → θ. Then the limit measures μθn

converge weakly to μθ.

Proof. The weak convergence in the case θ = 0 follows from the symmetry of the

configuration and the fact that the primitive cells D
(0)
0 , D

(0)
1 , D

(0)
2 shrink to the

points z0, z1, z2, as θn → 0. For θ �= 0, the proof of [12, Thm. 3.1] implies not only
the continuity of the Hausdorff dimension, but also the weak convergence of the
limit measures [13, Thm. 1.4]. For θ = 2π/3, Γ0 is a finitely generated Fuchsian
group of the first kind. As noted at the end of [15], the corresponding limit measure
agrees with the normalized Lebesgue measure. �

3. McMullen’s algorithm

McMullen’s eigenvalue algorithm [12] provides a very effective numerical method
to compute the Hausdorff dimension of very general conformal dynamical systems.
For the reader’s convenience, we briefly recall this algorithm for the special case
of a hyperbolic reflection group Γ = Γg0,...,gk . The algorithm can be extended to
obtain arbitrarily good weak approximations of the limit measure μΓ by atomic
measures με

Γ, allowing us to obtain highly accurate values for the moments of μΓ.
This high precision is necessary to perform the numerical spectral analysis of the
CMV matrices in Section 5.

3.1. The algorithm. Let ε > 0 be given. We start with the primitive cells D
(0)
l

associated to the geodesics gl and the corresponding Euclidean reflections ρl in the

circles Cl. Next, we generate all cells of generation one, {D(1)
0 , D

(1)
1 , . . . , D

(1)
k(k+1)},

via ρs(D
(0)
l ) with s �= l [the 6 second-largest/blue geodesics in Figure 2]. At step

n+ 1, we start with a finite list of cells {D(n)
0 , D

(n)
1 , . . .} and build up a new list of

cells {D(n+1)
0 , D

(n+1)
1 , . . .} by the following procedure. If the radius of D

(n)
j is less

than ε, we put it back into the list and relabel it D
(n+1)
j′ ; otherwise, we replace it by

its k children D
(n+1)
j′ , . . . , D

(n+1)
j′+k−1 (i.e. the k cells of generation n+ 1 contained in

D
(n)
j ). Since the radius of every non-primitive cell is at most η < 1 times the radius

of its parent, we eventually obtain a list {D(N)
0 , . . . , D

(N)
M } of cells of generations

at most N and of radii less than ε. We note that every cell in this final list has a
parent of radius not less than ε.

Let z0, . . . , zM ∈ S1 be the radial projections of the centres of the Euclidean

disks D
(N)
0 , . . . , D

(N)
M to the unit circle. McMullen introduces the notation i �→ j if

D
(N)
j ⊂ ρk(D

(N)
i ), where k is the index of the primitive cell containing D

(N)
i , and

defines the sparse (M + 1)× (M + 1) matrix T with the entries

(3) Tij =

{
|ρ′k(ρk(zi))|−1 if i �→ j,

0 otherwise.

Let T d denote the matrix obtained by raising each entry of T to the power d ∈ R,
(T d)ij = T d

ij , and λ(A) denote the spectral radius of the matrix A. The underlying

dynamical system implies that T d is a primitive non-negative matrix, and we can
apply the Perron–Frobenius theorem. Note that λ(T d) can be effectively computed
via the power method.
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We note that the construction (and variables) above depend on the choice of ε >

0. To emphasize this dependency, we sometimes write, e.g., z
(ε)
l and M(ε) instead

of zl and M . Let dε be the unique positive number such that λ(T dε) = 1; note
that our dε is denoted αn in McMullen’s article, which here denotes the Verblunsky
coefficients in Section 5. Then [12, Thm. 2.2],

(4) lim
ε→0

dε = dimH(Λ∞(Γ)).

It is clear from the construction that the sample points zl and their weights
wl respect the 6-fold symmetry of Γθ, viz., if zl is a sample point with weight
(i.e. corresponding entry in the Perron–Frobenius eigenvector) wl, then so are zl,
e±2πi/3zl and e±2πi/3zl.

3.2. Approximations of the limit measures. Let w
(ε)
0 , . . . , w

(ε)
M , with M =

M(ε), be the entries of the Perron–Frobenius eigenvector of T dε , normalized so

that
∑

l w
(ε)
l = 1. All entries are positive and can be considered as approximations

of the values μΓ(S
1 ∩D

(N)
l ). In fact, we have the following:

Proposition 3.1. For every ε > 0, let

(5) μ
(ε)
Γ =

M(ε)∑
l=0

w
(ε)
l δ

z
(ε)
l

be the atomic measure supported on the points z
(ε)
l (obtained by McMullen’s algo-

rithm) with weights w
(ε)
l . Then the probability measures μ

(ε)
Γ converge weakly to the

limit measure μΓ as ε → 0.

Proof. Writing zl = z
(ε)
l and wl = w

(ε)
l for conciseness, first note that for zs in D

(0)
j ,

j ∈ {0, 1, 2}, the corresponding component of the Perron–Frobenius eigenvector
satisfies

(6) ws =
∑
l: l �→s

|ρ′j(zl)|dεwl

since |ρ′j(z)| = |ρ′j(ρj(z))|−1. By the uniqueness of the limit measure (Theo-

rem 2.1(iv)), we only need to show that every weak limit of μ
(ε)
Γ satisfies the

transformation property (1). It suffices to prove this for the generators ρl. We
discuss the case γ = ρ0.

Let δ > 0 and g ∈ C(S1) be given. Assume first that the intersection supp g∩D(0)
l

is non-trivial only for l = 0. Let d0 = dimH(Λ∞(Γ)). Since the set A1 =
⋃

l D
(1)
l has

a positive Euclidean distance to both the centre and the boundary of the primitive

cell D
(0)
0 , there exists a Cinv > 0 such that 1/Cinv ≤ |ρ′j(z)| ≤ Cinv for all z ∈ A1.

Using (4), there exists ε0 > 0 such that, for all z ∈ A1 and all ε < ε0,

(7)
∣∣|ρ′0(z)|dε − |ρ′0(z)|d0

∣∣ < δ

2 ‖g‖∞
.

Since g is uniformly continuous, there exists ε1 > 0, such that

(8) |g(z)− g(z′)| < δ

2
∀ |z − z′| < 2ε1.
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Let ε < min{ε0, ε1} be fixed. We conclude from (7) that

(9)

∣∣∣∣∫
S1

g(ρ0(z))|ρ′0(z)|d0 dμ
(ε)
Γ −

∫
S1

g(z) dμ
(ε)
Γ

∣∣∣∣
<

δ

2
+

∣∣∣∣ M∑
l=0

g(ρ0(zl))|ρ′0(zl)|dεwl −
∫
S1

g(z) dμ
(ε)
Γ

∣∣∣∣.
Let us assume that all cells D

(N)
l contained in the primitive cell D

(0)
0 are numbered

from D
(N)
0 to D

(N)
M0

; note that N and M0 both depend on ε. Since g(ρ0(zl)) �= 0 only

if l �→ j for some j ∈ {0, . . . ,M0}, because only then we have ρ0(zl) ∈ D
(N)
j ⊂ D

(0)
0 ,

we have

(10)

M∑
l=0

g(ρ0(zl)) |ρ′0(zl)|dε wl =

M0∑
j=0

∑
l: l �→j

g(ρ0(zl)) |ρ′0(zl)|dε wl .

Using the fact that μ
(ε)
Γ is an atomic measure and using (6), we have

(11)

∫
S1

g(z)dμ
(ε)
Γ =

M0∑
j=0

∑
l: l �→j

g(zj) |ρ′0(zl)|dεwl .

Putting these together and using (6) again for the first inequality,

(12)

∣∣∣∣∣
M∑
l=0

g(ρ0(zl))|ρ′0(zl)|dεwl −
∫
S1

g(z) dμ
(ε)
Γ

∣∣∣∣∣
=

∣∣∣∣∣∣
M0∑
j=0

∑
l: l �→j

{
g(ρ0(zl))− g(zj)

}
|ρ′0(zl)|dεwl

∣∣∣∣∣∣ ≤ δ

2

M0∑
j=0

wj ≤
δ

2
.

Combining (9) and (12), we obtain

(13)

∣∣∣∣∫
S1

g ◦ ρ0(z)|ρ′0(z)|d0 dμ
(ε)
Γ −

∫
S1

g(z) dμ
(ε)
Γ

∣∣∣∣ < δ.

Now assume that supp g ∩ D
(0)
0 = ∅. Then we obtain the same estimate (13),

by applying the above arguments to h(z) = g ◦ ρ0(z)|ρ′0(z)|d0 and using |ρ′0(z)| =
|ρ′0(ρ0(z))|−1. The general case is obtained by choosing a partition of unity χ1, χ2 ∈
C(S1) with supports disjoint to

⋃
l≥1D

(0)
l and D

(0)
0 , respectively. �

3.3. Moment computations for SPP. Given a probability measure μ on S1, we
have the Hilbert space L2(S1;μ) with inner product

(14) 〈f, g〉 :=
∫
S1

f(z)g(z) dμ.

Now let θ ∈ (0, 2π/3) be fixed and consider the limit measure μθ of SPP constructed
above. Associated to μθ and L2(S1;μθ) are its moments

(15) c
(θ)
k = 〈zk, 1〉 =

∫
S1

z−k dμθ.

The symmetries of the underlying classical system imply that c
(θ)
k = c

(θ)
−k ∈ R, and

that only every third moment is non-zero (cf. (18) below). These moments encap-
sulate much of the information contained in μθ, e.g., knowledge of them is sufficient
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to “quantize” the classical dynamics of hyperbolic reflections to the unitary CMV
matrices of Section 5.

We obtain approximations for the moments by computing the moments of the
atomic measure (cf. (5)),

(16) μ
(ε)
θ =

M(ε)∑
l=0

w
(ε)
l δ

z
(ε)
l

for small enough ε > 0. With ζ6 = e2πi/6 and recalling the 6-fold symmetry of

the points zl, we rewrite the points z
(ε)
l as ζ2j+1

6 e±iφ
(ε)
l with j ∈ {0, 1, 2}, 0 ≤ l ≤

M/6 = M(ε)/6 and

(17) 0 < φ
(ε)
0 < · · · < φ

(ε)
M/6 < θ/2.

For every fixed l, the Perron–Frobenius entries corresponding to the six points

ζ2j+1
6 e±iφ

(ε)
l agree, and we denote their value by m

(ε)
l > 0. Then the following

holds.

Proposition 3.2. The moments c
(θ)
s of the limit measure μθ of SPP satisfy

(18) c
(θ)
3j−1 = c

(θ)
3j+1 = 0

and

(19) c
(θ)
3j = (−1)j lim

ε→0

M/6∑
l=0

6m
(ε)
l cos

[
3jφ

(ε)
l

]
.

Proof. Let c
(θ,ε)
s denote the sth moment of the measure μ

(ε)
θ . For brevity, we write

ml = m
(ε)
l and φl = φ

(ε)
l . The 6-fold symmetry yields

c(θ,ε)s =

M/6∑
l=0

2ml

{
cos[(π/3 + φl)s] + cos[(π/3− φl)s] + (−1)s cos(sφl)

}
=

{
0 if s ≡ ±1 mod 3,

(−1)k
∑

l 6ml cos(sφl) if s ≡ 0 mod 3.
(20)

By Proposition 3.1, we have μ
(ε)
θ ⇀ μθ, finishing the proof. �

Figure 3 shows the numerically computed [6] moments for limit measures μθ of

different opening angles θ. For clarity, we actually plotted (−1)kc
(θ)
3k , corresponding

to the moments of μθ rotated by π [18, (1.6.63)]. For small θ, the moments c
(θ)
3j ap-

pear to oscillate with a higher frequency with an amplitude modulated by another
lower frequency. This is not unexpected since, for small θ, the cells of the second
generation are tiny. Since all points zl fall into these cells, the positions of the
second generation cells control the general oscillation behaviour of the moments.
As θ increases, the cells of every generation grow and the distances between succes-
sive cells of a given generation decreases, with higher-generation cells contributing
different frequencies to the graph of the moments. The graph seems to become
increasingly erratic.
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Figure 3. Numerically computed non-zero moments (−1)kc
(θ)
3k for

θ = 30◦, 50◦ (top row), 70◦ and 100◦ (bottom row). The horizontal
axis is k and ε = 10−10.

4. Least eigenvalue of hyperbolic surfaces

4.1. Spectrum of Sd0,d1,d2
and symmetries. Given three lengths d0, d1, d2 > 0,

there is (up to isometries) a unique genus-0 hyperbolic surface Sd0,d1,d2
of infinite

area with three cylindrical ends (funnels) whose short geodesics are of lengths 2d0,
2d1 and 2d2 (Figure 4(a)). Referring to Figure 4(b), this surface is the oriented dou-
ble cover of D/Γg0,g1,g2 , where dj is the hyperbolic distance between two geodesics.
The three geodesics gj , together with the geodesics realising the distances dj , define
a unique (up to isometries) hyperbolic right-angled hexagon. The three heights of
this hexagon are concurrent [4, Thm. 2.4.3], and we choose their intersection point
to be the origin of D. The angle ϕ and the hyperbolic length t in Figure 4(b) can be
obtained using trigonometric identities for trirectangles and pentagons [4, Ch. 2],
giving

(21)

cosϕ =
δ20 + δ0δ1δ2√

δ20 + δ21 + 2δ0δ1δ2
√
δ20 + δ22 + 2δ0δ1δ2

,

tanh t = δ0δ2

√
δ20 + δ21 + δ22 + 2δ0δ1δ2 − 1

(δ21 + δ20δ
2
2 + 2δ0δ1δ2)(δ20 + δ22 + 2δ0δ1δ2)

,

where δj = cosh dj . The Euclidean distance from the origin of D is x = tanh(t/2).
These results allow us to compute explicitly, for given distances d0, d1, d2, the three
primitive cells needed for McMullen’s algorithm.

Let D(d0, d1, d2) := Λ∞(Γg0,g1,g2) denote the Hausdorff dimension of the limit
set, and let λ0(Sd0,d1,d2

) be the bottom of the spectrum of the (positive) Laplace
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2d0 2d1

2d2

Sd0,d1,d2

(a)

g0

g1

g2

d0

d1

d2

ϕ

t

(b)

Figure 4. (a) The hyperbolic surface Sd0,d1,d2
. (b) The corre-

sponding hexagon with concurrent heights.

operator on the surface Sd0,d1,d2
. The following result is well known and relates the

above two functions. (The result holds generally for geometrically finite hyperbolic
manifolds of infinite volume.)

Theorem 4.1 ([25, Thm. 2.21]). We have, with the notions from above,

(22) λ0(Sd0,d1,d2
) =

{
1
4 if D = D(d0, d1, d2) ≤ 1

2 ,

D(1−D) if D = D(d0, d1, d2) ≥ 1
2 ,

and λ0(Sl0,l1,l2) < 1/4 is the eigenvalue of a positive L2-eigenfunction if and only
if D(d0, d1, d2) > 1/2.

The spectral interpretation of the Hausdorff dimension was extended by Patter-
son [16] (see also [3, Thm. 14.15]) to the case D = D(d0, d1, d2) < 1/2, in which
case D represents the location of the first resonance.

Fixing a total distance d > 0, we consider the function (d0, d1, d2) �→ D(d0, d1, d2)
with d0 + d1 + d2 = d. One might think that the point p0 = (d/3, d/3, d/3)
would be a unique global minimum of the Hausdorff dimension subject to this total
distance restriction (in fact, this was our initial guess). Numerical computations
showed, however, that the function D(d0, d1, d2) is more complicated and has, in
fact, precisely four global minima at p0 and at 3 other points,(2d

3
,
d

6
,
d

6

)
,
(d
6
,
2d

3
,
d

6

)
and

(d
6
,
d

6
,
2d

3

)
.

This observation lead to the following rigorous result:

Proposition 4.2. Let a, b > 0. Then we have

(23) D(2b, a, a) = D(2a, b, b).

We note that Proposition 4.2 shows that, for d > 0, the function t �→
D(t, d−t

2 , d−t
2 ) is symmetric with respect to d/2. In Figure 1, this means that

D is symmetric about the midpoint along the line AB.
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Proof. The hexagon with the three geodesics g0, g1, g2 with distances a, a, 2b is
shown in Figure 5(b). The configuration is obviously symmetric with respect to
the horizontal geodesic g3. Let ρj denote the hyperbolic reflection in gj and Dj

be the closed disk with gj = ∂Dj . Then Γg0,g1,g2 = 〈ρ0, ρ1, ρ2〉 =: Γ0, and a
fundamental domain of Γ0 is given by

(24) F0 = {z ∈ C : Re(z) > 0}\(D0 ∪D2).

The geodesic g4 in Figure 5(b) is the reflection of g2 in g1. Therefore, we have

for the corresponding reflection ρ4 = ρ1ρ2ρ1. A fundamental domain of Γ̂ =
〈ρ0, ρ1, ρ2, ρ3, ρ4〉 is

(25) F̂ = {z ∈ C : Re(z) > 0, Im(z) < 0}\D2.

Since F0 = F̂ ∪ ρ3(F̂) we have [Γ̂ : Γ0] = 2. The geodesics g2, g3, g4 in Fig-
ure 5(b) have distances b, b, 2a. Completely analogously, noting that Γg2,g3,g4 =
〈ρ2, ρ3, ρ4〉 =: Γ1 has

(26) F1 = {z ∈ C : Im(z) < 0}\(D2 ∪D4)

as a fundamental domain, we have ρ0 = ρ3ρ2ρ3, and F1 = F̂ ∪ρ1(F̂). This implies,

again, [Γ̂ : Γ1] = 2 and, therefore,

(27) dimHΛ∞(Γ0) = dimHΛ∞(Γ1) = dimHΛ∞(Γ̂).

D0

D2D4

D5

g0

g1

g2

g3

g4

g5

aa

aa

b

b

b

b

2a

2a

2b2b

4a

4b

(a) (b) (c)

α β

Figure 5. Surfaces: (a) S2a,b,b and (c) S2b,a,a. (b) The associated
domains in D.

�

Remark. The spectrum of a geometrically finite hyperbolic surface of infinite area
consists of an absolutely continuous part [1/4,∞) without embedded eigenvalues
and finitely many eigenvalues of finite multiplicity in the interval (0, 1/4); see [8, 9,
10, 11] or [3, Ch. 7].
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Assuming D(2a, b, b) > 1/2, we conclude from Theorem 4.1 and Proposition 4.2
that λ0(S2a,b,b) = λ0(S2b,a,a), i.e. S2a,b,b and S2b,a,a have the same lowest eigenvalue.
It is natural to ask whether these two surfaces are isospectral. We obtain S2b,a,a

from S2a,b,b by first cutting S2a,b,b along the geodesics α, β in Figure 5(a), unfolding
it onto D\(D0∪D2∪D4∪D5) =: DS in Figure 5(b), and then gluing the boundary
geodesics g0, g5 and g2, g4 together. Let ρj be the reflection along geodesic gj as
before, with ρ1, ρ3 also considered to act isometrically on S2a,b,b and S2b,a,a. Since
ρ1, ρ3 and the Laplacian Δ commute, we consider simultaneous eigenfunctions of
these operators on S2a,b,b. Let f be an L2-eigenfunction in S2a,b,b with eigenvalue
λ < 1/4 which is even under ρ1 and ρ3,

(28) Δf = λf with f ◦ ρ1 = f = f ◦ ρ3.

(At least one such f exists, with λ = λ0.) Now any such f ∈ C∞(S2a,b,b) can be

transplanted to f̃ ∈ C∞(DS). Thanks to the symmetry (28), f̃ along with all its

derivatives agree along the corresponding points on g0, g5 and g2, g4, so f̃ can in turn

be transplanted to an L2-eigenfunction f̂ ∈ C∞(S2b,a,a) with the same eigenvalue,

Δf̂ = λf̂ in S2b,a,a. One can carry out the same argument when f ◦ρ1 = −f = f ◦ρ3
in (28), assuming such an f exists. This argument shows that some eigenvalues of
these two surfaces coincide.

4.2. Example Sd0,d1,d2
with d0 + d1 + d2 = 3. Identifying the triple (d0, d1, d2)

with the point (d0 + d1e
2πi/3 + d2e

4πi/3) i/
√
3 ∈ R

2, we represent the domain of

D(d0, d1, d2) by an equilateral triangle T ⊂ R2 centred at 0 with heights
√
3/2; see

Figure 1. In Figure 6 we plot D(d0, d1, d2) restricted to d0+d1+d2 = 3, computed
using McMullen’s algorithm. When any dj is small (i.e. for points close to ∂T ), it
is difficult to compute D numerically using McMullen’s algorithm even with 256-
bit arithmetic; we have therefore left out the blank regions near ∂T (thick black
triangle on the plot).

We found the minimum of D to be D(1, 1, 1)
.
= 0.56996 · · · > 1/2, which as

noted above is also attained at three other points (2, 1/2, 1/2), . . .. We remark
that D is very flat for much of T (red region in the plot), only increasing rapidly
near ∂T (where our numerical computation breaks down). The four global minima
of D can also be seen in Figure 7, which shows the bottom of D at an expanded
vertical scale. In view of the apparent smoothness of the function D in Figure 7, it
is natural to ask whether there are explicit formulas for the gradient or the Hessian
of D. From the shape of the graph (the part reliably computed), we believe that
D attains its global maximum at the vertices and the midpoints of ∂T .

The value of D at these points can be computed using (23) and the results
of Baragar [1], who described an algorithm for the Hausdorff dimension of reflec-
tion groups Γg0,g1,g2 with two distances equal to zero. Our (d0, d1, d2) = (3, 0, 0)

corresponds to a = (1 + x)/(1 − x)
.
= 2.35240 . . . in [1] with x = tanh2(3/4). Us-

ing [1, Table 1], we obtain 0.225 < λ0(S3,0,0) < 0.226 and consequently 0.654 <
D(3, 0, 0) = D(0, 3/2, 3/2) < 0.659, which we believe bounds the global maximum
of D in T .

Remark. Our numerical computations indicate that the situation does not change
qualitatively when we choose a much larger total distance d (we also carried out
detailed calculations for the case d = 6 with the global minimum 0.334541 . . ., and
obtained graphs very similar to Figures 6 and 7). For any ε ∈ (0, ε0), there exists a
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0 1 2 3
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0.570

0.575
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0.585

0.590

0.595

0.600
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Figure 6. Graph of the function D(d0, d1, d2) restricted to d0 +
d1 + d2 = 3; bottom axis is d1 with d0 = 0.

Figure 7. The bottom part of D(d0, d1, d2); note scale.

total distance d = d(ε) such that the four global minima of D under the restriction
d0 + d1 + d2 = d agree with ε. Again, for a large part of T , the graph of D should
be relatively flat.



SPECTRAL APPLICATIONS OF McMULLEN’S ALGORITHM 197

It seems plausible and there is strong numerical evidence (although we do not
have a proof) that one has

(29) D(d0, d1, d2) ≤ D(d′0, d
′
1, d

′
2) if d′j ≤ dj for j = 0, 1, 2.

Assuming continuity of D up to the boundary ∂T , the graph must become very
steep close to the boundary, because McMullen’s asymptotic limc→∞ D(c, c, 0) =
1/2 [12, Thm. 3.6], together with the monotonicity property (29), imply that D
assumes values ≥ 1/2 at all boundary points ∂T : For (a, b, 0) ∈ ∂T with a > b > 0
we have

(30) D(a, b, 0) ≥ D(a, a, 0) ≥ lim
c→∞

D(c, c, 0) = 1/2.

5. OPUC and CMV matrices

5.1. Overview. We review briefly the properties of OPUCs and CMV matrices as
relevant to the current work, referring the reader to [18, 19, 20, 21] for more details.
As before, D ⊂ C denotes the open unit disk and S1 = ∂D. Given a probability
measure μ on S1, supported on an infinite set, and the inner product (14), let
{Φk(z;μ)}∞k=0 be a set of monic polynomials orthogonal with respect to μ (with
the usual convention that Φk(z;μ) = zk + lower-order terms); for brevity, we will
often write Φk(z) for Φk(z;μ) when there is no confusion. As do real orthogonal
polynomials, {Φk} satisfy a recurrence relation

(31) Φk+1(z) = zΦk(z)− ᾱkΦ
∗
k(z)

called Szegő’s recursion, where the Verblunsky coefficients αk can be shown to lie
in D. The reversed polynomial is

(32) Φ∗
k(z) := zkΦk(1/z̄)

or, with Φk(z) =
∑k

j=0 bjz
j ,

(33) Φ∗
k(z) =

∑k
j=0 b̄k−jz

j .

This implies that Φ∗
k(0) = 1 for all k and, together with (31),

(34) αk = −Φk+1(0).

In practice, one can compute {Φk}∞k=0 using Gram–Schmidt on {zk}∞k=0. We note
that {Φk} may or may not form a basis for L2(S1;μ); see [20, Thm. 2.2].

If, on the other hand, we apply Gram–Schmidt to {1, z, z−1, z2, z−2, . . .}, we
get orthonormal polynomials {χ0(z), χ1(z), χ2(z), . . .} which do form a basis for
L2(S1;μ). The CMV matrix associated to the measure μ is the matrix repre-
sentation of the operator f(z) → zf(z) on L2(S1;μ). It has the semi-infinite
pentadiagonal form,

(35) C =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ᾱ0 ᾱ1ρ0 ρ1ρ0 0 0 . . .
ρ0 −ᾱ1α0 −ρ1α0 0 0 . . .
0 ᾱ2ρ1 −ᾱ2α1 ᾱ3ρ2 ρ3ρ2 . . .
0 ρ2ρ1 −ρ2α1 −ᾱ3α2 −ρ3α2 . . .
0 0 0 ᾱ4ρ3 −ᾱ4α3 . . .
...

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where ρk =
√
1− |αk|2. We note that Jacobi matrices, obtained in a similar way

for orthogonal polynomials on the real line, are tridiagonal matrices. As in the case
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of orthogonal polynomials on the real line, an important connection between CMV
matrices and monic orthogonal polynomials is

(36) Φn(z) = det(zI − C(n))

where C(n) is the upper left n× n corner of C.
If |αn−1| = 1, C decouples between (n − 1) and n as C = C(n) ⊕ C̃, where the

upper left corner is an n× n unitary matrix C(n) = C(n)(α0, α1, . . . , αn−1) and the

remaining block C̃(αn, αn+1, . . .) is a semi-infinite CMV matrix. This suggests that
a unitary n× n truncation of a CMV matrix can be obtained by replacing αn ∈ D

by β ∈ ∂D. The truncated CMV matrix has as characteristic polynomial

(37) Φn(z;β) = zΦn−1(z)− βΦ∗
n−1(z)

whose zeros are all simple and lie on ∂D = S1, a fact which will be convenient
below. The polynomials Φn(z;β) are called paraorthogonal polynomials.

Given a set of moments ck(μ), we can recover its generating measure μ in the
classical limit as follows [18, Thm. 2.2.12]. Given β and k, let {zj}kj=1 ⊂ ∂D be the
zeros of Φk(z;β) and define the atomic measure

(38) ζ
(k)
β :=

k∑
j=1

1∑k−1
i=0 |ϕi(zj)|2

δzj

where ϕi(z) = Φi(z)/‖Φi‖, and ‖ · ‖ denotes the norm in L2(S1;μ). For any choice

of β1, β2, β3, · · · ∈ ∂D, ζ
(k)
βk

converges weakly to μ. The weight
(∑

i |ϕi(zj)|2
)−1

is

known as the Christoffel function [18, p. 117ff].

5.2. OPUCs for SPP. Let us now return to McMullen’s SPP. Using the moments

c
(θ)
k computed in Section 3.3, we used Gram–Schmidt to construct the orthogonal
polynomials Φk(z) = Φk(z;μθ) associated to the measure μθ, which for convenience
we rotate by π. Henceforth, by μθ we mean this rotated measure. Since all moments

are real and c
(θ)
3k−1 = c

(θ)
3k+1 = 0, the polynomials Φ3k(z) are, in fact, polynomials in

z3 with real coefficients, and Φ3k+1(z) = zΦ3k(z) and Φ3k+2(z) = z2Φ3k(z). It then
follows from (34) that the Verblunsky coefficients are all real with α3k = α3k+1 = 0
and α3k+2 ∈ (−1, 1); this also follows from the symmetries of μ and [18, (1.6.66)].

It is convenient to introduce monic polynomials qk(z
3) := Φ3k(z) with Verblun-

sky coefficients γk := α3k+2, in terms of which (31) reads

(39) qk+1(z) = zqk(z)− γkq
∗
k(z).

In analogy with (37), we define the paraorthogonal

(40) qk(z;β) = zqk−1(z)− βq∗k−1(z),

where we choose now β = ±1 depending on the sign of γk−1. Since qk(z
3;β) =

Φ3k(z;β), the zeros of qk(z;β) all lie on ∂D. Moreover, since qk has real coefficients,
its (non-real) zeros occur in complex conjugate pairs. For our numerical compu-
tations, we used qk exclusively in place of Φ3k. Since the OPUCs depend on the
underlying measure μ only through the moments cj , it is clear from the definition
(15) of the latter that {qk}∞k=0 are the OPUCs for a measure μ̃θ where

(41) dμ̃θ(φ) = 3 dμθ(φ/3)

for φ ∈ [−π/3, π/3).
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Having computed qk and γk = −qk+1(0), the accuracy of the numerical compu-
tation can be checked using (31), by ensuring that the error (which is zero for exact
computation)

Ek :=
∑

j |qk+1,j − qk,j−1 + γkqk,k−j |,
with qk,j the jth coefficient of qk (with qk,−1 = 0), remains small. We found that
high-precision arithmetic, both for the moments ck and the subsequent computa-
tions involving qk, are crucial to control the error. For θ = 119◦ and ε = 10−7,
computations using a 256-bit “quad-double” precision gives us k � 280.

5.3. Observations. We now present a few numerical observations on the spec-
tral properties of CMV matrices. In this section, we work exclusively with the
symmetry-reduced polynomials qk and the measure μ̃θ introduced above.

First, for every θ ∈ (0, 2π/3), the Verblunsky coefficients are all negative, γk < 0.
Seen in the light of the formula for Verblunsky coefficients for rotated measures [18,
(1.6.66)], for any measure μ,

(42) γk(μ
(α)) = e−iα(k+1) γk(μ)

where dμ(α)(φ) = dμ(φ− α), our observation means that μθ belongs to a family of
measures whose Verblunsky coefficients are, possibly after rotation, all negative. To
obtain paraorthogonal polynomials qk(z;β) corresponding to unitary truncations of
the CMV matrix, it is therefore natural to take β = −1 (but see the effect of the
choice of β at the end of this section).

-35

-30

-25

-20

-15

-10

-5

 0  20  40  60  80  100 θ

log(1 + γk)

Figure 8. Monotonicity of Verblunsky coefficients: Plot of
log(1 + γk) against θ for (from top) k = 1, 2, 4.

Secondly, for every k fixed, γk(μθ) increases monotonically from −1 to 0 as θ
goes from 0 to 2π/3. Figure 8 plots log(1+γk) for k = 1, 2 and 4 against θ, showing
the rapid convergence of γk to −1 as θ → 0.

In the course of our numerical computations, we found that small opening angles
θ only allow us to obtain a few polynomials qk reliably, while larger θ allows us to
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obtain more polynomials. Since the numerical instability of the Gram-Schmidt
orthogonalisation of the polynomials 1, z, z2, . . . is closely related to the numerical
singularity of the Toeplitz matrices

(43) T
(n+1)
θ = (c

(θ)
j−i)0≤i,j≤n = (〈zj , zi〉θ)0≤i,j≤n,

we expect that the determinant Dn(dμθ) := detT
(n+1)
θ decreases monotonically to

0 as θ → 0. In fact, this would follow from the monotonicity of the individual
Verblunsky coefficients by the identity [18, §1.3.2 and (2.1.1)]

(44) Dn(dμθ) =

n−1∏
j=0

(1− |γj(μθ)|2)n−j .

0

1

0 φπ

Figure 9. Solid (green) line: (classical) measure μ119, red dots

(overlapping the line): ζ(280), blue dots: idz(280).

In Figure 9, we present our numerical computations for θ = 119◦ with ε = 10−7

(size of the largest cell). The thin (green) line is the distribution function of the
classical measure μ̃119([0, φ]). As noted earlier, dμ̃θ tends to the Lebesgue measure
dφ/(2π) as θ → 120◦, but significant “gaps” (i.e. intervals I with μ̃(I) = 0) remain
even for θ = 119◦. Let zj be the zeros of the paraorthogonal q280(z;β=−1), ordered
from φ = 0 to 2π. The blue dots in Figure 9 plot the “integrated density of zeros”
measure

(45) idz(k) =
∑k

j=1

1

k
δzj ,

while the red dots plot the “Christoffel-corrected” measure ζ(280) defined in (38).
One can see that ζ(280) overlaps the classical measure μ̃119 to within plotting line
thickness. This agreement confirms the accuracy of our numerical computations.
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We note that one may find zeros in the spectral gaps S1\suppμθ, but with smaller
probability as k → ∞ and the Christoffel function at these “spurious” zeros is
small.

The idz plot also suggests that in the limit k → ∞, zeros appear to accumulate
at the gap edges, most visibly for the main gap centred at 0 = 2π and the secondary
gap starting at π. As noted above, there could be zeros inside the gaps; here they
are most visible near 2π/3 and 4π/3 (see also Figure 10 below). However, their
contribution to the measure ζ(k) is weighted down by the Christoffel function.

0

0 arg zkπ

π

argβ

Figure 10. Migration of zeros of q40(z;β) as a function of β for
θ = 119◦. Horizontal axis is arg zk and the vertical axis is arg β.
Each vertical “line” is in fact made up of 500 disjoint dots. Faint
(green) background is the approximate support of the classical
measure μ119.

In Figure 10, we plot, for θ = 119◦ and β ∈ S1, the migration of the zeros of
q40(z;β) as argβ varies from 0 to 2π, superimposed on the support of the classical
measure μ119 (since suppμ119 has Lebesgue measure zero, the “solid” background
arises only from plotting limitations). This plot confirms Theorem 1.1 in [22], which
states that any interval [a, b] �∈ suppμ, represented by a white background, contains
at most one zero of q(z;μ, β). It also confirms Theorem 1.3 in [22], stating that for
any β, β′ ∈ S1, the zeros of qk(z;β) and of qk(z;β

′) strictly interlace. The graph

also shows that each zero z
(β)
k is monotone in argβ and travels from z

(0)
k to z

(0)
k+1

as argβ increases from 0 to 2π.
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