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A FATOU TYPE THEOREM FOR COMPLEX MAP GERMS

LEONARDO CÂMARA AND BRUNO SCÁRDUA

Abstract. In this paper we prove a Fatou type theorem for complex map
germs. More precisely, we give (generic) conditions assuring the existence of
parabolic curves for complex map germs tangent to the identity, in terms of
existence of suitable formal separatrices. Such a map cannot have finite orbits.

1. Introduction

Let Diff(Cn, 0) denote the group of germs of holomorphic diffeomorphisms of Cn

fixing the origin and denote by Diff1(C
n, 0) the subgroup of Diff(Cn, 0) given by

those diffeomorphisms tangent to the identity. Such a map is also called flat. The
dynamics of flat germs of diffeomorphisms is now beginning to be understood in
dimension n ≥ 2. Let us recall some results in this direction. Given a flat germ
G ∈ Diff1(C

2, 0), write G = (G1, ..., Gn) ∈ Diff1(C
n, 0) with Gj = zj + Pj,νj

+ · · ·
expanded in a series of homogeneous polynomials, where Pj,k ≡ 0 or deg(Pj , k) = k
and Pj,νj

�≡ 0. Then one says that ν(G) = min{ν1, ..., νn} is the order of G. Let

G ∈ Diff1(C
2, 0), then one says that ϕ : Ω −→ Cn is a parabolic curve for G at the

origin if it is an injective holomorphic map satisfying the following properties:

(i) Ω ⊂ C is a simply connected domain with 0 ∈ ∂Ω;
(ii) ϕ is continuous at the origin and ϕ(0) = 0 ∈ Cn;
(iii) ϕ(Ω) is invariant under G and (G|ϕ(Ω))

◦(n) → 0 ∈ Cn as n → ∞.

Moreover, if [ϕ(ζ)] → [v] ∈ Pn−1 as ζ → 0 (where [·] denotes the canonical
projection of Cn\{O} onto Pn−1), we say that ϕ is tangent to [v] at the origin. A
characteristic direction for G is a vector [v] = [v1 : · · · : vn] ∈ Pn−1 such that there
is λ ∈ C satisfying Pj,νj

(G)(v1, · · · , vn) = λvj for j = 1, . . . , n. If λ �= 0, then [v] is
called non-degenerate; otherwise, it is called degenerate.

The existence of parabolic curves is studied by Écalle (see [9]) and Hakim (see
[11]) in connection with the existence of non-degenerate characteristic directions,
which in a certain sense corresponds to a generic condition.

A germ admitting a parabolic curve has some non-finite orbits. In this sense, the
next results are in the same framework of one-dimensional Camacho’s theorem (see
[5]) (see also Leau-Fatou theorem [8]), and apply to the characterization of germs
of foliations admitting holomorphic first integral. From this viewpoint, our current
work may be applied to correctly pursue the investigation started in [7].

The next results assure the existence of parabolic curves for germs of flat maps
with non-degenerate characteristic directions.
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Theorem 1.1 (Écalle [9] and Hakim [11]). Let G be a germ of a holomorphic
self-map of Cn fixing the origin and tangent to the identity. Then for every non-
degenerate characteristic direction [v] of G there are ν(G) − 1 parabolic curves
tangent to [v] at the origin.

Later on, Abate obtained the following result for a map with an isolated fixed
point.

Theorem 1.2 (Abate [1]). Let G ∈ Diff1(C
2, 0) and suppose that the origin is an

isolated fixed point for G. Then G admits at least ν(G)− 1 parabolic curves.

In [4], Brochero Mart́ınez, Cano and López-Hernanz showed that Abate’s theo-
rem can be obtained as a consequence of Theorem 1.1.

Now consider a germ of diffeomorphism G ∈ Diff1(C
2, 0) tangent to the identity

whose set of fixed points (denoted by Fix(G)) contains a smooth curve S. Under
this hypothesis Abate introduced an index for G at the origin with respect to this
smooth curve S as follows. Let S = {x1 = 0}, G(x) = (G1(x), G2(x)), and

k(x2) := lim
x1→0

G1(x)− x1

x1(G2(x)− x2)
,

thus ind0(G,S) := Resx2=0 k(x2)dx2, whenever defined. As a straightforward con-
sequence of the proof of Corollary 3.1 in [1] we have the following result.

Theorem 1.3 (Abate [1]). Let G ∈ Diff1(C
2, 0) and suppose S = Fix(G) is a

smooth curve through the origin such that ind0(G,S) /∈ Q+. Then G admits ν(G)−1
parabolic curves.

Recall that any map germ G ∈ Diff1(C
2, 0) can be uniquely written in the form

G(x) = x + �Go(x) where Go(x) is not divisible by the irreducible components
of � and Fix(G) = {� = 0} is the set of fixed points of G. If Go = P o

ν(Go) +

P o
ν(Go)+1 + · · · is the homogeneous decomposition of Go , i.e., where P o

ν are pairs

of homogeneous polynomials of degree ν ≥ 1, then one says that G has pure order
ν(Go). Furthermore, following [1], we may suppose that after a finite number of
blowups, ν(Go) = 1; in this case we say that G has pure order 1.

Recently, in [13], L. Molino obtained a result similar to Theorem 1.3 for maps of
pure order 1.

Theorem 1.4 (L. Molino [13]). Let G ∈ Diff1(C
2, 0) be a map of pure order 1 and

suppose S = Fix(G) is a smooth curve through the origin such that ind0(G,S) �= 0.
Then G admits ν(G)− 1 parabolic curves.

Let G(x) = x + Pν(x) + O(‖x‖ν+1
) where Pν(x) = (P1,ν(x), P2,ν(x)) �≡ 0 with

Pj,ν being a homogeneous polynomial of degree ν. Then we say that G is dicrit-
ical if x2P1,ν(x) − x1P2,ν(x) ≡ 0 and non-dicritical otherwise. The dynamics of
dicritical maps is studied in [3]. Nevertheless, for our purposes, it suffices to use
the relationship between parabolic curves and dicritical fixed points given by the
following result.

Theorem 1.5 (Abate [1]). Let G ∈ Diff1(C
2, 0) be a dicritical germ of a holomor-

phic map tangent to the identity, then G admits infinitely many parabolic curves.

In this article we develop the viewpoint introduced in [4] and study conditions
over the infinitesimal generator of G in order to determine the existence of parabolic
curves.
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Let G ∈ Diff1(C
2, 0) and Ĉ be an algebroid curve given by f̂ ∈ C[[x, y]] (see

Remarque 1.4, page 2 [16] for the precise definition). Then Ĉ is said to be invariant

by G whenever it induces an action in the ring C[[x, y]]/(f̂), i.e., if f̂ ◦ G ∈ (f̂),

the principal ideal generated by f̂ in C[[x, y]]. In this case Ĉ is said to be a formal

separatrix of G. The formal separatrix Ĉ is said to be purely formal if it does
not admit any analytic divisor. Moreover, Ĉ is said to be dynamically trivial with

respect to G, or also completely fixed by G, if the action of G on C[[x, y]]/(f̂) is given

by the identity. Equivalently, G can be written in the form G = Id+f̂ Ĝ1, where
Ĝ1 has as coordinate functions, elements in C[[x, y]]. The set of formal separatrices

completely fixed by G will be denoted by F̂ix(G).
Let G ∈ Diff1(C

2, 0), then after a finite number of blow ups, one has a germ of

morphism π : (M, D) −→ (C2, 0) such that the formal separatrices of G̃ := π∗G are

resolved and G̃ is locally written in the form G̃ = exp[1]� ·X̂0, where � ∈ O2 and the

first jet J1(X̂0) is reduced in the sense of [6]. The germ of morphism so obtained,
with the minimum number of blowing ups, is called the minimal resolution of G.

Further let Ĉ be an algebroid curve given by f̂ ∈ C[x, y], then denote by C̃ := π∗C

the algebroid curve given by
˜̂
f := π∗f̂ = f̂ ◦ π. Moreover, let Sing(C̃) ⊂ D be the

singular set of C̃. Our main result is the following:

Theorem A. Let G ∈ Diff1(C
2, 0) be a germ of a flat diffeomorphism admitting a

non-dynamically trivial formal separatrix Ĉ. Then G admits∑
p∈Sing(C̃)

(ν(G̃p)− 1)

parabolic curves tangent to the irreducible components of Ĉ.

Let G ∈ Diff1(C
2, 0) be of pure order one with S := Fix(G) smooth. Recall from

[4] that Abate’s residual index of G with respect to S at the origin coincides with the
Camacho-Sad index of its infinitesimal generator. Further, recall that generically
J1(Go) has two distinct eigenvalues, and thus is diagonalizable. Therefore, the
following is a generalization of Theorem 1.3.

Theorem B. Let G ∈ Diff1(C
2, 0) be a flat germ of a complex diffeomorphism and

suppose that:

(i) Fix(G) is smooth;
(ii) G is of pure order one;
(iii) J1(Go) is diagonal.

Then G has an irreducible purely formal (non-dynamically trivial) separatrix Ĉ.

In particular, G admits ν(G)− 1 parabolic curves tangent to Ĉ.

At this point some comments are worthwhile. First remark that the above result
gives an affirmative answer for the question of existence of parabolic curves for some
cases not dealt with by the results of Hakim, Abate and Molino (cf. e.g. Example
2.14). Anyway this is not a full generalization of Molino’s result because there
is G ∈ Diff(C2, 0) such that J1G0 is a Jordan cell type, G has a parabolic curve
and does not admit a non-dynamically trivial invariant algebroid curve (cf. e.g.
Example 3.1).

Regarding the main hypothesis in Theorem A, we observe that the existence of
a non-dynamically trivial invariant curve is generic in the class of flat map germs,
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in the natural topology induced by the convergence of the truncations in n-th jet
space for all non-negative integer n (cf. Definition 3.4, page 27 in [12], and [2],
page A.IV.25). Indeed, the non-existence of such a (non-dynamically trivial) curve
for a germ map G ∈ Diff(C2, 0) is equivalent to the fact that the sets Fix(G) and

Sep(X̂0) are the same, i.e., the set Fix(G) is the set of separatrices of the pure

infinitesimal generator X̂0 of G.

2. Maps with non-dynamically trivial formal separatrix

In this section we show how the presence of a non-dynamically trivial separatrix
for a flat map germ, induces the existence of a parabolic curve for this map. We
begin with an analysis of the relation between such curves and the infinitesimal
generator of the corresponding map.

2.1. Infinitesimal generators and fixed curves. Let X̂ ∈ X̂2(C
2, 0), then one

says that f̂ ∈ C[[x, y]] is a singular algebroid curve of X̂ if the last one can be

written in the form X̂ = f̂ X̂1. The set of singular algebroid curves of X̂ will be
denoted by ˆSing(X̂).

Let C[[z]]i denote the set of vectors of C[[z]] whose coordinates are homogeneous
polynomials of degree i (in the variable z = (z1, z2)). The subgroup of formal
diffeomorphisms of two variables tangent to the identity with order k is defined as

D̂iffk(C
2, 0) = {ĥ(z) = z + Pk(z) + · · · | ĥ ∈ D̂iff(C2, 0)}. Similarly, the group of

germs of holomorphic diffeomorphisms at the origin 0 ∈ C2 tangent to the identity

with order k is defined as Diffk(C
2, 0) = D̂iffk(C

2, 0)∩Diff(C2, 0). The Lie algebra of

formal vector fields of C2 of order k is defined by X̂k(C
2, 0) = {f̂1(z) ∂

∂z1
+ f̂2(z)

∂
∂z2

|

f̂1, f̂2 ∈
∞⊕
i=k

C[[z]]i}.

The following result is found in [12] and also in Proposition 2.1 in [3].

Proposition 2.1. The exponential map exp: X̂k(C
2, 0) → D̂iffk(C

2, 0) is a bijec-
tion.

In particular, for any flat map germ G ∈ Diff1(C
2, 0) there is a unique formal

vector field of order at least two, say X̂ ∈ X̂2(C
2, 0), such that G = exp[1] X̂. We

call X̂ the infinitesimal generator of G.

Lemma 2.2. Let G ∈ Diff1(C
2, 0) and X̂ ∈ X̂2(C

2, 0) be its infinitesimal generator.
Then

F̂ix(G) = ˆSing(X̂).

Proof. First let G = (x+p(x, y), y+q(x, y)) and X̂ = â(x, y) ∂
∂x+b̂(x, y) ∂

∂y . Suppose

X̂ = f̂ X̂1 with f̂ ∈ C[[x, y]] and X̂1 ∈ X̂(C2, 0). Since f̂ divides(f̂ X̂1)
◦j(h) for any

h ∈ O2, and

x+ p(x, y) = exp[1]f̂ X̂1(x) = x+ f̂ X̂1(x) +
1

2!
(f̂ X̂1)

◦2(x) + · · · ,

y + q(x, y) = exp[1]f̂ X̂1(y) = y + f̂ X̂1(y) +
1

2!
(f̂ X̂1)

◦2(y) + · · · ,
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then f̂ divides both p and q. Conversely, suppose that f̂ divides p and q, then the
formal logarithm formula (cf. e.g. equation (3.10), p. 34 in [12]) says that

X̂ = lnG = (G− Id)− 1

2
(G− Id)2 +

1

3
(G− Id)3 ∓ · · · ,

where Id is the identity map. The result thus follows immediately. �

The set F̂ix(G) can be characterized as follows.

Proposition 2.3. Let G ∈ Diff1(C
2, 0) and f̂ ∈ F̂ix(G), then f̂ can be written in

the form f̂ = û · f where f ∈ O2 and û ∈ C[[x, y]] is a unity. In particular, if X̂ is
the infinitesimal generator of G, then it can be written in the form

X̂ = � · X̂o

where � ∈ O2 and the coefficients of X̂o are relatively prime (in C[[x, y]]).

Proof. Let G(x, y) = (x + p(x, y), y + q(x, y)) and f̂ ∈ F̂ix(G), then f̂ divides
(G − Id)(x, y) = (p(x, y), q(x, y)). Since C[[x, y]] and O2 are unique factorization
domains, and since g ∈ O2 is irreducible in O2 if and only if it is irreducible in

C[[x, y]], then f̂ must be written in the form f̂ = û · f where û ∈ C[[x, y]] is a
unity and f ∈ O2 is a common divisor of p, q ∈ O2. From Lemma 2.2 one has that
F̂ix(G) = ˆSing(X̂); the result follows immediately. �

The writing f̂ = û · f is not unique, but if we also have f̂ = û1 · f1 with û1 a

formal unity and f̂1 ∈ O2, then we have û = v · û1, f1 = v ·f for some (holomorphic)
unity v ∈ O2.

The previous result, although of a simple nature, has two important conse-
quences. The first is that any element of F̂ix(G) has in fact an analytic realization

as the zero set of f (where f̂ = ûf). The second one is that the resolution of G can

be obtained automatically from the formal version of Seidenberg’s resolution of X̂o

(as in the resolution of holomorphic foliations in (C2, 0)), since G = exp[1]� · X̂o.

From now on we shall refer to X̂o as the pure infinitesimal generator of G.
Let Sing(X̂) := ˆSing(X̂)∩O2, then one has the following straightforward conse-

quence (whose first part is stated without proof in [4]).

Corollary 2.4. Let G ∈ Diff1(C
2, 0) and X̂ ∈ X̂2(C

2, 0) be its infinitesimal gener-

ator, then Fix(G) = Sing(X̂). In particular, each purely formal separatrix of G is
automatically non-dynamically trivial.

2.2. Infinitesimal generators and characteristic directions. In this para-
graph we show how to detect the characteristic directions of a flat map germ in its
infinitesimal generator. The first step is the following result stated in [4].

Lemma 2.5. Let G ∈ Diff1(C
2, 0) and X̂ ∈ X̂2(C

2, 0) be its infinitesimal generator.

Then ν := ord(G) = ord(X̂) and

G = Id+X̂ mod{xiyν−i : i = 0, . . . , ν}.

In particular, the characteristic directions of G correspond to the points of the
tangent cone of X̂.
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Proof. Let G(x, y) = (x+
∑∞

n=2 pn(x, y), y +
∑∞

n=2 qn(x, y)) and

X̂ =

∞∑
n=2

(
ân(x, y)

∂

∂x
+ b̂n(x, y)

∂

∂y

)

be the homogeneous expansions of G and X̂ respectively. Since G = exp[1]X̂, then

(2.1)

⎧⎨
⎩ pm+1 = âm+1 +HTm+1

(∑m
j=2

1
j!X̂

◦j
m (x)

)
,

qm+1 = b̂m+1 +HTm+1

(∑m
j=2

1
j!X̂

◦j
m (y)

)
,

where X̂m =
∑m

n=2

(
ân(x, y)

∂
∂x + b̂n(x, y)

∂
∂y

)
and HTm+1(h) is the homogeneous

term of h of order m+1. Clearly, ν := ord(G) = ord(X̂), pν = âν and qν = âν . �

The above result supports the following definition. Let X̂ ∈ X̂2(C
2, 0) be given

by X̂(x, y) = â(x, y) ∂
∂x + b̂(x, y) ∂

∂y , where â =
∑

j≥ν âj , b̂ =
∑

j≥ν b̂j are the

expansions in terms of homogeneous polynomials and let Pν = (âν , b̂ν). Then one

says that [v] ∈ P1 is a characteristic direction for X̂ if Pν(v) = λv. In particular
[v] is said to be a non-degenerate characteristic direction if λ �= 0.

The next result shows that this definition is invariant under formal coordinate
change.

Proposition 2.6. Let X̂, Ŷ ∈ X̂2(C
2, 0) and suppose Φ ∈ D̂iff(C2, 0) is such that

Ŷ = Φ∗X̂. Then Φ′(0) takes the (non-degenerate) characteristic directions of X̂
onto the (non-degenerate) characteristic directions of Y .

Proof. Let X̂ := P ∂
∂x +Q ∂

∂y , Ŷ := R ∂
∂x +S ∂

∂y , ωX̂ = Qdx−Pdy, ωY = Sdx−Rdy

and Φ′(0) = (aij)2×2. Then the characteristic directions of X̂ in the coordinates
containing the direction (0 : 1) ∈ P1 are given by Pν(u, 1) − uQν(u, 1) = 0 and
the degenerate ones are precisely those points such that Qν(u, 1) = 0. Analo-

gously, the characteristic directions of Ŷ in the same coordinates are given by
Rν(u, 1) − uSν(u, 1) = 0 and the degenerate ones are precisely those points such
that Sν(u, 1) = 0. On the other hand, Φ′(0) maps the direction (u : 1) in the
direction (a11u+ a12 : a21u+ a22) = (a11u+a12

a21u+a22
: 1). Since

Φ∗ωŶ = Sν(a11x+ a12y, a21x+ a22y)d(a11x+ a12y)

−Rν(a11x+ a12y, a21x+ a22y)d(a21x+ a22y)mod({xiyν−i+1}ν+1
i=0 )

= [a11Sν(a11x+ a12y, a21x+ a22y)− a21Rν(a11x+ a12y, a21x+ a22y)]dx

− [a22Rν(a11x+ a12y, a21x+ a22y)− a12Sν(a11x+ a12y, a21x+ a22y)]dy

mod({xiyν−i+1}ν+1
i=0 ),

then

Qν(u, 1) = [a21u+ a22]
ν

[
a11Sν(

a11u+ a12
a21u+ a22

, 1)− a21Rν(
a11u+ a12
a21u+ a22

, 1)

]
,

Pν(u, 1) = [a21u+ a22]
ν

[
a22Rν(

a11u+ a12
a21u+ a22

, 1)− a12Sν(
a11u+ a12
a21u+ a22

, 1)

]
.
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In particular,

Pν(u, 1)− uQν(u, 1) = [a21u+ a22]
ν [(a21u+ a22)Rν(v, 1)− (a11u+ a12)Sν(v, 1)]

= [a21u+ a22]
ν+1 {Rν(v, 1)− vSν(v, 1)} ,

where v = a11u+a12

a21u+a22
. Since Φ is a diffeomorphism, then a21 · a22 �= 0. Therefore,

Φ′(0) maps the characteristic directions of X̂ onto the characteristic directions of

Ŷ . Furthermore, (u0, 1) is a zero for both Pν(u, 1) and Qν(u, 1) if and only if
v0 = a11u0+a12

a21u0+a22
is a zero for both Rν(v, 1) and Sν(v, 1). �

2.3. Tangent cones and invariant curves. Let X̂ ∈ X̂(C2, 0) be a formal vector

field and Ĉ an algebroid curve given by f̂ ∈ C[[x, y]]. We say that Ĉ is a formal

separatrix1 of X̂ if X̂(f̂) ∈ (f̂). This notion does not depend on the representative

f̂ (i.e., on the formal equation) for the curve Ĉ.

Proposition 2.7. Let G ∈ Diff1(C
2, 0), and X̂(x, y) = â(x, y) ∂

∂x + b̂(x, y) ∂
∂y be its

infinitesimal generator. Then f̂ ∈ C[[x, y]] defines a formal separatrix of X̂ if and

only if f̂ is invariant by G.

Proof. Suppose f̂ represents a formal separatrix of X̂, then X̂(f̂) = f̂ ĝ. From

Leibniz’ rule, one has by induction that X̂◦(n)(f̂) ∈ (f̂) for all n ≥ 1 . Therefore,

f̂ ◦G = (Id+
∑
n≥1

1

n!
X̂◦(n))[f̂ ]

= f̂ +
∑
n≥1

1

n!
X̂◦(n)(f̂) ∈ (f̂).

Conversely, suppose f̂ is invariant by G, then f̂ ◦G ∈ (f̂) and thus f̂ ◦(G−Id) ∈ (f̂).

More generally, one can obtain by induction that f̂ ◦ (G − Id)◦(n) ∈ (f̂). Since

X̂ = lnG = (G− Id)− 1
2 (G− Id)◦(2) + 1

3 (G− Id)◦(3) ∓ · · · , then X̂(f̂) ∈ (f̂). �

In view of the above result, we sometimes refer to a formal separatrix of X̂ ∈
X̂2(C

2, 0) as a formal separatrix of its time one map of the associated flow, i.e., a

formal separatrix of the map G = exp[1]X̂.

Proposition 2.8. Let G ∈ Diff1(C
2, 0) and suppose that f̂ ∈ C[[x, y]] represents

a formal separatrix of G. Then the points of the tangent cone of f̂ determine

characteristic directions for G. Furthermore, if f̂ ∈ F̂ix(G), then the tangent cone

of f̂ determines only degenerate characteristic directions.

Proof. Let X̂ = â(x, y) ∂
∂x + b̂(x, y) ∂

∂y be the infinitesimal generator of G, then

Lemma 2.5 assures that it is enough to prove that the tangent cone of f̂ is con-
tained in the tangent cone of X̂. If X̂ is dicritical, there is nothing to prove,
since all directions are automatically characteristic. Thus we suppose that X̂ is

1Some authors also call it logarithm, cf. [15] p. 152.
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non-dicritical. After one blow up we have

π∗X̂(t, x) = â ◦ π(t, x)π∗(
∂

∂x
) + b̂ ◦ π(t, x)π∗(

∂

∂y
)

= â(x, tx)(
∂

∂x
− y

x2

∂

∂t
) + b̂(x, tx)

1

x

∂

∂t

= (
1

x
b̂(x, tx)− t

x
â(x, tx))

∂

∂t
+ â(x, tx)

∂

∂x
.(2.2)

Thus if â =
∑

j≥ν âj and b̂ =
∑

j≥ν b̂j are expansions in homogeneous polynomials,
then

X̂(1)(t, x) =
1

xν−1
π∗X̂(x, t)

=
1

xν−1

[
xν(âν(1, t) + x(· · · )) ∂

∂x

+
xν

x
(b̂ν(1, t)− tâν(1, t) + x(· · · )) ∂

∂t

]

= x(âν(1, t) + x(· · · )) ∂

∂x
+ (b̂ν(1, t)− tâν(1, t) + x(· · · )) ∂

∂t
.(2.3)

Hence the tangent cone of X̂ in the (t, x) coordinates is determined by b̂ν(1, t) −
tâν(1, t) = 0. Since df̂ · X̂ = f̂k, for some k ∈ C[[x, y]], where ν = ord(X̂),

μ = ord(f̂), and α = ord(k) = ν − 1, then

0 = d(π∗f̂) · π∗X̂ − (π∗f̂)(π∗k)

= d(xμf̂ (1)) · xν−1X̂(1) − xμf̂ (1)xαk(1)

= xμ+ν−2(μf̂ (1)dx+ xdf̂ (1)) · X̂(1) − xμ+ν−1f̂ (1)k(1),

where f̂ (1)(t, x) := 1
xμ π

∗f̂(t, x) and k(1)(t, x) := 1
xαπ

∗k(t, x). In particular, f̂ (1)

divides df̂ (1) · X̂(1), i.e., X̂(1)(f̂ (1)) ∈ (f̂ (1)). Thus, if f̂ =
∑

j≥μ f̂j is the decompo-

sition of f̂ in homogeneous polynomials, then the previous equation restricted to

(x = 0) leads to (b̂ν(1, t)− tâν(1, t))
∂f̂μ(1,t)

∂t ∈ (f̂μ(1, t)). Since up to a linear change

of coordinates we may suppose that f̂μ(1, t) and
∂f̂μ(1,t)

∂t are relatively prime, then

f̂μ(1, t) divides b̂ν(1, t) − tâν(1, t), and the first statement follows. Finally sup-

pose that f̂ divides both â and b̂, then taking (x = 0) one obtains that f̂μ(1, t)

divides both b̂ν(1, t) and âν(1, t). Thus its tangent cone determines just degenerate
characteristic directions. �

One says that the resolution of G ∈ Diff1(C
2, 0) has a dicritical component if

G
(n)
p :=

(
π(n)

)−1
(G) is dicritical at some singular point p ∈ D(n) :=

(
π(n)

)−1
(0),

where π(n) : M(n) −→ (C2, 0) is the n-th stage in the resolution process of G.

Remark 2.9. Similar to the analytic case, one can prove that a formal vector field
can be resolved after a finite number of blowups. Further, any vector field having
diagonalizable linear part has precisely two formal separatrices.

Corollary 2.10. Suppose that G ∈ Diff1(C
2, 0) has infinitely many separatrices,

then its resolution has a dicritical component.
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Proof. From Remark 2.9, we may suppose without loss of generality that the first

tangent cone of the formal separatrices ofG intersectsD :=
(
π(1)

)−1
(0) at infinitely

many distinct directions. Finally, Proposition 2.8 assures thatG has infinitely many
characteristic directions; however, this is impossible unless G is dicritical. �

Remark 2.11. In [3] it is proved that any germ of resonant map with finite orbits
and infinitely many separatrices is periodic. Therefore, one can reprove this result
with the application of Corollary 2.10, since dicritical maps always have at least
one parabolic curve (cf. Theorem 1.5).

Since we are interested in the dynamics of maps tangent to the identity and
the dynamics of dicritical maps are well understood, at least with respect to the
existence of parabolic curves, then hereafter we shall deal only with maps having
finitely many formal separatrices.

2.4. Resolution of singularities and invariant curves. As we have already
observed, Corollary 2.4 assures that any completely fixed curve is in fact convergent,
i.e., any element of F̂ix(G) has in fact an analytic realization as the zero set of an
analytic function.

The following result gives a geometric characterization for the existence of non-
degenerate characteristic directions in terms of the existence of non-dynamically
trivial formal separatrices.

Proposition 2.12. Let G ∈ Diff1(C
2, 0) be a flat complex map germ and Ĉ a non-

dynamically trivial formal separatrix of G. Denote by π : (M, D) −→ (C2, 0) the

minimal resolution of G. Then the singular points of C̃ := π∗Ĉ correspond exactly

to non-degenerate characteristic directions of G̃ := π∗G.

Proof. Suppose that f̂ /∈ F̂ix(G) is a non-dynamically trivial formal sepatratrix

and let X̂ be the infinitesimal generator of G. Let n be the number of steps
(blowups) in the minimal resolution process. Since G has no dicritical component,

then Corollary 2.4 assures that X̂ can be written in the form X̂ = gX̂o, where
Fix(G) is determined by (g = 0) with g ∈ O2 and the coefficients of X̂o are

relatively prime. After resolving Fix(G), Sep(X̂o) and X̂o, one may suppose that
near a singular point p ∈ D(n) := π−1(0) there are local coordinates (x, y) such

that p = (0, 0) and the map Gn := G
(n)
p has one of the following forms: (i) Gn =

exp[1]yτxκX̂o
n with τ, κ ≥ 1 and Sep(X̂o

n) coincides with Fix(Gn) ∈ (xy = 0); (ii)

Gn = exp([1]yτ X̂o
n) with τ ≥ 1 and Fix(Gn) = (y = 0). Clearly, in both cases X̂o

n

is reduced. From Remark 2.9 the singular points associated with f̂ are of the form
(ii). In order to simplify the notation let us omit the index n for a while. From
Proposition 2.7 the non-degenerate characteristic directions are formal invariants,
thus Corollary 2.4 assures that after a formal change of coordinates we may suppose
that G = exp[1]ykX̂o where we have one of the following cases: (a) (the saddle-node

normal form) X̂o(x, y) = xp+1 ∂
∂x + y(1 + λxp) ∂

∂y with λ ∈ C, or (b) (the Poincaré-

Dulac normal form) X̂o(x, y) = λx(1 + · · · ) ∂
∂x + μy(1 + · · · ) ∂

∂y , where μ, λ �= 0

and μ
λ /∈ Q+. In both cases the non-dynamically trivial separatrix is written in the

form f̂(x, y) = x. Let us first consider the case (a): Since â(x, y) = ykxp+1 and

b̂(x, y) = yk+1, then f̂1(u, 1) = u does not divide b̂1(u, 1) = 1. Now let us consider

the case (b): Since â(x, y) = λx and b̂(x, y) = μy, then f̂1(u, 1) = u does not divide
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b̂1(u, 1) = μ. Therefore, in both cases (0 : 1) is a non-degenerate characteristic
direction for G. �

Above we have proved that, for a flat map germ, a non-dynamically trivial
invariant formal curve is associated with a non-degenerate characteristic direction.
This is also a characterization of (the existence of) non-dynamically trivial formal
separatrices. Indeed, with the same notation above, suppose that Gn has a non-

degenerate characteristic direction at the point p ∈ { ˜̂f = 0} ∩ D, then Corollary
2.4 and Proposition 2.8 assure that it can be written locally in the form Gn =
exp[1]yτ X̂0 where the coefficients of X̂0 are relatively prime. From Remark 2.9 it
follows that G has a non-dynamically trivial formal separatrix.

Notice that the proofs of Propositions 2.8 and 2.12 show that, after at least the
minimal resolution, both degenerate and non-degenerate characteristic directions
are stable under blow-ups.

Now we are in position to prove our main results:

Proof of Theorem A. First notice that the irreducible components of Ĉ are in one-
to-one correspondence with the points of Sing(C̃). Now the result comes as a
straightforward consequence of Proposition 2.12 and Theorem 1.1. �

Theorem B is now a consequence of Theorem A:

Proof of Theorem B. Since G = exp[1]yτ X̂o with τ ≥ 1, Fix(Gn) = (y = 0), X̂o

has order one, and the linear part of X̂o is diagonal, then Remark 2.9 assures that
it has at least two formal separatrices. Since Fix(Gn) = (y = 0), then at least one
of them is a non-dynamically trivial formal separatrix. The result then follows from
Theorem A. �

Let G = exp[1]X̂ with X̂ = A(x, y) ∂
∂x +B(x, y) ∂

∂y and X̂1 = π∗X̂ be the formal

vector field in the chart containing the direction (0 : 1) ∈ P1 obtained from X̂ by a
blow up. Then a straightforward calculation shows that

(2.4) X̂1(u, y) = yν−1(Aν(u, 1)− uBν(u, 1) + · · · ) ∂

∂u
+ yν(Bν(u, 1) + · · · ) ∂

∂y
,

where ν = ν(G). In face of this remark, the following slight generalization of
Abate’s theorem (Theorem 1.2) is an immediate consequence of Theorem B.

Theorem 2.13. Let G ∈ Diff1(C
2, 0) be a germ of a flat diffeomorphism with

isolated fixed point at the origin. Then G has a purely formal separatrix Ĉ. If

Ĉ1, · · · , Ĉn are the irreducible components of Ĉ, then G admits (at least) ν(G)− 1

parabolic curves tangent to Ĉi for each i = 1, . . . , n.

Proof. Let π : (M, D) −→ (C2, 0) be the minimal resolution of G and G̃ = π∗G.

Since Fix(G) is isolated, then Corollary 2.4 assures that G̃ is written in local coor-
dinates about its singular points (i.e., the singular points of its pure infinitesimal

generator X̂0) in the form G = exp[1]yτ X̂0, where D = (y = 0), the coefficients of

X̂0 are relatively prime, and J1(X̂0) is reduced. From Remark 2.9, it follows that

G̃ has a purely formal separatrix through each of its singular points. Thus the first

statement follows by blowing down the purely formal separatrices of G̃. For the last

statement, recall from (2.4) that ν(G̃p) ≥ ν(G) for each singular point p ∈ C̃ ∩D
of G. Thus the result follows from Theorem B. �
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Notice that this result tells a little bit more than what is stated in Theorem 1.2.
For instance, one knows from Theorem A that the parabolic curves are in fact tan-
gent to the irreducible components of the non-dynamically trivial formal separatrix
of G. Further, if one knows the order of G̃p for all p ∈ (C̃), then a better estimate
for the number of parabolic curves can be performed.

Theorem B also applies to some cases which are not treated by Abate or L.
Molino, as for instance:

Example 2.14. Let G ∈ Diff1(C
2, 0) be given by G = exp[1]yτ X̂o where τ ≥ 1

and X̂o(x, y) = [λx + O(x2, xy, y2)] ∂
∂x + yB(x, y) ∂

∂y with λ �= 0 and B(0, 0) = 0.

Then ind0(G,S) = 0 and G admits a parabolic curve.

3. Maps having only dynamically trivial separatrices

Here we study how sharp our main result Theorem A is. Notice that Proposition
2.12 shows that G admits a non-dynamically trivial formal separatrix if and only if
there is a non-degenerate characteristic direction associated with this curve along
the resolution of G. Écalle’s approach to Theorem 1.1 shows that the existence
of characteristic directions determine a non-dynamically trivial formal separatrix
whose Borel-Laplace sum generates a parabolic curve. On the other hand, in [13]
L. Molino calls our attention to the fact that it is possible to have parabolic curve
tangent to degenerate characteristic directions. The next example shows that par-
abolic curves may happen even without the presence of non-dynamically trivial
formal separatrices, i.e., tangent to dynamically trivial (analytic) separatrices.

Example 3.1. Here we consider a map G ∈ Diff(C2, 0) with pure generator of

non-trivial Jordan cell type. Let G = exp[1]yτ X̂o where τ ≥ 2 and X̂o(x, y) =
(y + λx + · · · ) ∂

∂x + λy(1 + · · · ) ∂
∂y with λ �= 0. Since τ ≥ 2, then the action of dG

in the normal bundle of S := Fix(G) is trivial. Furthermore,

ind
x=0

(G,S) = CS(X̂o, S, 0) = Res
x=0

λy(1 + · · · )
y(y + λx+ · · · )

∣∣∣∣
y=0

= Res
x=0

1

x
= 1.

Then Theorem 1.4 assures that there is a parabolic curve tangent to the S. After

one blow up, one obtains a map G̃ with just an isolated singularity of the form

G̃(t, x) = exp[1]tτxτ+1X̃o(t, x) where X̃o(t, x) = x(λ + t + · · · ) ∂
∂x − t(t + · · · ) ∂

∂t .

Since parabolic curves can only appear next to singular points (cf. [1]), then G̃ has

a parabolic curve tangent to (t = 0). Nevertheless, from Remark 2.9, G̃(t, x) has
no non-dynamically trivial formal separatrix.

Now study a map whose purely infinitesimal generator is of nilpotent Jordan cell
type.

Example 3.2. Let G = exp[1]yτ X̂o where τ ≥ 2 and X̂o(x, y) = (λy+A(x, y)) ∂
∂x+

yB(x, y) ∂
∂y where λ �= 0, A ∈ (x2, xy, y2), B(0, 0) = 0. Since τ ≥ 2, then the action
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of dG in the normal bundle of S := Fix(G) is trivial. Furthermore,

ind
x=0

(G,S) = CS(X̂o, S, 0) = Res
x=0

yB(x, y)

y(λy +A(x, y))

∣∣∣∣
y=0

= Res
x=0

B(x, y)

A(x, y)

∣∣∣∣ .
Then Theorem 1.4 assures that there is a parabolic curve tangent to the S. After

one blow up, one obtains a map G̃ with just an isolated singularity of the form

G̃(t, x) = exp[1]tτxτ+1X̃o(t, x) where X̃o(t, x) = x(λ + t + · · · ) ∂
∂x − t(t + · · · ) ∂

∂t .

Since parabolic curves can only appear next to singular points (cf. [1]), then G̃ has

a parabolic curve tangent to (t = 0). Nevertheless, from Remark 2.9, G̃(t, x) has
no non-dynamically trivial formal separatrix.
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[7] L. Câmara and B. Scárdua. On the integrability of holomorphic vector fields. Discrete Contin.
Dyn. Syst. 25 (2009), no. 2, 481–493. MR2525187 (2010j:37075)

[8] L. Carleson and T.W. Gamelin, Complex Dynamics, Springer, (1992). MR1230383
(94h:30033)
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